Thanks for using Compiler Explorer
Sponsors
Jakt
C++
Ada
Analysis
Android Java
Android Kotlin
Assembly
C
C3
Carbon
C++ (Circle)
CIRCT
Clean
CMake
CMakeScript
COBOL
C++ for OpenCL
MLIR
Cppx
Cppx-Blue
Cppx-Gold
Cpp2-cppfront
Crystal
C#
CUDA C++
D
Dart
Elixir
Erlang
Fortran
F#
GLSL
Go
Haskell
HLSL
Hook
Hylo
IL
ispc
Java
Julia
Kotlin
LLVM IR
LLVM MIR
Modula-2
Nim
Objective-C
Objective-C++
OCaml
OpenCL C
Pascal
Pony
Python
Racket
Ruby
Rust
Snowball
Scala
Solidity
Spice
SPIR-V
Swift
LLVM TableGen
Toit
TypeScript Native
V
Vala
Visual Basic
WASM
Zig
Javascript
GIMPLE
Ygen
c++ source #1
Output
Compile to binary object
Link to binary
Execute the code
Intel asm syntax
Demangle identifiers
Verbose demangling
Filters
Unused labels
Library functions
Directives
Comments
Horizontal whitespace
Debug intrinsics
Compiler
6502-c++ 11.1.0
ARM GCC 10.2.0
ARM GCC 10.3.0
ARM GCC 10.4.0
ARM GCC 10.5.0
ARM GCC 11.1.0
ARM GCC 11.2.0
ARM GCC 11.3.0
ARM GCC 11.4.0
ARM GCC 12.1.0
ARM GCC 12.2.0
ARM GCC 12.3.0
ARM GCC 12.4.0
ARM GCC 13.1.0
ARM GCC 13.2.0
ARM GCC 13.2.0 (unknown-eabi)
ARM GCC 13.3.0
ARM GCC 13.3.0 (unknown-eabi)
ARM GCC 14.1.0
ARM GCC 14.1.0 (unknown-eabi)
ARM GCC 14.2.0
ARM GCC 14.2.0 (unknown-eabi)
ARM GCC 4.5.4
ARM GCC 4.6.4
ARM GCC 5.4
ARM GCC 6.3.0
ARM GCC 6.4.0
ARM GCC 7.3.0
ARM GCC 7.5.0
ARM GCC 8.2.0
ARM GCC 8.5.0
ARM GCC 9.3.0
ARM GCC 9.4.0
ARM GCC 9.5.0
ARM GCC trunk
ARM gcc 10.2.1 (none)
ARM gcc 10.3.1 (2021.07 none)
ARM gcc 10.3.1 (2021.10 none)
ARM gcc 11.2.1 (none)
ARM gcc 5.4.1 (none)
ARM gcc 7.2.1 (none)
ARM gcc 8.2 (WinCE)
ARM gcc 8.3.1 (none)
ARM gcc 9.2.1 (none)
ARM msvc v19.0 (WINE)
ARM msvc v19.10 (WINE)
ARM msvc v19.14 (WINE)
ARM64 Morello gcc 10.1 Alpha 2
ARM64 gcc 10.2
ARM64 gcc 10.3
ARM64 gcc 10.4
ARM64 gcc 10.5.0
ARM64 gcc 11.1
ARM64 gcc 11.2
ARM64 gcc 11.3
ARM64 gcc 11.4.0
ARM64 gcc 12.1
ARM64 gcc 12.2.0
ARM64 gcc 12.3.0
ARM64 gcc 12.4.0
ARM64 gcc 13.1.0
ARM64 gcc 13.2.0
ARM64 gcc 13.3.0
ARM64 gcc 14.1.0
ARM64 gcc 14.2.0
ARM64 gcc 4.9.4
ARM64 gcc 5.4
ARM64 gcc 5.5.0
ARM64 gcc 6.3
ARM64 gcc 6.4
ARM64 gcc 7.3
ARM64 gcc 7.5
ARM64 gcc 8.2
ARM64 gcc 8.5
ARM64 gcc 9.3
ARM64 gcc 9.4
ARM64 gcc 9.5
ARM64 gcc trunk
ARM64 msvc v19.14 (WINE)
AVR gcc 10.3.0
AVR gcc 11.1.0
AVR gcc 12.1.0
AVR gcc 12.2.0
AVR gcc 12.3.0
AVR gcc 12.4.0
AVR gcc 13.1.0
AVR gcc 13.2.0
AVR gcc 13.3.0
AVR gcc 14.1.0
AVR gcc 14.2.0
AVR gcc 4.5.4
AVR gcc 4.6.4
AVR gcc 5.4.0
AVR gcc 9.2.0
AVR gcc 9.3.0
Arduino Mega (1.8.9)
Arduino Uno (1.8.9)
BPF clang (trunk)
BPF clang 13.0.0
BPF clang 14.0.0
BPF clang 15.0.0
BPF clang 16.0.0
BPF clang 17.0.1
BPF clang 18.1.0
BPF clang 19.1.0
BPF gcc 13.1.0
BPF gcc 13.2.0
BPF gcc 13.3.0
BPF gcc trunk
EDG (experimental reflection)
EDG 6.5
EDG 6.5 (GNU mode gcc 13)
EDG 6.6
EDG 6.6 (GNU mode gcc 13)
FRC 2019
FRC 2020
FRC 2023
HPPA gcc 14.2.0
KVX ACB 4.1.0 (GCC 7.5.0)
KVX ACB 4.1.0-cd1 (GCC 7.5.0)
KVX ACB 4.10.0 (GCC 10.3.1)
KVX ACB 4.11.1 (GCC 10.3.1)
KVX ACB 4.12.0 (GCC 11.3.0)
KVX ACB 4.2.0 (GCC 7.5.0)
KVX ACB 4.3.0 (GCC 7.5.0)
KVX ACB 4.4.0 (GCC 7.5.0)
KVX ACB 4.6.0 (GCC 9.4.1)
KVX ACB 4.8.0 (GCC 9.4.1)
KVX ACB 4.9.0 (GCC 9.4.1)
KVX ACB 5.0.0 (GCC 12.2.1)
KVX ACB 5.2.0 (GCC 13.2.1)
LoongArch64 clang (trunk)
LoongArch64 clang 17.0.1
LoongArch64 clang 18.1.0
LoongArch64 clang 19.1.0
M68K gcc 13.1.0
M68K gcc 13.2.0
M68K gcc 13.3.0
M68K gcc 14.1.0
M68K gcc 14.2.0
M68k clang (trunk)
MRISC32 gcc (trunk)
MSP430 gcc 4.5.3
MSP430 gcc 5.3.0
MSP430 gcc 6.2.1
MinGW clang 14.0.3
MinGW clang 14.0.6
MinGW clang 15.0.7
MinGW clang 16.0.0
MinGW clang 16.0.2
MinGW gcc 11.3.0
MinGW gcc 12.1.0
MinGW gcc 12.2.0
MinGW gcc 13.1.0
RISC-V (32-bits) gcc (trunk)
RISC-V (32-bits) gcc 10.2.0
RISC-V (32-bits) gcc 10.3.0
RISC-V (32-bits) gcc 11.2.0
RISC-V (32-bits) gcc 11.3.0
RISC-V (32-bits) gcc 11.4.0
RISC-V (32-bits) gcc 12.1.0
RISC-V (32-bits) gcc 12.2.0
RISC-V (32-bits) gcc 12.3.0
RISC-V (32-bits) gcc 12.4.0
RISC-V (32-bits) gcc 13.1.0
RISC-V (32-bits) gcc 13.2.0
RISC-V (32-bits) gcc 13.3.0
RISC-V (32-bits) gcc 14.1.0
RISC-V (32-bits) gcc 14.2.0
RISC-V (32-bits) gcc 8.2.0
RISC-V (32-bits) gcc 8.5.0
RISC-V (32-bits) gcc 9.4.0
RISC-V (64-bits) gcc (trunk)
RISC-V (64-bits) gcc 10.2.0
RISC-V (64-bits) gcc 10.3.0
RISC-V (64-bits) gcc 11.2.0
RISC-V (64-bits) gcc 11.3.0
RISC-V (64-bits) gcc 11.4.0
RISC-V (64-bits) gcc 12.1.0
RISC-V (64-bits) gcc 12.2.0
RISC-V (64-bits) gcc 12.3.0
RISC-V (64-bits) gcc 12.4.0
RISC-V (64-bits) gcc 13.1.0
RISC-V (64-bits) gcc 13.2.0
RISC-V (64-bits) gcc 13.3.0
RISC-V (64-bits) gcc 14.1.0
RISC-V (64-bits) gcc 14.2.0
RISC-V (64-bits) gcc 8.2.0
RISC-V (64-bits) gcc 8.5.0
RISC-V (64-bits) gcc 9.4.0
RISC-V rv32gc clang (trunk)
RISC-V rv32gc clang 10.0.0
RISC-V rv32gc clang 10.0.1
RISC-V rv32gc clang 11.0.0
RISC-V rv32gc clang 11.0.1
RISC-V rv32gc clang 12.0.0
RISC-V rv32gc clang 12.0.1
RISC-V rv32gc clang 13.0.0
RISC-V rv32gc clang 13.0.1
RISC-V rv32gc clang 14.0.0
RISC-V rv32gc clang 15.0.0
RISC-V rv32gc clang 16.0.0
RISC-V rv32gc clang 17.0.1
RISC-V rv32gc clang 18.1.0
RISC-V rv32gc clang 19.1.0
RISC-V rv32gc clang 9.0.0
RISC-V rv32gc clang 9.0.1
RISC-V rv64gc clang (trunk)
RISC-V rv64gc clang 10.0.0
RISC-V rv64gc clang 10.0.1
RISC-V rv64gc clang 11.0.0
RISC-V rv64gc clang 11.0.1
RISC-V rv64gc clang 12.0.0
RISC-V rv64gc clang 12.0.1
RISC-V rv64gc clang 13.0.0
RISC-V rv64gc clang 13.0.1
RISC-V rv64gc clang 14.0.0
RISC-V rv64gc clang 15.0.0
RISC-V rv64gc clang 16.0.0
RISC-V rv64gc clang 17.0.1
RISC-V rv64gc clang 18.1.0
RISC-V rv64gc clang 19.1.0
RISC-V rv64gc clang 9.0.0
RISC-V rv64gc clang 9.0.1
Raspbian Buster
Raspbian Stretch
SPARC LEON gcc 12.2.0
SPARC LEON gcc 12.3.0
SPARC LEON gcc 12.4.0
SPARC LEON gcc 13.1.0
SPARC LEON gcc 13.2.0
SPARC LEON gcc 13.3.0
SPARC LEON gcc 14.1.0
SPARC LEON gcc 14.2.0
SPARC gcc 12.2.0
SPARC gcc 12.3.0
SPARC gcc 12.4.0
SPARC gcc 13.1.0
SPARC gcc 13.2.0
SPARC gcc 13.3.0
SPARC gcc 14.1.0
SPARC gcc 14.2.0
SPARC64 gcc 12.2.0
SPARC64 gcc 12.3.0
SPARC64 gcc 12.4.0
SPARC64 gcc 13.1.0
SPARC64 gcc 13.2.0
SPARC64 gcc 13.3.0
SPARC64 gcc 14.1.0
SPARC64 gcc 14.2.0
TI C6x gcc 12.2.0
TI C6x gcc 12.3.0
TI C6x gcc 12.4.0
TI C6x gcc 13.1.0
TI C6x gcc 13.2.0
TI C6x gcc 13.3.0
TI C6x gcc 14.1.0
TI C6x gcc 14.2.0
TI CL430 21.6.1
VAX gcc NetBSDELF 10.4.0
VAX gcc NetBSDELF 10.5.0 (Nov 15 03:50:22 2023)
WebAssembly clang (trunk)
Xtensa ESP32 gcc 11.2.0 (2022r1)
Xtensa ESP32 gcc 12.2.0 (20230208)
Xtensa ESP32 gcc 8.2.0 (2019r2)
Xtensa ESP32 gcc 8.2.0 (2020r1)
Xtensa ESP32 gcc 8.2.0 (2020r2)
Xtensa ESP32 gcc 8.4.0 (2020r3)
Xtensa ESP32 gcc 8.4.0 (2021r1)
Xtensa ESP32 gcc 8.4.0 (2021r2)
Xtensa ESP32-S2 gcc 11.2.0 (2022r1)
Xtensa ESP32-S2 gcc 12.2.0 (20230208)
Xtensa ESP32-S2 gcc 8.2.0 (2019r2)
Xtensa ESP32-S2 gcc 8.2.0 (2020r1)
Xtensa ESP32-S2 gcc 8.2.0 (2020r2)
Xtensa ESP32-S2 gcc 8.4.0 (2020r3)
Xtensa ESP32-S2 gcc 8.4.0 (2021r1)
Xtensa ESP32-S2 gcc 8.4.0 (2021r2)
Xtensa ESP32-S3 gcc 11.2.0 (2022r1)
Xtensa ESP32-S3 gcc 12.2.0 (20230208)
Xtensa ESP32-S3 gcc 8.4.0 (2020r3)
Xtensa ESP32-S3 gcc 8.4.0 (2021r1)
Xtensa ESP32-S3 gcc 8.4.0 (2021r2)
arm64 msvc v19.20 VS16.0
arm64 msvc v19.21 VS16.1
arm64 msvc v19.22 VS16.2
arm64 msvc v19.23 VS16.3
arm64 msvc v19.24 VS16.4
arm64 msvc v19.25 VS16.5
arm64 msvc v19.27 VS16.7
arm64 msvc v19.28 VS16.8
arm64 msvc v19.28 VS16.9
arm64 msvc v19.29 VS16.10
arm64 msvc v19.29 VS16.11
arm64 msvc v19.30 VS17.0
arm64 msvc v19.31 VS17.1
arm64 msvc v19.32 VS17.2
arm64 msvc v19.33 VS17.3
arm64 msvc v19.34 VS17.4
arm64 msvc v19.35 VS17.5
arm64 msvc v19.36 VS17.6
arm64 msvc v19.37 VS17.7
arm64 msvc v19.38 VS17.8
arm64 msvc v19.39 VS17.9
arm64 msvc v19.40 VS17.10
arm64 msvc v19.latest
armv7-a clang (trunk)
armv7-a clang 10.0.0
armv7-a clang 10.0.1
armv7-a clang 11.0.0
armv7-a clang 11.0.1
armv7-a clang 12.0.0
armv7-a clang 12.0.1
armv7-a clang 13.0.0
armv7-a clang 13.0.1
armv7-a clang 14.0.0
armv7-a clang 15.0.0
armv7-a clang 16.0.0
armv7-a clang 17.0.1
armv7-a clang 18.1.0
armv7-a clang 19.1.0
armv7-a clang 9.0.0
armv7-a clang 9.0.1
armv8-a clang (all architectural features, trunk)
armv8-a clang (trunk)
armv8-a clang 10.0.0
armv8-a clang 10.0.1
armv8-a clang 11.0.0
armv8-a clang 11.0.1
armv8-a clang 12.0.0
armv8-a clang 13.0.0
armv8-a clang 14.0.0
armv8-a clang 15.0.0
armv8-a clang 16.0.0
armv8-a clang 17.0.1
armv8-a clang 18.1.0
armv8-a clang 19.1.0
armv8-a clang 9.0.0
armv8-a clang 9.0.1
clang-cl 18.1.0
ellcc 0.1.33
ellcc 0.1.34
ellcc 2017-07-16
hexagon-clang 16.0.5
llvm-mos atari2600-3e
llvm-mos atari2600-4k
llvm-mos atari2600-common
llvm-mos atari5200-supercart
llvm-mos atari8-cart-megacart
llvm-mos atari8-cart-std
llvm-mos atari8-cart-xegs
llvm-mos atari8-common
llvm-mos atari8-dos
llvm-mos c128
llvm-mos c64
llvm-mos commodore
llvm-mos cpm65
llvm-mos cx16
llvm-mos dodo
llvm-mos eater
llvm-mos mega65
llvm-mos nes
llvm-mos nes-action53
llvm-mos nes-cnrom
llvm-mos nes-gtrom
llvm-mos nes-mmc1
llvm-mos nes-mmc3
llvm-mos nes-nrom
llvm-mos nes-unrom
llvm-mos nes-unrom-512
llvm-mos osi-c1p
llvm-mos pce
llvm-mos pce-cd
llvm-mos pce-common
llvm-mos pet
llvm-mos rp6502
llvm-mos rpc8e
llvm-mos supervision
llvm-mos vic20
loongarch64 gcc 12.2.0
loongarch64 gcc 12.3.0
loongarch64 gcc 12.4.0
loongarch64 gcc 13.1.0
loongarch64 gcc 13.2.0
loongarch64 gcc 13.3.0
loongarch64 gcc 14.1.0
loongarch64 gcc 14.2.0
mips clang 13.0.0
mips clang 14.0.0
mips clang 15.0.0
mips clang 16.0.0
mips clang 17.0.1
mips clang 18.1.0
mips clang 19.1.0
mips gcc 11.2.0
mips gcc 12.1.0
mips gcc 12.2.0
mips gcc 12.3.0
mips gcc 12.4.0
mips gcc 13.1.0
mips gcc 13.2.0
mips gcc 13.3.0
mips gcc 14.1.0
mips gcc 14.2.0
mips gcc 4.9.4
mips gcc 5.4
mips gcc 5.5.0
mips gcc 9.3.0 (codescape)
mips gcc 9.5.0
mips64 (el) gcc 12.1.0
mips64 (el) gcc 12.2.0
mips64 (el) gcc 12.3.0
mips64 (el) gcc 12.4.0
mips64 (el) gcc 13.1.0
mips64 (el) gcc 13.2.0
mips64 (el) gcc 13.3.0
mips64 (el) gcc 14.1.0
mips64 (el) gcc 14.2.0
mips64 (el) gcc 4.9.4
mips64 (el) gcc 5.4.0
mips64 (el) gcc 5.5.0
mips64 (el) gcc 9.5.0
mips64 clang 13.0.0
mips64 clang 14.0.0
mips64 clang 15.0.0
mips64 clang 16.0.0
mips64 clang 17.0.1
mips64 clang 18.1.0
mips64 clang 19.1.0
mips64 gcc 11.2.0
mips64 gcc 12.1.0
mips64 gcc 12.2.0
mips64 gcc 12.3.0
mips64 gcc 12.4.0
mips64 gcc 13.1.0
mips64 gcc 13.2.0
mips64 gcc 13.3.0
mips64 gcc 14.1.0
mips64 gcc 14.2.0
mips64 gcc 4.9.4
mips64 gcc 5.4.0
mips64 gcc 5.5.0
mips64 gcc 9.5.0
mips64el clang 13.0.0
mips64el clang 14.0.0
mips64el clang 15.0.0
mips64el clang 16.0.0
mips64el clang 17.0.1
mips64el clang 18.1.0
mips64el clang 19.1.0
mipsel clang 13.0.0
mipsel clang 14.0.0
mipsel clang 15.0.0
mipsel clang 16.0.0
mipsel clang 17.0.1
mipsel clang 18.1.0
mipsel clang 19.1.0
mipsel gcc 12.1.0
mipsel gcc 12.2.0
mipsel gcc 12.3.0
mipsel gcc 12.4.0
mipsel gcc 13.1.0
mipsel gcc 13.2.0
mipsel gcc 13.3.0
mipsel gcc 14.1.0
mipsel gcc 14.2.0
mipsel gcc 4.9.4
mipsel gcc 5.4.0
mipsel gcc 5.5.0
mipsel gcc 9.5.0
nanoMIPS gcc 6.3.0 (mtk)
power gcc 11.2.0
power gcc 12.1.0
power gcc 12.2.0
power gcc 12.3.0
power gcc 12.4.0
power gcc 13.1.0
power gcc 13.2.0
power gcc 13.3.0
power gcc 14.1.0
power gcc 14.2.0
power gcc 4.8.5
power64 AT12.0 (gcc8)
power64 AT13.0 (gcc9)
power64 gcc 11.2.0
power64 gcc 12.1.0
power64 gcc 12.2.0
power64 gcc 12.3.0
power64 gcc 12.4.0
power64 gcc 13.1.0
power64 gcc 13.2.0
power64 gcc 13.3.0
power64 gcc 14.1.0
power64 gcc 14.2.0
power64 gcc trunk
power64le AT12.0 (gcc8)
power64le AT13.0 (gcc9)
power64le clang (trunk)
power64le gcc 11.2.0
power64le gcc 12.1.0
power64le gcc 12.2.0
power64le gcc 12.3.0
power64le gcc 12.4.0
power64le gcc 13.1.0
power64le gcc 13.2.0
power64le gcc 13.3.0
power64le gcc 14.1.0
power64le gcc 14.2.0
power64le gcc 6.3.0
power64le gcc trunk
powerpc64 clang (trunk)
s390x gcc 11.2.0
s390x gcc 12.1.0
s390x gcc 12.2.0
s390x gcc 12.3.0
s390x gcc 12.4.0
s390x gcc 13.1.0
s390x gcc 13.2.0
s390x gcc 13.3.0
s390x gcc 14.1.0
s390x gcc 14.2.0
sh gcc 12.2.0
sh gcc 12.3.0
sh gcc 12.4.0
sh gcc 13.1.0
sh gcc 13.2.0
sh gcc 13.3.0
sh gcc 14.1.0
sh gcc 14.2.0
sh gcc 4.9.4
sh gcc 9.5.0
vast (trunk)
x64 msvc v19.0 (WINE)
x64 msvc v19.10 (WINE)
x64 msvc v19.14 (WINE)
x64 msvc v19.20 VS16.0
x64 msvc v19.21 VS16.1
x64 msvc v19.22 VS16.2
x64 msvc v19.23 VS16.3
x64 msvc v19.24 VS16.4
x64 msvc v19.25 VS16.5
x64 msvc v19.27 VS16.7
x64 msvc v19.28 VS16.8
x64 msvc v19.28 VS16.9
x64 msvc v19.29 VS16.10
x64 msvc v19.29 VS16.11
x64 msvc v19.30 VS17.0
x64 msvc v19.31 VS17.1
x64 msvc v19.32 VS17.2
x64 msvc v19.33 VS17.3
x64 msvc v19.34 VS17.4
x64 msvc v19.35 VS17.5
x64 msvc v19.36 VS17.6
x64 msvc v19.37 VS17.7
x64 msvc v19.38 VS17.8
x64 msvc v19.39 VS17.9
x64 msvc v19.40 VS17.10
x64 msvc v19.latest
x86 djgpp 4.9.4
x86 djgpp 5.5.0
x86 djgpp 6.4.0
x86 djgpp 7.2.0
x86 msvc v19.0 (WINE)
x86 msvc v19.10 (WINE)
x86 msvc v19.14 (WINE)
x86 msvc v19.20 VS16.0
x86 msvc v19.21 VS16.1
x86 msvc v19.22 VS16.2
x86 msvc v19.23 VS16.3
x86 msvc v19.24 VS16.4
x86 msvc v19.25 VS16.5
x86 msvc v19.27 VS16.7
x86 msvc v19.28 VS16.8
x86 msvc v19.28 VS16.9
x86 msvc v19.29 VS16.10
x86 msvc v19.29 VS16.11
x86 msvc v19.30 VS17.0
x86 msvc v19.31 VS17.1
x86 msvc v19.32 VS17.2
x86 msvc v19.33 VS17.3
x86 msvc v19.34 VS17.4
x86 msvc v19.35 VS17.5
x86 msvc v19.36 VS17.6
x86 msvc v19.37 VS17.7
x86 msvc v19.38 VS17.8
x86 msvc v19.39 VS17.9
x86 msvc v19.40 VS17.10
x86 msvc v19.latest
x86 nvc++ 22.11
x86 nvc++ 22.7
x86 nvc++ 22.9
x86 nvc++ 23.1
x86 nvc++ 23.11
x86 nvc++ 23.3
x86 nvc++ 23.5
x86 nvc++ 23.7
x86 nvc++ 23.9
x86 nvc++ 24.1
x86 nvc++ 24.3
x86 nvc++ 24.5
x86 nvc++ 24.7
x86 nvc++ 24.9
x86-64 Zapcc 190308
x86-64 clang (EricWF contracts)
x86-64 clang (amd-staging)
x86-64 clang (assertions trunk)
x86-64 clang (clangir)
x86-64 clang (dascandy contracts)
x86-64 clang (experimental -Wlifetime)
x86-64 clang (experimental P1061)
x86-64 clang (experimental P1144)
x86-64 clang (experimental P1221)
x86-64 clang (experimental P2996)
x86-64 clang (experimental P3068)
x86-64 clang (experimental P3309)
x86-64 clang (experimental P3367)
x86-64 clang (experimental P3372)
x86-64 clang (experimental metaprogramming - P2632)
x86-64 clang (old concepts branch)
x86-64 clang (p1974)
x86-64 clang (pattern matching - P2688)
x86-64 clang (reflection)
x86-64 clang (resugar)
x86-64 clang (string interpolation - P3412)
x86-64 clang (thephd.dev)
x86-64 clang (trunk)
x86-64 clang (variadic friends - P2893)
x86-64 clang (widberg)
x86-64 clang 10.0.0
x86-64 clang 10.0.0 (assertions)
x86-64 clang 10.0.1
x86-64 clang 11.0.0
x86-64 clang 11.0.0 (assertions)
x86-64 clang 11.0.1
x86-64 clang 12.0.0
x86-64 clang 12.0.0 (assertions)
x86-64 clang 12.0.1
x86-64 clang 13.0.0
x86-64 clang 13.0.0 (assertions)
x86-64 clang 13.0.1
x86-64 clang 14.0.0
x86-64 clang 14.0.0 (assertions)
x86-64 clang 15.0.0
x86-64 clang 15.0.0 (assertions)
x86-64 clang 16.0.0
x86-64 clang 16.0.0 (assertions)
x86-64 clang 17.0.1
x86-64 clang 17.0.1 (assertions)
x86-64 clang 18.1.0
x86-64 clang 18.1.0 (assertions)
x86-64 clang 19.1.0
x86-64 clang 19.1.0 (assertions)
x86-64 clang 2.6.0 (assertions)
x86-64 clang 2.7.0 (assertions)
x86-64 clang 2.8.0 (assertions)
x86-64 clang 2.9.0 (assertions)
x86-64 clang 3.0.0
x86-64 clang 3.0.0 (assertions)
x86-64 clang 3.1
x86-64 clang 3.1 (assertions)
x86-64 clang 3.2
x86-64 clang 3.2 (assertions)
x86-64 clang 3.3
x86-64 clang 3.3 (assertions)
x86-64 clang 3.4 (assertions)
x86-64 clang 3.4.1
x86-64 clang 3.5
x86-64 clang 3.5 (assertions)
x86-64 clang 3.5.1
x86-64 clang 3.5.2
x86-64 clang 3.6
x86-64 clang 3.6 (assertions)
x86-64 clang 3.7
x86-64 clang 3.7 (assertions)
x86-64 clang 3.7.1
x86-64 clang 3.8
x86-64 clang 3.8 (assertions)
x86-64 clang 3.8.1
x86-64 clang 3.9.0
x86-64 clang 3.9.0 (assertions)
x86-64 clang 3.9.1
x86-64 clang 4.0.0
x86-64 clang 4.0.0 (assertions)
x86-64 clang 4.0.1
x86-64 clang 5.0.0
x86-64 clang 5.0.0 (assertions)
x86-64 clang 5.0.1
x86-64 clang 5.0.2
x86-64 clang 6.0.0
x86-64 clang 6.0.0 (assertions)
x86-64 clang 6.0.1
x86-64 clang 7.0.0
x86-64 clang 7.0.0 (assertions)
x86-64 clang 7.0.1
x86-64 clang 7.1.0
x86-64 clang 8.0.0
x86-64 clang 8.0.0 (assertions)
x86-64 clang 8.0.1
x86-64 clang 9.0.0
x86-64 clang 9.0.0 (assertions)
x86-64 clang 9.0.1
x86-64 clang rocm-4.5.2
x86-64 clang rocm-5.0.2
x86-64 clang rocm-5.1.3
x86-64 clang rocm-5.2.3
x86-64 clang rocm-5.3.3
x86-64 clang rocm-5.7.0
x86-64 clang rocm-6.0.2
x86-64 clang rocm-6.1.2
x86-64 gcc (contract labels)
x86-64 gcc (contracts natural syntax)
x86-64 gcc (contracts)
x86-64 gcc (coroutines)
x86-64 gcc (modules)
x86-64 gcc (trunk)
x86-64 gcc 10.1
x86-64 gcc 10.2
x86-64 gcc 10.3
x86-64 gcc 10.4
x86-64 gcc 10.5
x86-64 gcc 11.1
x86-64 gcc 11.2
x86-64 gcc 11.3
x86-64 gcc 11.4
x86-64 gcc 12.1
x86-64 gcc 12.2
x86-64 gcc 12.3
x86-64 gcc 12.4
x86-64 gcc 13.1
x86-64 gcc 13.2
x86-64 gcc 13.3
x86-64 gcc 14.1
x86-64 gcc 14.2
x86-64 gcc 3.4.6
x86-64 gcc 4.0.4
x86-64 gcc 4.1.2
x86-64 gcc 4.4.7
x86-64 gcc 4.5.3
x86-64 gcc 4.6.4
x86-64 gcc 4.7.1
x86-64 gcc 4.7.2
x86-64 gcc 4.7.3
x86-64 gcc 4.7.4
x86-64 gcc 4.8.1
x86-64 gcc 4.8.2
x86-64 gcc 4.8.3
x86-64 gcc 4.8.4
x86-64 gcc 4.8.5
x86-64 gcc 4.9.0
x86-64 gcc 4.9.1
x86-64 gcc 4.9.2
x86-64 gcc 4.9.3
x86-64 gcc 4.9.4
x86-64 gcc 5.1
x86-64 gcc 5.2
x86-64 gcc 5.3
x86-64 gcc 5.4
x86-64 gcc 5.5
x86-64 gcc 6.1
x86-64 gcc 6.2
x86-64 gcc 6.3
x86-64 gcc 6.4
x86-64 gcc 6.5
x86-64 gcc 7.1
x86-64 gcc 7.2
x86-64 gcc 7.3
x86-64 gcc 7.4
x86-64 gcc 7.5
x86-64 gcc 8.1
x86-64 gcc 8.2
x86-64 gcc 8.3
x86-64 gcc 8.4
x86-64 gcc 8.5
x86-64 gcc 9.1
x86-64 gcc 9.2
x86-64 gcc 9.3
x86-64 gcc 9.4
x86-64 gcc 9.5
x86-64 icc 13.0.1
x86-64 icc 16.0.3
x86-64 icc 17.0.0
x86-64 icc 18.0.0
x86-64 icc 19.0.0
x86-64 icc 19.0.1
x86-64 icc 2021.1.2
x86-64 icc 2021.10.0
x86-64 icc 2021.2.0
x86-64 icc 2021.3.0
x86-64 icc 2021.4.0
x86-64 icc 2021.5.0
x86-64 icc 2021.6.0
x86-64 icc 2021.7.0
x86-64 icc 2021.7.1
x86-64 icc 2021.8.0
x86-64 icc 2021.9.0
x86-64 icx 2021.1.2
x86-64 icx 2021.2.0
x86-64 icx 2021.3.0
x86-64 icx 2021.4.0
x86-64 icx 2022.0.0
x86-64 icx 2022.1.0
x86-64 icx 2022.2.0
x86-64 icx 2022.2.1
x86-64 icx 2023.0.0
x86-64 icx 2023.1.0
x86-64 icx 2023.2.1
x86-64 icx 2024.0.0
x86-64 icx 2024.1.0
x86-64 icx 2024.2.0
x86-64 icx 2025.0.0
x86-64 icx 2025.0.0
zig c++ 0.10.0
zig c++ 0.11.0
zig c++ 0.12.0
zig c++ 0.12.1
zig c++ 0.13.0
zig c++ 0.6.0
zig c++ 0.7.0
zig c++ 0.7.1
zig c++ 0.8.0
zig c++ 0.9.0
zig c++ trunk
Options
Source code
// Formatting library for C++ - the core API // // Copyright (c) 2012 - present, Victor Zverovich // All rights reserved. // // For the license information refer to format.h. #ifndef FMT_CORE_H_ #define FMT_CORE_H_ #include <cstdio> // std::FILE #include <cstring> #include <iterator> #include <string> #include <type_traits> // The fmt library version in the form major * 10000 + minor * 100 + patch. #define FMT_VERSION 70103 #ifdef __clang__ # define FMT_CLANG_VERSION (__clang_major__ * 100 + __clang_minor__) #else # define FMT_CLANG_VERSION 0 #endif #if defined(__GNUC__) && !defined(__clang__) # define FMT_GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__) #else # define FMT_GCC_VERSION 0 #endif #if defined(__INTEL_COMPILER) # define FMT_ICC_VERSION __INTEL_COMPILER #else # define FMT_ICC_VERSION 0 #endif #if __cplusplus >= 201103L || defined(__GXX_EXPERIMENTAL_CXX0X__) # define FMT_HAS_GXX_CXX11 FMT_GCC_VERSION #else # define FMT_HAS_GXX_CXX11 0 #endif #ifdef __NVCC__ # define FMT_NVCC __NVCC__ #else # define FMT_NVCC 0 #endif #ifdef _MSC_VER # define FMT_MSC_VER _MSC_VER # define FMT_MSC_WARNING(...) __pragma(warning(__VA_ARGS__)) #else # define FMT_MSC_VER 0 # define FMT_MSC_WARNING(...) #endif #ifdef __has_feature # define FMT_HAS_FEATURE(x) __has_feature(x) #else # define FMT_HAS_FEATURE(x) 0 #endif #if defined(__has_include) && !defined(__INTELLISENSE__) && \ (!FMT_ICC_VERSION || FMT_ICC_VERSION >= 1600) # define FMT_HAS_INCLUDE(x) __has_include(x) #else # define FMT_HAS_INCLUDE(x) 0 #endif #ifdef __has_cpp_attribute # define FMT_HAS_CPP_ATTRIBUTE(x) __has_cpp_attribute(x) #else # define FMT_HAS_CPP_ATTRIBUTE(x) 0 #endif #define FMT_HAS_CPP14_ATTRIBUTE(attribute) \ (__cplusplus >= 201402L && FMT_HAS_CPP_ATTRIBUTE(attribute)) #define FMT_HAS_CPP17_ATTRIBUTE(attribute) \ (__cplusplus >= 201703L && FMT_HAS_CPP_ATTRIBUTE(attribute)) // Check if relaxed C++14 constexpr is supported. // GCC doesn't allow throw in constexpr until version 6 (bug 67371). #ifndef FMT_USE_CONSTEXPR # define FMT_USE_CONSTEXPR \ (FMT_HAS_FEATURE(cxx_relaxed_constexpr) || FMT_MSC_VER >= 1910 || \ (FMT_GCC_VERSION >= 600 && __cplusplus >= 201402L)) && \ !FMT_NVCC && !FMT_ICC_VERSION #endif #if FMT_USE_CONSTEXPR # define FMT_CONSTEXPR constexpr # define FMT_CONSTEXPR_DECL constexpr #else # define FMT_CONSTEXPR # define FMT_CONSTEXPR_DECL #endif #ifndef FMT_OVERRIDE # if FMT_HAS_FEATURE(cxx_override_control) || \ (FMT_GCC_VERSION >= 408 && FMT_HAS_GXX_CXX11) || FMT_MSC_VER >= 1900 # define FMT_OVERRIDE override # else # define FMT_OVERRIDE # endif #endif // Check if exceptions are disabled. #ifndef FMT_EXCEPTIONS # if (defined(__GNUC__) && !defined(__EXCEPTIONS)) || \ FMT_MSC_VER && !_HAS_EXCEPTIONS # define FMT_EXCEPTIONS 0 # else # define FMT_EXCEPTIONS 1 # endif #endif // Define FMT_USE_NOEXCEPT to make fmt use noexcept (C++11 feature). #ifndef FMT_USE_NOEXCEPT # define FMT_USE_NOEXCEPT 0 #endif #if FMT_USE_NOEXCEPT || FMT_HAS_FEATURE(cxx_noexcept) || \ (FMT_GCC_VERSION >= 408 && FMT_HAS_GXX_CXX11) || FMT_MSC_VER >= 1900 # define FMT_DETECTED_NOEXCEPT noexcept # define FMT_HAS_CXX11_NOEXCEPT 1 #else # define FMT_DETECTED_NOEXCEPT throw() # define FMT_HAS_CXX11_NOEXCEPT 0 #endif #ifndef FMT_NOEXCEPT # if FMT_EXCEPTIONS || FMT_HAS_CXX11_NOEXCEPT # define FMT_NOEXCEPT FMT_DETECTED_NOEXCEPT # else # define FMT_NOEXCEPT # endif #endif // [[noreturn]] is disabled on MSVC and NVCC because of bogus unreachable code // warnings. #if FMT_EXCEPTIONS && FMT_HAS_CPP_ATTRIBUTE(noreturn) && !FMT_MSC_VER && \ !FMT_NVCC # define FMT_NORETURN [[noreturn]] #else # define FMT_NORETURN #endif #ifndef FMT_DEPRECATED # if FMT_HAS_CPP14_ATTRIBUTE(deprecated) || FMT_MSC_VER >= 1900 # define FMT_DEPRECATED [[deprecated]] # else # if (defined(__GNUC__) && !defined(__LCC__)) || defined(__clang__) # define FMT_DEPRECATED __attribute__((deprecated)) # elif FMT_MSC_VER # define FMT_DEPRECATED __declspec(deprecated) # else # define FMT_DEPRECATED /* deprecated */ # endif # endif #endif // Workaround broken [[deprecated]] in the Intel, PGI and NVCC compilers. #if FMT_ICC_VERSION || defined(__PGI) || FMT_NVCC # define FMT_DEPRECATED_ALIAS #else # define FMT_DEPRECATED_ALIAS FMT_DEPRECATED #endif #ifndef FMT_INLINE # if FMT_GCC_VERSION || FMT_CLANG_VERSION # define FMT_INLINE inline __attribute__((always_inline)) # else # define FMT_INLINE inline # endif #endif #ifndef FMT_USE_INLINE_NAMESPACES # if FMT_HAS_FEATURE(cxx_inline_namespaces) || FMT_GCC_VERSION >= 404 || \ (FMT_MSC_VER >= 1900 && !_MANAGED) # define FMT_USE_INLINE_NAMESPACES 1 # else # define FMT_USE_INLINE_NAMESPACES 0 # endif #endif #ifndef FMT_BEGIN_NAMESPACE # if FMT_USE_INLINE_NAMESPACES # define FMT_INLINE_NAMESPACE inline namespace # define FMT_END_NAMESPACE \ } \ } # else # define FMT_INLINE_NAMESPACE namespace # define FMT_END_NAMESPACE \ } \ using namespace v7; \ } # endif # define FMT_BEGIN_NAMESPACE \ namespace fmt { \ FMT_INLINE_NAMESPACE v7 { #endif #if !defined(FMT_HEADER_ONLY) && defined(_WIN32) # define FMT_CLASS_API FMT_MSC_WARNING(suppress : 4275) # ifdef FMT_EXPORT # define FMT_API __declspec(dllexport) # define FMT_EXTERN_TEMPLATE_API FMT_API # define FMT_EXPORTED # elif defined(FMT_SHARED) # define FMT_API __declspec(dllimport) # define FMT_EXTERN_TEMPLATE_API FMT_API # endif #else # define FMT_CLASS_API #endif #ifndef FMT_API # define FMT_API #endif #ifndef FMT_EXTERN_TEMPLATE_API # define FMT_EXTERN_TEMPLATE_API #endif #ifndef FMT_INSTANTIATION_DEF_API # define FMT_INSTANTIATION_DEF_API FMT_API #endif #ifndef FMT_HEADER_ONLY # define FMT_EXTERN extern #else # define FMT_EXTERN #endif // libc++ supports string_view in pre-c++17. #if (FMT_HAS_INCLUDE(<string_view>) && \ (__cplusplus > 201402L || defined(_LIBCPP_VERSION))) || \ (defined(_MSVC_LANG) && _MSVC_LANG > 201402L && _MSC_VER >= 1910) # include <string_view> # define FMT_USE_STRING_VIEW #elif FMT_HAS_INCLUDE("experimental/string_view") && __cplusplus >= 201402L # include <experimental/string_view> # define FMT_USE_EXPERIMENTAL_STRING_VIEW #endif #ifndef FMT_UNICODE # define FMT_UNICODE !FMT_MSC_VER #endif #ifndef FMT_COMPILE_TIME_CHECKS # define FMT_COMPILE_TIME_CHECKS 0 #endif FMT_BEGIN_NAMESPACE // Implementations of enable_if_t and other metafunctions for older systems. template <bool B, class T = void> using enable_if_t = typename std::enable_if<B, T>::type; template <bool B, class T, class F> using conditional_t = typename std::conditional<B, T, F>::type; template <bool B> using bool_constant = std::integral_constant<bool, B>; template <typename T> using remove_reference_t = typename std::remove_reference<T>::type; template <typename T> using remove_const_t = typename std::remove_const<T>::type; template <typename T> using remove_cvref_t = typename std::remove_cv<remove_reference_t<T>>::type; template <typename T> struct type_identity { using type = T; }; template <typename T> using type_identity_t = typename type_identity<T>::type; struct monostate {}; // An enable_if helper to be used in template parameters which results in much // shorter symbols: https://godbolt.org/z/sWw4vP. Extra parentheses are needed // to workaround a bug in MSVC 2019 (see #1140 and #1186). #ifdef FMT_DOC # define FMT_ENABLE_IF(...) #else # define FMT_ENABLE_IF(...) enable_if_t<(__VA_ARGS__), int> = 0 #endif namespace detail { constexpr bool is_constant_evaluated() FMT_NOEXCEPT { #ifdef __cpp_lib_is_constant_evaluated return std::is_constant_evaluated(); #else return false; #endif } // A helper function to suppress "conditional expression is constant" warnings. template <typename T> constexpr T const_check(T value) { return value; } FMT_NORETURN FMT_API void assert_fail(const char* file, int line, const char* message); #ifndef FMT_ASSERT # ifdef NDEBUG // FMT_ASSERT is not empty to avoid -Werror=empty-body. # define FMT_ASSERT(condition, message) ((void)0) # else # define FMT_ASSERT(condition, message) \ ((condition) /* void() fails with -Winvalid-constexpr on clang 4.0.1 */ \ ? (void)0 \ : ::fmt::detail::assert_fail(__FILE__, __LINE__, (message))) # endif #endif #if defined(FMT_USE_STRING_VIEW) template <typename Char> using std_string_view = std::basic_string_view<Char>; #elif defined(FMT_USE_EXPERIMENTAL_STRING_VIEW) template <typename Char> using std_string_view = std::experimental::basic_string_view<Char>; #else template <typename T> struct std_string_view {}; #endif #ifdef FMT_USE_INT128 // Do nothing. #elif defined(__SIZEOF_INT128__) && !FMT_NVCC && \ !(FMT_CLANG_VERSION && FMT_MSC_VER) # define FMT_USE_INT128 1 using int128_t = __int128_t; using uint128_t = __uint128_t; #else # define FMT_USE_INT128 0 #endif #if !FMT_USE_INT128 struct int128_t {}; struct uint128_t {}; #endif // Casts a nonnegative integer to unsigned. template <typename Int> FMT_CONSTEXPR typename std::make_unsigned<Int>::type to_unsigned(Int value) { FMT_ASSERT(value >= 0, "negative value"); return static_cast<typename std::make_unsigned<Int>::type>(value); } FMT_MSC_WARNING(suppress : 4566) constexpr unsigned char micro[] = "\u00B5"; template <typename Char> constexpr bool is_unicode() { return FMT_UNICODE || sizeof(Char) != 1 || (sizeof(micro) == 3 && micro[0] == 0xC2 && micro[1] == 0xB5); } #ifdef __cpp_char8_t using char8_type = char8_t; #else enum char8_type : unsigned char {}; #endif } // namespace detail #ifdef FMT_USE_INTERNAL namespace internal = detail; // DEPRECATED #endif /** An implementation of ``std::basic_string_view`` for pre-C++17. It provides a subset of the API. ``fmt::basic_string_view`` is used for format strings even if ``std::string_view`` is available to prevent issues when a library is compiled with a different ``-std`` option than the client code (which is not recommended). */ template <typename Char> class basic_string_view { private: const Char* data_; size_t size_; public: using value_type = Char; using iterator = const Char*; constexpr basic_string_view() FMT_NOEXCEPT : data_(nullptr), size_(0) {} /** Constructs a string reference object from a C string and a size. */ constexpr basic_string_view(const Char* s, size_t count) FMT_NOEXCEPT : data_(s), size_(count) {} /** \rst Constructs a string reference object from a C string computing the size with ``std::char_traits<Char>::length``. \endrst */ #if __cplusplus >= 201703L // C++17's char_traits::length() is constexpr. FMT_CONSTEXPR #endif basic_string_view(const Char* s) : data_(s), size_(std::char_traits<Char>::length(s)) {} /** Constructs a string reference from a ``std::basic_string`` object. */ template <typename Traits, typename Alloc> FMT_CONSTEXPR basic_string_view( const std::basic_string<Char, Traits, Alloc>& s) FMT_NOEXCEPT : data_(s.data()), size_(s.size()) {} template <typename S, FMT_ENABLE_IF(std::is_same< S, detail::std_string_view<Char>>::value)> FMT_CONSTEXPR basic_string_view(S s) FMT_NOEXCEPT : data_(s.data()), size_(s.size()) {} /** Returns a pointer to the string data. */ constexpr const Char* data() const { return data_; } /** Returns the string size. */ constexpr size_t size() const { return size_; } constexpr iterator begin() const { return data_; } constexpr iterator end() const { return data_ + size_; } constexpr const Char& operator[](size_t pos) const { return data_[pos]; } FMT_CONSTEXPR void remove_prefix(size_t n) { data_ += n; size_ -= n; } // Lexicographically compare this string reference to other. int compare(basic_string_view other) const { size_t str_size = size_ < other.size_ ? size_ : other.size_; int result = std::char_traits<Char>::compare(data_, other.data_, str_size); if (result == 0) result = size_ == other.size_ ? 0 : (size_ < other.size_ ? -1 : 1); return result; } friend bool operator==(basic_string_view lhs, basic_string_view rhs) { return lhs.compare(rhs) == 0; } friend bool operator!=(basic_string_view lhs, basic_string_view rhs) { return lhs.compare(rhs) != 0; } friend bool operator<(basic_string_view lhs, basic_string_view rhs) { return lhs.compare(rhs) < 0; } friend bool operator<=(basic_string_view lhs, basic_string_view rhs) { return lhs.compare(rhs) <= 0; } friend bool operator>(basic_string_view lhs, basic_string_view rhs) { return lhs.compare(rhs) > 0; } friend bool operator>=(basic_string_view lhs, basic_string_view rhs) { return lhs.compare(rhs) >= 0; } }; using string_view = basic_string_view<char>; using wstring_view = basic_string_view<wchar_t>; /** Specifies if ``T`` is a character type. Can be specialized by users. */ template <typename T> struct is_char : std::false_type {}; template <> struct is_char<char> : std::true_type {}; template <> struct is_char<wchar_t> : std::true_type {}; template <> struct is_char<detail::char8_type> : std::true_type {}; template <> struct is_char<char16_t> : std::true_type {}; template <> struct is_char<char32_t> : std::true_type {}; /** \rst Returns a string view of `s`. In order to add custom string type support to {fmt} provide an overload of `to_string_view` for it in the same namespace as the type for the argument-dependent lookup to work. **Example**:: namespace my_ns { inline string_view to_string_view(const my_string& s) { return {s.data(), s.length()}; } } std::string message = fmt::format(my_string("The answer is {}"), 42); \endrst */ template <typename Char, FMT_ENABLE_IF(is_char<Char>::value)> inline basic_string_view<Char> to_string_view(const Char* s) { return s; } template <typename Char, typename Traits, typename Alloc> inline basic_string_view<Char> to_string_view( const std::basic_string<Char, Traits, Alloc>& s) { return s; } template <typename Char> constexpr basic_string_view<Char> to_string_view(basic_string_view<Char> s) { return s; } template <typename Char, FMT_ENABLE_IF(!std::is_empty<detail::std_string_view<Char>>::value)> inline basic_string_view<Char> to_string_view(detail::std_string_view<Char> s) { return s; } // A base class for compile-time strings. It is defined in the fmt namespace to // make formatting functions visible via ADL, e.g. format(FMT_STRING("{}"), 42). struct compile_string {}; template <typename S> struct is_compile_string : std::is_base_of<compile_string, S> {}; template <typename S, FMT_ENABLE_IF(is_compile_string<S>::value)> constexpr basic_string_view<typename S::char_type> to_string_view(const S& s) { return s; } namespace detail { void to_string_view(...); using fmt::v7::to_string_view; // Specifies whether S is a string type convertible to fmt::basic_string_view. // It should be a constexpr function but MSVC 2017 fails to compile it in // enable_if and MSVC 2015 fails to compile it as an alias template. template <typename S> struct is_string : std::is_class<decltype(to_string_view(std::declval<S>()))> { }; template <typename S, typename = void> struct char_t_impl {}; template <typename S> struct char_t_impl<S, enable_if_t<is_string<S>::value>> { using result = decltype(to_string_view(std::declval<S>())); using type = typename result::value_type; }; // Reports a compile-time error if S is not a valid format string. template <typename..., typename S, FMT_ENABLE_IF(!is_compile_string<S>::value)> FMT_INLINE void check_format_string(const S&) { #ifdef FMT_ENFORCE_COMPILE_STRING static_assert(is_compile_string<S>::value, "FMT_ENFORCE_COMPILE_STRING requires all format strings to use " "FMT_STRING."); #endif } template <typename..., typename S, FMT_ENABLE_IF(is_compile_string<S>::value)> void check_format_string(S); struct error_handler { constexpr error_handler() = default; constexpr error_handler(const error_handler&) = default; // This function is intentionally not constexpr to give a compile-time error. FMT_NORETURN FMT_API void on_error(const char* message); }; } // namespace detail /** String's character type. */ template <typename S> using char_t = typename detail::char_t_impl<S>::type; /** \rst Parsing context consisting of a format string range being parsed and an argument counter for automatic indexing. You can use one of the following type aliases for common character types: +-----------------------+-------------------------------------+ | Type | Definition | +=======================+=====================================+ | format_parse_context | basic_format_parse_context<char> | +-----------------------+-------------------------------------+ | wformat_parse_context | basic_format_parse_context<wchar_t> | +-----------------------+-------------------------------------+ \endrst */ template <typename Char, typename ErrorHandler = detail::error_handler> class basic_format_parse_context : private ErrorHandler { private: basic_string_view<Char> format_str_; int next_arg_id_; public: using char_type = Char; using iterator = typename basic_string_view<Char>::iterator; explicit constexpr basic_format_parse_context( basic_string_view<Char> format_str, ErrorHandler eh = {}, int next_arg_id = 0) : ErrorHandler(eh), format_str_(format_str), next_arg_id_(next_arg_id) {} /** Returns an iterator to the beginning of the format string range being parsed. */ constexpr iterator begin() const FMT_NOEXCEPT { return format_str_.begin(); } /** Returns an iterator past the end of the format string range being parsed. */ constexpr iterator end() const FMT_NOEXCEPT { return format_str_.end(); } /** Advances the begin iterator to ``it``. */ FMT_CONSTEXPR void advance_to(iterator it) { format_str_.remove_prefix(detail::to_unsigned(it - begin())); } /** Reports an error if using the manual argument indexing; otherwise returns the next argument index and switches to the automatic indexing. */ FMT_CONSTEXPR int next_arg_id() { // Don't check if the argument id is valid to avoid overhead and because it // will be checked during formatting anyway. if (next_arg_id_ >= 0) return next_arg_id_++; on_error("cannot switch from manual to automatic argument indexing"); return 0; } /** Reports an error if using the automatic argument indexing; otherwise switches to the manual indexing. */ FMT_CONSTEXPR void check_arg_id(int) { if (next_arg_id_ > 0) on_error("cannot switch from automatic to manual argument indexing"); else next_arg_id_ = -1; } FMT_CONSTEXPR void check_arg_id(basic_string_view<Char>) {} FMT_CONSTEXPR void on_error(const char* message) { ErrorHandler::on_error(message); } constexpr ErrorHandler error_handler() const { return *this; } }; using format_parse_context = basic_format_parse_context<char>; using wformat_parse_context = basic_format_parse_context<wchar_t>; template <typename Context> class basic_format_arg; template <typename Context> class basic_format_args; template <typename Context> class dynamic_format_arg_store; // A formatter for objects of type T. template <typename T, typename Char = char, typename Enable = void> struct formatter { // A deleted default constructor indicates a disabled formatter. formatter() = delete; }; // Specifies if T has an enabled formatter specialization. A type can be // formattable even if it doesn't have a formatter e.g. via a conversion. template <typename T, typename Context> using has_formatter = std::is_constructible<typename Context::template formatter_type<T>>; // Checks whether T is a container with contiguous storage. template <typename T> struct is_contiguous : std::false_type {}; template <typename Char> struct is_contiguous<std::basic_string<Char>> : std::true_type {}; namespace detail { // Extracts a reference to the container from back_insert_iterator. template <typename Container> inline Container& get_container(std::back_insert_iterator<Container> it) { using bi_iterator = std::back_insert_iterator<Container>; struct accessor : bi_iterator { accessor(bi_iterator iter) : bi_iterator(iter) {} using bi_iterator::container; }; return *accessor(it).container; } /** \rst A contiguous memory buffer with an optional growing ability. It is an internal class and shouldn't be used directly, only via `~fmt::basic_memory_buffer`. \endrst */ template <typename T> class buffer { private: T* ptr_; size_t size_; size_t capacity_; protected: // Don't initialize ptr_ since it is not accessed to save a few cycles. FMT_MSC_WARNING(suppress : 26495) buffer(size_t sz) FMT_NOEXCEPT : size_(sz), capacity_(sz) {} buffer(T* p = nullptr, size_t sz = 0, size_t cap = 0) FMT_NOEXCEPT : ptr_(p), size_(sz), capacity_(cap) {} ~buffer() = default; /** Sets the buffer data and capacity. */ void set(T* buf_data, size_t buf_capacity) FMT_NOEXCEPT { ptr_ = buf_data; capacity_ = buf_capacity; } /** Increases the buffer capacity to hold at least *capacity* elements. */ virtual void grow(size_t capacity) = 0; public: using value_type = T; using const_reference = const T&; buffer(const buffer&) = delete; void operator=(const buffer&) = delete; T* begin() FMT_NOEXCEPT { return ptr_; } T* end() FMT_NOEXCEPT { return ptr_ + size_; } const T* begin() const FMT_NOEXCEPT { return ptr_; } const T* end() const FMT_NOEXCEPT { return ptr_ + size_; } /** Returns the size of this buffer. */ size_t size() const FMT_NOEXCEPT { return size_; } /** Returns the capacity of this buffer. */ size_t capacity() const FMT_NOEXCEPT { return capacity_; } /** Returns a pointer to the buffer data. */ T* data() FMT_NOEXCEPT { return ptr_; } /** Returns a pointer to the buffer data. */ const T* data() const FMT_NOEXCEPT { return ptr_; } /** Clears this buffer. */ void clear() { size_ = 0; } // Tries resizing the buffer to contain *count* elements. If T is a POD type // the new elements may not be initialized. void try_resize(size_t count) { try_reserve(count); size_ = count <= capacity_ ? count : capacity_; } // Tries increasing the buffer capacity to *new_capacity*. It can increase the // capacity by a smaller amount than requested but guarantees there is space // for at least one additional element either by increasing the capacity or by // flushing the buffer if it is full. void try_reserve(size_t new_capacity) { if (new_capacity > capacity_) grow(new_capacity); } void push_back(const T& value) { try_reserve(size_ + 1); ptr_[size_++] = value; } /** Appends data to the end of the buffer. */ template <typename U> void append(const U* begin, const U* end); template <typename I> T& operator[](I index) { return ptr_[index]; } template <typename I> const T& operator[](I index) const { return ptr_[index]; } }; struct buffer_traits { explicit buffer_traits(size_t) {} size_t count() const { return 0; } size_t limit(size_t size) { return size; } }; class fixed_buffer_traits { private: size_t count_ = 0; size_t limit_; public: explicit fixed_buffer_traits(size_t limit) : limit_(limit) {} size_t count() const { return count_; } size_t limit(size_t size) { size_t n = limit_ > count_ ? limit_ - count_ : 0; count_ += size; return size < n ? size : n; } }; // A buffer that writes to an output iterator when flushed. template <typename OutputIt, typename T, typename Traits = buffer_traits> class iterator_buffer final : public Traits, public buffer<T> { private: OutputIt out_; enum { buffer_size = 256 }; T data_[buffer_size]; protected: void grow(size_t) final FMT_OVERRIDE { if (this->size() == buffer_size) flush(); } void flush(); public: explicit iterator_buffer(OutputIt out, size_t n = buffer_size) : Traits(n), buffer<T>(data_, 0, buffer_size), out_(out) {} ~iterator_buffer() { flush(); } OutputIt out() { flush(); return out_; } size_t count() const { return Traits::count() + this->size(); } }; template <typename T> class iterator_buffer<T*, T> final : public buffer<T> { protected: void grow(size_t) final FMT_OVERRIDE {} public: explicit iterator_buffer(T* out, size_t = 0) : buffer<T>(out, 0, ~size_t()) {} T* out() { return &*this->end(); } }; // A buffer that writes to a container with the contiguous storage. template <typename Container> class iterator_buffer<std::back_insert_iterator<Container>, enable_if_t<is_contiguous<Container>::value, typename Container::value_type>> final : public buffer<typename Container::value_type> { private: Container& container_; protected: void grow(size_t capacity) final FMT_OVERRIDE { container_.resize(capacity); this->set(&container_[0], capacity); } public: explicit iterator_buffer(Container& c) : buffer<typename Container::value_type>(c.size()), container_(c) {} explicit iterator_buffer(std::back_insert_iterator<Container> out, size_t = 0) : iterator_buffer(get_container(out)) {} std::back_insert_iterator<Container> out() { return std::back_inserter(container_); } }; // A buffer that counts the number of code units written discarding the output. template <typename T = char> class counting_buffer final : public buffer<T> { private: enum { buffer_size = 256 }; T data_[buffer_size]; size_t count_ = 0; protected: void grow(size_t) final FMT_OVERRIDE { if (this->size() != buffer_size) return; count_ += this->size(); this->clear(); } public: counting_buffer() : buffer<T>(data_, 0, buffer_size) {} size_t count() { return count_ + this->size(); } }; // An output iterator that appends to the buffer. // It is used to reduce symbol sizes for the common case. template <typename T> class buffer_appender : public std::back_insert_iterator<buffer<T>> { using base = std::back_insert_iterator<buffer<T>>; public: explicit buffer_appender(buffer<T>& buf) : base(buf) {} buffer_appender(base it) : base(it) {} buffer_appender& operator++() { base::operator++(); return *this; } buffer_appender operator++(int) { buffer_appender tmp = *this; ++*this; return tmp; } }; // Maps an output iterator into a buffer. template <typename T, typename OutputIt> iterator_buffer<OutputIt, T> get_buffer(OutputIt); template <typename T> buffer<T>& get_buffer(buffer_appender<T>); template <typename OutputIt> OutputIt get_buffer_init(OutputIt out) { return out; } template <typename T> buffer<T>& get_buffer_init(buffer_appender<T> out) { return get_container(out); } template <typename Buffer> auto get_iterator(Buffer& buf) -> decltype(buf.out()) { return buf.out(); } template <typename T> buffer_appender<T> get_iterator(buffer<T>& buf) { return buffer_appender<T>(buf); } template <typename T, typename Char = char, typename Enable = void> struct fallback_formatter { fallback_formatter() = delete; }; // Specifies if T has an enabled fallback_formatter specialization. template <typename T, typename Context> using has_fallback_formatter = std::is_constructible<fallback_formatter<T, typename Context::char_type>>; struct view {}; template <typename Char, typename T> struct named_arg : view { const Char* name; const T& value; named_arg(const Char* n, const T& v) : name(n), value(v) {} }; template <typename Char> struct named_arg_info { const Char* name; int id; }; template <typename T, typename Char, size_t NUM_ARGS, size_t NUM_NAMED_ARGS> struct arg_data { // args_[0].named_args points to named_args_ to avoid bloating format_args. // +1 to workaround a bug in gcc 7.5 that causes duplicated-branches warning. T args_[1 + (NUM_ARGS != 0 ? NUM_ARGS : +1)]; named_arg_info<Char> named_args_[NUM_NAMED_ARGS]; template <typename... U> arg_data(const U&... init) : args_{T(named_args_, NUM_NAMED_ARGS), init...} {} arg_data(const arg_data& other) = delete; const T* args() const { return args_ + 1; } named_arg_info<Char>* named_args() { return named_args_; } }; template <typename T, typename Char, size_t NUM_ARGS> struct arg_data<T, Char, NUM_ARGS, 0> { // +1 to workaround a bug in gcc 7.5 that causes duplicated-branches warning. T args_[NUM_ARGS != 0 ? NUM_ARGS : +1]; template <typename... U> FMT_CONSTEXPR FMT_INLINE arg_data(const U&... init) : args_{init...} {} FMT_CONSTEXPR FMT_INLINE const T* args() const { return args_; } FMT_CONSTEXPR FMT_INLINE std::nullptr_t named_args() { return nullptr; } }; template <typename Char> inline void init_named_args(named_arg_info<Char>*, int, int) {} template <typename Char, typename T, typename... Tail> void init_named_args(named_arg_info<Char>* named_args, int arg_count, int named_arg_count, const T&, const Tail&... args) { init_named_args(named_args, arg_count + 1, named_arg_count, args...); } template <typename Char, typename T, typename... Tail> void init_named_args(named_arg_info<Char>* named_args, int arg_count, int named_arg_count, const named_arg<Char, T>& arg, const Tail&... args) { named_args[named_arg_count++] = {arg.name, arg_count}; init_named_args(named_args, arg_count + 1, named_arg_count, args...); } template <typename... Args> FMT_CONSTEXPR FMT_INLINE void init_named_args(std::nullptr_t, int, int, const Args&...) {} template <typename T> struct is_named_arg : std::false_type {}; template <typename T, typename Char> struct is_named_arg<named_arg<Char, T>> : std::true_type {}; template <bool B = false> constexpr size_t count() { return B ? 1 : 0; } template <bool B1, bool B2, bool... Tail> constexpr size_t count() { return (B1 ? 1 : 0) + count<B2, Tail...>(); } template <typename... Args> constexpr size_t count_named_args() { return count<is_named_arg<Args>::value...>(); } enum class type { none_type, // Integer types should go first, int_type, uint_type, long_long_type, ulong_long_type, int128_type, uint128_type, bool_type, char_type, last_integer_type = char_type, // followed by floating-point types. float_type, double_type, long_double_type, last_numeric_type = long_double_type, cstring_type, string_type, pointer_type, custom_type }; // Maps core type T to the corresponding type enum constant. template <typename T, typename Char> struct type_constant : std::integral_constant<type, type::custom_type> {}; #define FMT_TYPE_CONSTANT(Type, constant) \ template <typename Char> \ struct type_constant<Type, Char> \ : std::integral_constant<type, type::constant> {} FMT_TYPE_CONSTANT(int, int_type); FMT_TYPE_CONSTANT(unsigned, uint_type); FMT_TYPE_CONSTANT(long long, long_long_type); FMT_TYPE_CONSTANT(unsigned long long, ulong_long_type); FMT_TYPE_CONSTANT(int128_t, int128_type); FMT_TYPE_CONSTANT(uint128_t, uint128_type); FMT_TYPE_CONSTANT(bool, bool_type); FMT_TYPE_CONSTANT(Char, char_type); FMT_TYPE_CONSTANT(float, float_type); FMT_TYPE_CONSTANT(double, double_type); FMT_TYPE_CONSTANT(long double, long_double_type); FMT_TYPE_CONSTANT(const Char*, cstring_type); FMT_TYPE_CONSTANT(basic_string_view<Char>, string_type); FMT_TYPE_CONSTANT(const void*, pointer_type); constexpr bool is_integral_type(type t) { return t > type::none_type && t <= type::last_integer_type; } constexpr bool is_arithmetic_type(type t) { return t > type::none_type && t <= type::last_numeric_type; } template <typename Char> struct string_value { const Char* data; size_t size; }; template <typename Char> struct named_arg_value { const named_arg_info<Char>* data; size_t size; }; template <typename Context> struct custom_value { using parse_context = typename Context::parse_context_type; const void* value; void (*format)(const void* arg, parse_context& parse_ctx, Context& ctx); }; // A formatting argument value. template <typename Context> class value { public: using char_type = typename Context::char_type; union { int int_value; unsigned uint_value; long long long_long_value; unsigned long long ulong_long_value; int128_t int128_value; uint128_t uint128_value; bool bool_value; char_type char_value; float float_value; double double_value; long double long_double_value; const void* pointer; string_value<char_type> string; custom_value<Context> custom; named_arg_value<char_type> named_args; }; constexpr FMT_INLINE value(int val = 0) : int_value(val) {} constexpr FMT_INLINE value(unsigned val) : uint_value(val) {} constexpr FMT_INLINE value(long long val) : long_long_value(val) {} constexpr FMT_INLINE value(unsigned long long val) : ulong_long_value(val) {} FMT_INLINE value(int128_t val) : int128_value(val) {} FMT_INLINE value(uint128_t val) : uint128_value(val) {} FMT_INLINE value(float val) : float_value(val) {} FMT_INLINE value(double val) : double_value(val) {} FMT_INLINE value(long double val) : long_double_value(val) {} constexpr FMT_INLINE value(bool val) : bool_value(val) {} constexpr FMT_INLINE value(char_type val) : char_value(val) {} FMT_CONSTEXPR FMT_INLINE value(const char_type* val) { string.data = val; if (is_constant_evaluated()) string.size = {}; } FMT_CONSTEXPR FMT_INLINE value(basic_string_view<char_type> val) { string.data = val.data(); string.size = val.size(); } FMT_INLINE value(const void* val) : pointer(val) {} FMT_INLINE value(const named_arg_info<char_type>* args, size_t size) : named_args{args, size} {} template <typename T> FMT_INLINE value(const T& val) { custom.value = &val; // Get the formatter type through the context to allow different contexts // have different extension points, e.g. `formatter<T>` for `format` and // `printf_formatter<T>` for `printf`. custom.format = format_custom_arg< T, conditional_t<has_formatter<T, Context>::value, typename Context::template formatter_type<T>, fallback_formatter<T, char_type>>>; } private: // Formats an argument of a custom type, such as a user-defined class. template <typename T, typename Formatter> static void format_custom_arg(const void* arg, typename Context::parse_context_type& parse_ctx, Context& ctx) { Formatter f; parse_ctx.advance_to(f.parse(parse_ctx)); ctx.advance_to(f.format(*static_cast<const T*>(arg), ctx)); } }; template <typename Context, typename T> FMT_CONSTEXPR basic_format_arg<Context> make_arg(const T& value); // To minimize the number of types we need to deal with, long is translated // either to int or to long long depending on its size. enum { long_short = sizeof(long) == sizeof(int) }; using long_type = conditional_t<long_short, int, long long>; using ulong_type = conditional_t<long_short, unsigned, unsigned long long>; struct unformattable {}; // Maps formatting arguments to core types. template <typename Context> struct arg_mapper { using char_type = typename Context::char_type; FMT_CONSTEXPR int map(signed char val) { return val; } FMT_CONSTEXPR unsigned map(unsigned char val) { return val; } FMT_CONSTEXPR int map(short val) { return val; } FMT_CONSTEXPR unsigned map(unsigned short val) { return val; } FMT_CONSTEXPR int map(int val) { return val; } FMT_CONSTEXPR unsigned map(unsigned val) { return val; } FMT_CONSTEXPR long_type map(long val) { return val; } FMT_CONSTEXPR ulong_type map(unsigned long val) { return val; } FMT_CONSTEXPR long long map(long long val) { return val; } FMT_CONSTEXPR unsigned long long map(unsigned long long val) { return val; } FMT_CONSTEXPR int128_t map(int128_t val) { return val; } FMT_CONSTEXPR uint128_t map(uint128_t val) { return val; } FMT_CONSTEXPR bool map(bool val) { return val; } template <typename T, FMT_ENABLE_IF(is_char<T>::value)> FMT_CONSTEXPR char_type map(T val) { static_assert( std::is_same<T, char>::value || std::is_same<T, char_type>::value, "mixing character types is disallowed"); return val; } FMT_CONSTEXPR float map(float val) { return val; } FMT_CONSTEXPR double map(double val) { return val; } FMT_CONSTEXPR long double map(long double val) { return val; } FMT_CONSTEXPR const char_type* map(char_type* val) { return val; } FMT_CONSTEXPR const char_type* map(const char_type* val) { return val; } template <typename T, FMT_ENABLE_IF(is_string<T>::value)> FMT_CONSTEXPR basic_string_view<char_type> map(const T& val) { static_assert(std::is_same<char_type, char_t<T>>::value, "mixing character types is disallowed"); return to_string_view(val); } template <typename T, FMT_ENABLE_IF( std::is_constructible<basic_string_view<char_type>, T>::value && !is_string<T>::value && !has_formatter<T, Context>::value && !has_fallback_formatter<T, Context>::value)> FMT_CONSTEXPR basic_string_view<char_type> map(const T& val) { return basic_string_view<char_type>(val); } template < typename T, FMT_ENABLE_IF( std::is_constructible<std_string_view<char_type>, T>::value && !std::is_constructible<basic_string_view<char_type>, T>::value && !is_string<T>::value && !has_formatter<T, Context>::value && !has_fallback_formatter<T, Context>::value)> FMT_CONSTEXPR basic_string_view<char_type> map(const T& val) { return std_string_view<char_type>(val); } FMT_CONSTEXPR const char* map(const signed char* val) { static_assert(std::is_same<char_type, char>::value, "invalid string type"); return reinterpret_cast<const char*>(val); } FMT_CONSTEXPR const char* map(const unsigned char* val) { static_assert(std::is_same<char_type, char>::value, "invalid string type"); return reinterpret_cast<const char*>(val); } FMT_CONSTEXPR const char* map(signed char* val) { const auto* const_val = val; return map(const_val); } FMT_CONSTEXPR const char* map(unsigned char* val) { const auto* const_val = val; return map(const_val); } FMT_CONSTEXPR const void* map(void* val) { return val; } FMT_CONSTEXPR const void* map(const void* val) { return val; } FMT_CONSTEXPR const void* map(std::nullptr_t val) { return val; } // We use SFINAE instead of a const T* parameter to avoid conflicting with // the C array overload. template <typename T> FMT_CONSTEXPR auto map(T) -> enable_if_t<std::is_pointer<T>::value, int> { // Formatting of arbitrary pointers is disallowed. If you want to output // a pointer cast it to "void *" or "const void *". In particular, this // forbids formatting of "[const] volatile char *" which is printed as bool // by iostreams. static_assert(!sizeof(T), "formatting of non-void pointers is disallowed"); return 0; } template <typename T, std::size_t N> FMT_CONSTEXPR auto map(const T (&values)[N]) -> const T (&)[N] { return values; } template <typename T, FMT_ENABLE_IF(std::is_enum<T>::value && !has_formatter<T, Context>::value && !has_fallback_formatter<T, Context>::value)> FMT_CONSTEXPR auto map(const T& val) -> decltype(std::declval<arg_mapper>().map( static_cast<typename std::underlying_type<T>::type>(val))) { return map(static_cast<typename std::underlying_type<T>::type>(val)); } template <typename T, FMT_ENABLE_IF(!is_string<T>::value && !is_char<T>::value && (has_formatter<T, Context>::value || has_fallback_formatter<T, Context>::value))> FMT_CONSTEXPR const T& map(const T& val) { return val; } template <typename T> FMT_CONSTEXPR auto map(const named_arg<char_type, T>& val) -> decltype(std::declval<arg_mapper>().map(val.value)) { return map(val.value); } unformattable map(...) { return {}; } }; // A type constant after applying arg_mapper<Context>. template <typename T, typename Context> using mapped_type_constant = type_constant<decltype(arg_mapper<Context>().map(std::declval<const T&>())), typename Context::char_type>; enum { packed_arg_bits = 4 }; // Maximum number of arguments with packed types. enum { max_packed_args = 62 / packed_arg_bits }; enum : unsigned long long { is_unpacked_bit = 1ULL << 63 }; enum : unsigned long long { has_named_args_bit = 1ULL << 62 }; } // namespace detail // A formatting argument. It is a trivially copyable/constructible type to // allow storage in basic_memory_buffer. template <typename Context> class basic_format_arg { private: detail::value<Context> value_; detail::type type_; template <typename ContextType, typename T> friend FMT_CONSTEXPR basic_format_arg<ContextType> detail::make_arg( const T& value); template <typename Visitor, typename Ctx> friend FMT_CONSTEXPR auto visit_format_arg(Visitor&& vis, const basic_format_arg<Ctx>& arg) -> decltype(vis(0)); friend class basic_format_args<Context>; friend class dynamic_format_arg_store<Context>; using char_type = typename Context::char_type; template <typename T, typename Char, size_t NUM_ARGS, size_t NUM_NAMED_ARGS> friend struct detail::arg_data; basic_format_arg(const detail::named_arg_info<char_type>* args, size_t size) : value_(args, size) {} public: class handle { public: explicit handle(detail::custom_value<Context> custom) : custom_(custom) {} void format(typename Context::parse_context_type& parse_ctx, Context& ctx) const { custom_.format(custom_.value, parse_ctx, ctx); } private: detail::custom_value<Context> custom_; }; constexpr basic_format_arg() : type_(detail::type::none_type) {} constexpr explicit operator bool() const FMT_NOEXCEPT { return type_ != detail::type::none_type; } detail::type type() const { return type_; } bool is_integral() const { return detail::is_integral_type(type_); } bool is_arithmetic() const { return detail::is_arithmetic_type(type_); } }; /** \rst Visits an argument dispatching to the appropriate visit method based on the argument type. For example, if the argument type is ``double`` then ``vis(value)`` will be called with the value of type ``double``. \endrst */ template <typename Visitor, typename Context> FMT_CONSTEXPR_DECL FMT_INLINE auto visit_format_arg( Visitor&& vis, const basic_format_arg<Context>& arg) -> decltype(vis(0)) { using char_type = typename Context::char_type; switch (arg.type_) { case detail::type::none_type: break; case detail::type::int_type: return vis(arg.value_.int_value); case detail::type::uint_type: return vis(arg.value_.uint_value); case detail::type::long_long_type: return vis(arg.value_.long_long_value); case detail::type::ulong_long_type: return vis(arg.value_.ulong_long_value); #if FMT_USE_INT128 case detail::type::int128_type: return vis(arg.value_.int128_value); case detail::type::uint128_type: return vis(arg.value_.uint128_value); #else case detail::type::int128_type: case detail::type::uint128_type: break; #endif case detail::type::bool_type: return vis(arg.value_.bool_value); case detail::type::char_type: return vis(arg.value_.char_value); case detail::type::float_type: return vis(arg.value_.float_value); case detail::type::double_type: return vis(arg.value_.double_value); case detail::type::long_double_type: return vis(arg.value_.long_double_value); case detail::type::cstring_type: return vis(arg.value_.string.data); case detail::type::string_type: return vis(basic_string_view<char_type>(arg.value_.string.data, arg.value_.string.size)); case detail::type::pointer_type: return vis(arg.value_.pointer); case detail::type::custom_type: return vis(typename basic_format_arg<Context>::handle(arg.value_.custom)); } return vis(monostate()); } template <typename T> struct formattable : std::false_type {}; namespace detail { #if FMT_GCC_VERSION && FMT_GCC_VERSION < 500 // A workaround for gcc 4.8 to make void_t work in a SFINAE context. template <typename... Ts> struct void_t_impl { using type = void; }; template <typename... Ts> using void_t = typename detail::void_t_impl<Ts...>::type; #else template <typename...> using void_t = void; #endif template <typename It, typename T, typename Enable = void> struct is_output_iterator : std::false_type {}; template <typename It, typename T> struct is_output_iterator< It, T, void_t<typename std::iterator_traits<It>::iterator_category, decltype(*std::declval<It>() = std::declval<T>())>> : std::true_type {}; template <typename OutputIt> struct is_back_insert_iterator : std::false_type {}; template <typename Container> struct is_back_insert_iterator<std::back_insert_iterator<Container>> : std::true_type {}; template <typename OutputIt> struct is_contiguous_back_insert_iterator : std::false_type {}; template <typename Container> struct is_contiguous_back_insert_iterator<std::back_insert_iterator<Container>> : is_contiguous<Container> {}; template <typename Char> struct is_contiguous_back_insert_iterator<buffer_appender<Char>> : std::true_type {}; // A type-erased reference to an std::locale to avoid heavy <locale> include. class locale_ref { private: const void* locale_; // A type-erased pointer to std::locale. public: constexpr locale_ref() : locale_(nullptr) {} template <typename Locale> explicit locale_ref(const Locale& loc); explicit operator bool() const FMT_NOEXCEPT { return locale_ != nullptr; } template <typename Locale> Locale get() const; }; template <typename> constexpr unsigned long long encode_types() { return 0; } template <typename Context, typename Arg, typename... Args> constexpr unsigned long long encode_types() { return static_cast<unsigned>(mapped_type_constant<Arg, Context>::value) | (encode_types<Context, Args...>() << packed_arg_bits); } template <typename Context, typename T> FMT_CONSTEXPR basic_format_arg<Context> make_arg(const T& value) { basic_format_arg<Context> arg; arg.type_ = mapped_type_constant<T, Context>::value; arg.value_ = arg_mapper<Context>().map(value); return arg; } template <typename T> int check(unformattable) { static_assert( formattable<T>(), "Cannot format an argument. To make type T formattable provide a " "formatter<T> specialization: https://fmt.dev/latest/api.html#udt"); return 0; } template <typename T, typename U> constexpr const U& check(const U& val) { return val; } // The type template parameter is there to avoid an ODR violation when using // a fallback formatter in one translation unit and an implicit conversion in // another (not recommended). template <bool IS_PACKED, typename Context, type, typename T, FMT_ENABLE_IF(IS_PACKED)> constexpr value<Context> make_arg(const T& val) { return check<T>(arg_mapper<Context>().map(val)); } template <bool IS_PACKED, typename Context, type, typename T, FMT_ENABLE_IF(!IS_PACKED)> inline basic_format_arg<Context> make_arg(const T& value) { return make_arg<Context>(value); } } // namespace detail // Formatting context. template <typename OutputIt, typename Char> class basic_format_context { public: /** The character type for the output. */ using char_type = Char; private: OutputIt out_; basic_format_args<basic_format_context> args_; detail::locale_ref loc_; public: using iterator = OutputIt; using format_arg = basic_format_arg<basic_format_context>; using parse_context_type = basic_format_parse_context<Char>; template <typename T> using formatter_type = formatter<T, char_type>; basic_format_context(const basic_format_context&) = delete; void operator=(const basic_format_context&) = delete; /** Constructs a ``basic_format_context`` object. References to the arguments are stored in the object so make sure they have appropriate lifetimes. */ constexpr basic_format_context( OutputIt out, basic_format_args<basic_format_context> ctx_args, detail::locale_ref loc = detail::locale_ref()) : out_(out), args_(ctx_args), loc_(loc) {} constexpr format_arg arg(int id) const { return args_.get(id); } FMT_CONSTEXPR format_arg arg(basic_string_view<char_type> name) { return args_.get(name); } int arg_id(basic_string_view<char_type> name) { return args_.get_id(name); } const basic_format_args<basic_format_context>& args() const { return args_; } FMT_CONSTEXPR detail::error_handler error_handler() { return {}; } void on_error(const char* message) { error_handler().on_error(message); } // Returns an iterator to the beginning of the output range. FMT_CONSTEXPR iterator out() { return out_; } // Advances the begin iterator to ``it``. void advance_to(iterator it) { if (!detail::is_back_insert_iterator<iterator>()) out_ = it; } FMT_CONSTEXPR detail::locale_ref locale() { return loc_; } }; template <typename Char> using buffer_context = basic_format_context<detail::buffer_appender<Char>, Char>; using format_context = buffer_context<char>; using wformat_context = buffer_context<wchar_t>; // Workaround an alias issue: https://stackoverflow.com/q/62767544/471164. #define FMT_BUFFER_CONTEXT(Char) \ basic_format_context<detail::buffer_appender<Char>, Char> template <typename T, typename Char = char> using is_formattable = bool_constant<!std::is_same< decltype(detail::arg_mapper<buffer_context<Char>>().map(std::declval<T>())), detail::unformattable>::value>; /** \rst An array of references to arguments. It can be implicitly converted into `~fmt::basic_format_args` for passing into type-erased formatting functions such as `~fmt::vformat`. \endrst */ template <typename Context, typename... Args> class format_arg_store #if FMT_GCC_VERSION && FMT_GCC_VERSION < 409 // Workaround a GCC template argument substitution bug. : public basic_format_args<Context> #endif { private: static const size_t num_args = sizeof...(Args); static const size_t num_named_args = detail::count_named_args<Args...>(); static const bool is_packed = num_args <= detail::max_packed_args; using value_type = conditional_t<is_packed, detail::value<Context>, basic_format_arg<Context>>; detail::arg_data<value_type, typename Context::char_type, num_args, num_named_args> data_; friend class basic_format_args<Context>; static constexpr unsigned long long desc = (is_packed ? detail::encode_types<Context, Args...>() : detail::is_unpacked_bit | num_args) | (num_named_args != 0 ? static_cast<unsigned long long>(detail::has_named_args_bit) : 0); public: FMT_CONSTEXPR format_arg_store(const Args&... args) : #if FMT_GCC_VERSION && FMT_GCC_VERSION < 409 basic_format_args<Context>(*this), #endif data_{detail::make_arg< is_packed, Context, detail::mapped_type_constant<Args, Context>::value>(args)...} { detail::init_named_args(data_.named_args(), 0, 0, args...); } }; /** \rst Constructs a `~fmt::format_arg_store` object that contains references to arguments and can be implicitly converted to `~fmt::format_args`. `Context` can be omitted in which case it defaults to `~fmt::context`. See `~fmt::arg` for lifetime considerations. \endrst */ template <typename Context = format_context, typename... Args> constexpr format_arg_store<Context, Args...> make_format_args( const Args&... args) { return {args...}; } /** \rst Constructs a `~fmt::format_arg_store` object that contains references to arguments and can be implicitly converted to `~fmt::format_args`. If ``format_str`` is a compile-time string then `make_args_checked` checks its validity at compile time. \endrst */ template <typename... Args, typename S, typename Char = char_t<S>> inline auto make_args_checked(const S& format_str, const remove_reference_t<Args>&... args) -> format_arg_store<buffer_context<Char>, remove_reference_t<Args>...> { static_assert( detail::count<( std::is_base_of<detail::view, remove_reference_t<Args>>::value && std::is_reference<Args>::value)...>() == 0, "passing views as lvalues is disallowed"); detail::check_format_string<Args...>(format_str); return {args...}; } /** \rst Returns a named argument to be used in a formatting function. It should only be used in a call to a formatting function. **Example**:: fmt::print("Elapsed time: {s:.2f} seconds", fmt::arg("s", 1.23)); \endrst */ template <typename Char, typename T> inline detail::named_arg<Char, T> arg(const Char* name, const T& arg) { static_assert(!detail::is_named_arg<T>(), "nested named arguments"); return {name, arg}; } /** \rst A view of a collection of formatting arguments. To avoid lifetime issues it should only be used as a parameter type in type-erased functions such as ``vformat``:: void vlog(string_view format_str, format_args args); // OK format_args args = make_format_args(42); // Error: dangling reference \endrst */ template <typename Context> class basic_format_args { public: using size_type = int; using format_arg = basic_format_arg<Context>; private: // A descriptor that contains information about formatting arguments. // If the number of arguments is less or equal to max_packed_args then // argument types are passed in the descriptor. This reduces binary code size // per formatting function call. unsigned long long desc_; union { // If is_packed() returns true then argument values are stored in values_; // otherwise they are stored in args_. This is done to improve cache // locality and reduce compiled code size since storing larger objects // may require more code (at least on x86-64) even if the same amount of // data is actually copied to stack. It saves ~10% on the bloat test. const detail::value<Context>* values_; const format_arg* args_; }; constexpr bool is_packed() const { return (desc_ & detail::is_unpacked_bit) == 0; } bool has_named_args() const { return (desc_ & detail::has_named_args_bit) != 0; } FMT_CONSTEXPR detail::type type(int index) const { int shift = index * detail::packed_arg_bits; unsigned int mask = (1 << detail::packed_arg_bits) - 1; return static_cast<detail::type>((desc_ >> shift) & mask); } constexpr basic_format_args(unsigned long long desc, const detail::value<Context>* values) : desc_(desc), values_(values) {} constexpr basic_format_args(unsigned long long desc, const format_arg* args) : desc_(desc), args_(args) {} public: constexpr basic_format_args() : desc_(0), args_(nullptr) {} /** \rst Constructs a `basic_format_args` object from `~fmt::format_arg_store`. \endrst */ template <typename... Args> constexpr FMT_INLINE basic_format_args( const format_arg_store<Context, Args...>& store) : basic_format_args(store.desc, store.data_.args()) {} /** \rst Constructs a `basic_format_args` object from `~fmt::dynamic_format_arg_store`. \endrst */ constexpr FMT_INLINE basic_format_args( const dynamic_format_arg_store<Context>& store) : basic_format_args(store.get_types(), store.data()) {} /** \rst Constructs a `basic_format_args` object from a dynamic set of arguments. \endrst */ constexpr basic_format_args(const format_arg* args, int count) : basic_format_args(detail::is_unpacked_bit | detail::to_unsigned(count), args) {} /** Returns the argument with the specified id. */ FMT_CONSTEXPR format_arg get(int id) const { format_arg arg; if (!is_packed()) { if (id < max_size()) arg = args_[id]; return arg; } if (id >= detail::max_packed_args) return arg; arg.type_ = type(id); if (arg.type_ == detail::type::none_type) return arg; arg.value_ = values_[id]; return arg; } template <typename Char> format_arg get(basic_string_view<Char> name) const { int id = get_id(name); return id >= 0 ? get(id) : format_arg(); } template <typename Char> int get_id(basic_string_view<Char> name) const { if (!has_named_args()) return -1; const auto& named_args = (is_packed() ? values_[-1] : args_[-1].value_).named_args; for (size_t i = 0; i < named_args.size; ++i) { if (named_args.data[i].name == name) return named_args.data[i].id; } return -1; } int max_size() const { unsigned long long max_packed = detail::max_packed_args; return static_cast<int>(is_packed() ? max_packed : desc_ & ~detail::is_unpacked_bit); } }; #ifdef FMT_ARM_ABI_COMPATIBILITY /** An alias to ``basic_format_args<format_context>``. */ // Separate types would result in shorter symbols but break ABI compatibility // between clang and gcc on ARM (#1919). using format_args = basic_format_args<format_context>; using wformat_args = basic_format_args<wformat_context>; #else // DEPRECATED! These are kept for ABI compatibility. // It is a separate type rather than an alias to make symbols readable. struct format_args : basic_format_args<format_context> { template <typename... Args> FMT_INLINE format_args(const Args&... args) : basic_format_args(args...) {} }; struct wformat_args : basic_format_args<wformat_context> { using basic_format_args::basic_format_args; }; #endif namespace detail { template <typename Char, FMT_ENABLE_IF(!std::is_same<Char, char>::value)> std::basic_string<Char> vformat( basic_string_view<Char> format_str, basic_format_args<buffer_context<type_identity_t<Char>>> args); FMT_API std::string vformat(string_view format_str, format_args args); template <typename Char> void vformat_to( buffer<Char>& buf, basic_string_view<Char> format_str, basic_format_args<FMT_BUFFER_CONTEXT(type_identity_t<Char>)> args, detail::locale_ref loc = {}); template <typename Char, typename Args, FMT_ENABLE_IF(!std::is_same<Char, char>::value)> inline void vprint_mojibake(std::FILE*, basic_string_view<Char>, const Args&) {} FMT_API void vprint_mojibake(std::FILE*, string_view, format_args); #ifndef _WIN32 inline void vprint_mojibake(std::FILE*, string_view, format_args) {} #endif } // namespace detail /** Formats a string and writes the output to ``out``. */ // GCC 8 and earlier cannot handle std::back_insert_iterator<Container> with // vformat_to<ArgFormatter>(...) overload, so SFINAE on iterator type instead. template <typename OutputIt, typename S, typename Char = char_t<S>, bool enable = detail::is_output_iterator<OutputIt, Char>::value> auto vformat_to(OutputIt out, const S& format_str, basic_format_args<buffer_context<type_identity_t<Char>>> args) -> typename std::enable_if<enable, OutputIt>::type { decltype(detail::get_buffer<Char>(out)) buf(detail::get_buffer_init(out)); detail::vformat_to(buf, to_string_view(format_str), args); return detail::get_iterator(buf); } /** \rst Formats arguments, writes the result to the output iterator ``out`` and returns the iterator past the end of the output range. **Example**:: std::vector<char> out; fmt::format_to(std::back_inserter(out), "{}", 42); \endrst */ // We cannot use FMT_ENABLE_IF because of a bug in gcc 8.3. template <typename OutputIt, typename S, typename... Args, bool enable = detail::is_output_iterator<OutputIt, char_t<S>>::value> inline auto format_to(OutputIt out, const S& format_str, Args&&... args) -> typename std::enable_if<enable, OutputIt>::type { const auto& vargs = fmt::make_args_checked<Args...>(format_str, args...); return vformat_to(out, to_string_view(format_str), vargs); } template <typename OutputIt> struct format_to_n_result { /** Iterator past the end of the output range. */ OutputIt out; /** Total (not truncated) output size. */ size_t size; }; template <typename OutputIt, typename Char, typename... Args, FMT_ENABLE_IF(detail::is_output_iterator<OutputIt, Char>::value)> inline format_to_n_result<OutputIt> vformat_to_n( OutputIt out, size_t n, basic_string_view<Char> format_str, basic_format_args<buffer_context<type_identity_t<Char>>> args) { detail::iterator_buffer<OutputIt, Char, detail::fixed_buffer_traits> buf(out, n); detail::vformat_to(buf, format_str, args); return {buf.out(), buf.count()}; } /** \rst Formats arguments, writes up to ``n`` characters of the result to the output iterator ``out`` and returns the total output size and the iterator past the end of the output range. \endrst */ template <typename OutputIt, typename S, typename... Args, bool enable = detail::is_output_iterator<OutputIt, char_t<S>>::value> inline auto format_to_n(OutputIt out, size_t n, const S& format_str, const Args&... args) -> typename std::enable_if<enable, format_to_n_result<OutputIt>>::type { const auto& vargs = fmt::make_args_checked<Args...>(format_str, args...); return vformat_to_n(out, n, to_string_view(format_str), vargs); } /** Returns the number of characters in the output of ``format(format_str, args...)``. */ template <typename S, typename... Args, typename Char = char_t<S>> inline size_t formatted_size(const S& format_str, Args&&... args) { const auto& vargs = fmt::make_args_checked<Args...>(format_str, args...); detail::counting_buffer<> buf; detail::vformat_to(buf, to_string_view(format_str), vargs); return buf.count(); } template <typename S, typename Char = char_t<S>> FMT_INLINE std::basic_string<Char> vformat( const S& format_str, basic_format_args<buffer_context<type_identity_t<Char>>> args) { return detail::vformat(to_string_view(format_str), args); } /** \rst Formats arguments and returns the result as a string. **Example**:: #include <fmt/core.h> std::string message = fmt::format("The answer is {}", 42); \endrst */ // Pass char_t as a default template parameter instead of using // std::basic_string<char_t<S>> to reduce the symbol size. template <typename S, typename... Args, typename Char = char_t<S>, FMT_ENABLE_IF(!FMT_COMPILE_TIME_CHECKS || !std::is_same<Char, char>::value)> FMT_INLINE std::basic_string<Char> format(const S& format_str, Args&&... args) { const auto& vargs = fmt::make_args_checked<Args...>(format_str, args...); return detail::vformat(to_string_view(format_str), vargs); } FMT_API void vprint(string_view, format_args); FMT_API void vprint(std::FILE*, string_view, format_args); /** \rst Formats ``args`` according to specifications in ``format_str`` and writes the output to the file ``f``. Strings are assumed to be Unicode-encoded unless the ``FMT_UNICODE`` macro is set to 0. **Example**:: fmt::print(stderr, "Don't {}!", "panic"); \endrst */ template <typename S, typename... Args, typename Char = char_t<S>> inline void print(std::FILE* f, const S& format_str, Args&&... args) { const auto& vargs = fmt::make_args_checked<Args...>(format_str, args...); return detail::is_unicode<Char>() ? vprint(f, to_string_view(format_str), vargs) : detail::vprint_mojibake(f, to_string_view(format_str), vargs); } /** \rst Formats ``args`` according to specifications in ``format_str`` and writes the output to ``stdout``. Strings are assumed to be Unicode-encoded unless the ``FMT_UNICODE`` macro is set to 0. **Example**:: fmt::print("Elapsed time: {0:.2f} seconds", 1.23); \endrst */ template <typename S, typename... Args, typename Char = char_t<S>> inline void print(const S& format_str, Args&&... args) { const auto& vargs = fmt::make_args_checked<Args...>(format_str, args...); return detail::is_unicode<Char>() ? vprint(to_string_view(format_str), vargs) : detail::vprint_mojibake(stdout, to_string_view(format_str), vargs); } FMT_END_NAMESPACE #endif // FMT_CORE_H_ // Define FMT_DYNAMIC_ARGS to make core.h provide dynamic_format_arg_store // DEPRECATED! Include fmt/args.h directly instead. #ifdef FMT_DYNAMIC_ARGS #include "args.h" #endif /* Formatting library for C++ Copyright (c) 2012 - present, Victor Zverovich Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. --- Optional exception to the license --- As an exception, if, as a result of your compiling your source code, portions of this Software are embedded into a machine-executable object form of such source code, you may redistribute such embedded portions in such object form without including the above copyright and permission notices. */ #ifndef FMT_FORMAT_H_ #define FMT_FORMAT_H_ #include <cerrno> #include <cmath> #include <cstddef> // std::byte #include <cstdint> #include <cwchar> #include <limits> #include <memory> #include <stdexcept> #include <utility> // std::swap #ifdef __INTEL_COMPILER # define FMT_ICC_VERSION __INTEL_COMPILER #elif defined(__ICL) # define FMT_ICC_VERSION __ICL #else # define FMT_ICC_VERSION 0 #endif #ifdef __NVCC__ # define FMT_CUDA_VERSION (__CUDACC_VER_MAJOR__ * 100 + __CUDACC_VER_MINOR__) #else # define FMT_CUDA_VERSION 0 #endif #ifdef __has_builtin # define FMT_HAS_BUILTIN(x) __has_builtin(x) #else # define FMT_HAS_BUILTIN(x) 0 #endif #if FMT_GCC_VERSION || FMT_CLANG_VERSION # define FMT_NOINLINE __attribute__((noinline)) #else # define FMT_NOINLINE #endif #if FMT_GCC_VERSION # define FMT_GCC_VISIBILITY_HIDDEN __attribute__((visibility("hidden"))) #else # define FMT_GCC_VISIBILITY_HIDDEN #endif #if __cplusplus == 201103L || __cplusplus == 201402L # if defined(__INTEL_COMPILER) || defined(__PGI) # define FMT_FALLTHROUGH # elif defined(__clang__) # define FMT_FALLTHROUGH [[clang::fallthrough]] # elif FMT_GCC_VERSION >= 700 && \ (!defined(__EDG_VERSION__) || __EDG_VERSION__ >= 520) # define FMT_FALLTHROUGH [[gnu::fallthrough]] # else # define FMT_FALLTHROUGH # endif #elif FMT_HAS_CPP17_ATTRIBUTE(fallthrough) || \ (defined(_MSVC_LANG) && _MSVC_LANG >= 201703L) # define FMT_FALLTHROUGH [[fallthrough]] #else # define FMT_FALLTHROUGH #endif #ifndef FMT_MAYBE_UNUSED # if FMT_HAS_CPP17_ATTRIBUTE(maybe_unused) # define FMT_MAYBE_UNUSED [[maybe_unused]] # else # define FMT_MAYBE_UNUSED # endif #endif #ifndef FMT_THROW # if FMT_EXCEPTIONS # if FMT_MSC_VER || FMT_NVCC FMT_BEGIN_NAMESPACE namespace detail { template <typename Exception> inline void do_throw(const Exception& x) { // Silence unreachable code warnings in MSVC and NVCC because these // are nearly impossible to fix in a generic code. volatile bool b = true; if (b) throw x; } } // namespace detail FMT_END_NAMESPACE # define FMT_THROW(x) detail::do_throw(x) # else # define FMT_THROW(x) throw x # endif # else # define FMT_THROW(x) \ do { \ FMT_ASSERT(false, (x).what()); \ } while (false) # endif #endif #if FMT_EXCEPTIONS # define FMT_TRY try # define FMT_CATCH(x) catch (x) #else # define FMT_TRY if (true) # define FMT_CATCH(x) if (false) #endif #ifndef FMT_USE_USER_DEFINED_LITERALS // EDG based compilers (Intel, NVIDIA, Elbrus, etc), GCC and MSVC support UDLs. # if (FMT_HAS_FEATURE(cxx_user_literals) || FMT_GCC_VERSION >= 407 || \ FMT_MSC_VER >= 1900) && \ (!defined(__EDG_VERSION__) || __EDG_VERSION__ >= /* UDL feature */ 480) # define FMT_USE_USER_DEFINED_LITERALS 1 # else # define FMT_USE_USER_DEFINED_LITERALS 0 # endif #endif #ifndef FMT_USE_UDL_TEMPLATE // EDG frontend based compilers (icc, nvcc, PGI, etc) and GCC < 6.4 do not // properly support UDL templates and GCC >= 9 warns about them. # if FMT_USE_USER_DEFINED_LITERALS && \ (!defined(__EDG_VERSION__) || __EDG_VERSION__ >= 501) && \ ((FMT_GCC_VERSION >= 604 && __cplusplus >= 201402L) || \ FMT_CLANG_VERSION >= 304) && \ !defined(__PGI) && !defined(__NVCC__) # define FMT_USE_UDL_TEMPLATE 1 # else # define FMT_USE_UDL_TEMPLATE 0 # endif #endif #ifndef FMT_USE_FLOAT # define FMT_USE_FLOAT 1 #endif #ifndef FMT_USE_DOUBLE # define FMT_USE_DOUBLE 1 #endif #ifndef FMT_USE_LONG_DOUBLE # define FMT_USE_LONG_DOUBLE 1 #endif // Defining FMT_REDUCE_INT_INSTANTIATIONS to 1, will reduce the number of // integer formatter template instantiations to just one by only using the // largest integer type. This results in a reduction in binary size but will // cause a decrease in integer formatting performance. #if !defined(FMT_REDUCE_INT_INSTANTIATIONS) # define FMT_REDUCE_INT_INSTANTIATIONS 0 #endif // __builtin_clz is broken in clang with Microsoft CodeGen: // https://github.com/fmtlib/fmt/issues/519 #if (FMT_GCC_VERSION || FMT_HAS_BUILTIN(__builtin_clz)) && !FMT_MSC_VER # define FMT_BUILTIN_CLZ(n) __builtin_clz(n) #endif #if (FMT_GCC_VERSION || FMT_HAS_BUILTIN(__builtin_clzll)) && !FMT_MSC_VER # define FMT_BUILTIN_CLZLL(n) __builtin_clzll(n) #endif #if (FMT_GCC_VERSION || FMT_HAS_BUILTIN(__builtin_ctz)) # define FMT_BUILTIN_CTZ(n) __builtin_ctz(n) #endif #if (FMT_GCC_VERSION || FMT_HAS_BUILTIN(__builtin_ctzll)) # define FMT_BUILTIN_CTZLL(n) __builtin_ctzll(n) #endif #if FMT_MSC_VER # include <intrin.h> // _BitScanReverse[64], _BitScanForward[64], _umul128 #endif // Some compilers masquerade as both MSVC and GCC-likes or otherwise support // __builtin_clz and __builtin_clzll, so only define FMT_BUILTIN_CLZ using the // MSVC intrinsics if the clz and clzll builtins are not available. #if FMT_MSC_VER && !defined(FMT_BUILTIN_CLZLL) && \ !defined(FMT_BUILTIN_CTZLL) && !defined(_MANAGED) FMT_BEGIN_NAMESPACE namespace detail { // Avoid Clang with Microsoft CodeGen's -Wunknown-pragmas warning. # ifndef __clang__ # pragma intrinsic(_BitScanForward) # pragma intrinsic(_BitScanReverse) # endif # if defined(_WIN64) && !defined(__clang__) # pragma intrinsic(_BitScanForward64) # pragma intrinsic(_BitScanReverse64) # endif inline int clz(uint32_t x) { unsigned long r = 0; _BitScanReverse(&r, x); FMT_ASSERT(x != 0, ""); // Static analysis complains about using uninitialized data // "r", but the only way that can happen is if "x" is 0, // which the callers guarantee to not happen. FMT_MSC_WARNING(suppress : 6102) return 31 ^ static_cast<int>(r); } # define FMT_BUILTIN_CLZ(n) detail::clz(n) inline int clzll(uint64_t x) { unsigned long r = 0; # ifdef _WIN64 _BitScanReverse64(&r, x); # else // Scan the high 32 bits. if (_BitScanReverse(&r, static_cast<uint32_t>(x >> 32))) return 63 ^ (r + 32); // Scan the low 32 bits. _BitScanReverse(&r, static_cast<uint32_t>(x)); # endif FMT_ASSERT(x != 0, ""); FMT_MSC_WARNING(suppress : 6102) // Suppress a bogus static analysis warning. return 63 ^ static_cast<int>(r); } # define FMT_BUILTIN_CLZLL(n) detail::clzll(n) inline int ctz(uint32_t x) { unsigned long r = 0; _BitScanForward(&r, x); FMT_ASSERT(x != 0, ""); FMT_MSC_WARNING(suppress : 6102) // Suppress a bogus static analysis warning. return static_cast<int>(r); } # define FMT_BUILTIN_CTZ(n) detail::ctz(n) inline int ctzll(uint64_t x) { unsigned long r = 0; FMT_ASSERT(x != 0, ""); FMT_MSC_WARNING(suppress : 6102) // Suppress a bogus static analysis warning. # ifdef _WIN64 _BitScanForward64(&r, x); # else // Scan the low 32 bits. if (_BitScanForward(&r, static_cast<uint32_t>(x))) return static_cast<int>(r); // Scan the high 32 bits. _BitScanForward(&r, static_cast<uint32_t>(x >> 32)); r += 32; # endif return static_cast<int>(r); } # define FMT_BUILTIN_CTZLL(n) detail::ctzll(n) } // namespace detail FMT_END_NAMESPACE #endif // Enable the deprecated numeric alignment. #ifndef FMT_DEPRECATED_NUMERIC_ALIGN # define FMT_DEPRECATED_NUMERIC_ALIGN 0 #endif FMT_BEGIN_NAMESPACE namespace detail { #if __cplusplus >= 202002L || \ (__cplusplus >= 201709L && FMT_GCC_VERSION >= 1002) # define FMT_CONSTEXPR20 constexpr #else # define FMT_CONSTEXPR20 #endif // An equivalent of `*reinterpret_cast<Dest*>(&source)` that doesn't have // undefined behavior (e.g. due to type aliasing). // Example: uint64_t d = bit_cast<uint64_t>(2.718); template <typename Dest, typename Source> inline Dest bit_cast(const Source& source) { static_assert(sizeof(Dest) == sizeof(Source), "size mismatch"); Dest dest; std::memcpy(&dest, &source, sizeof(dest)); return dest; } inline bool is_big_endian() { const auto u = 1u; struct bytes { char data[sizeof(u)]; }; return bit_cast<bytes>(u).data[0] == 0; } // A fallback implementation of uintptr_t for systems that lack it. struct fallback_uintptr { unsigned char value[sizeof(void*)]; fallback_uintptr() = default; explicit fallback_uintptr(const void* p) { *this = bit_cast<fallback_uintptr>(p); if (is_big_endian()) { for (size_t i = 0, j = sizeof(void*) - 1; i < j; ++i, --j) std::swap(value[i], value[j]); } } }; #ifdef UINTPTR_MAX using uintptr_t = ::uintptr_t; inline uintptr_t to_uintptr(const void* p) { return bit_cast<uintptr_t>(p); } #else using uintptr_t = fallback_uintptr; inline fallback_uintptr to_uintptr(const void* p) { return fallback_uintptr(p); } #endif // Returns the largest possible value for type T. Same as // std::numeric_limits<T>::max() but shorter and not affected by the max macro. template <typename T> constexpr T max_value() { return (std::numeric_limits<T>::max)(); } template <typename T> constexpr int num_bits() { return std::numeric_limits<T>::digits; } // std::numeric_limits<T>::digits may return 0 for 128-bit ints. template <> constexpr int num_bits<int128_t>() { return 128; } template <> constexpr int num_bits<uint128_t>() { return 128; } template <> constexpr int num_bits<fallback_uintptr>() { return static_cast<int>(sizeof(void*) * std::numeric_limits<unsigned char>::digits); } FMT_INLINE void assume(bool condition) { (void)condition; #if FMT_HAS_BUILTIN(__builtin_assume) __builtin_assume(condition); #endif } // An approximation of iterator_t for pre-C++20 systems. template <typename T> using iterator_t = decltype(std::begin(std::declval<T&>())); template <typename T> using sentinel_t = decltype(std::end(std::declval<T&>())); // A workaround for std::string not having mutable data() until C++17. template <typename Char> inline Char* get_data(std::basic_string<Char>& s) { return &s[0]; } template <typename Container> inline typename Container::value_type* get_data(Container& c) { return c.data(); } #if defined(_SECURE_SCL) && _SECURE_SCL // Make a checked iterator to avoid MSVC warnings. template <typename T> using checked_ptr = stdext::checked_array_iterator<T*>; template <typename T> checked_ptr<T> make_checked(T* p, size_t size) { return {p, size}; } #else template <typename T> using checked_ptr = T*; template <typename T> inline T* make_checked(T* p, size_t) { return p; } #endif template <typename Container, FMT_ENABLE_IF(is_contiguous<Container>::value)> #if FMT_CLANG_VERSION >= 307 __attribute__((no_sanitize("undefined"))) #endif inline checked_ptr<typename Container::value_type> reserve(std::back_insert_iterator<Container> it, size_t n) { Container& c = get_container(it); size_t size = c.size(); c.resize(size + n); return make_checked(get_data(c) + size, n); } template <typename T> inline buffer_appender<T> reserve(buffer_appender<T> it, size_t n) { buffer<T>& buf = get_container(it); buf.try_reserve(buf.size() + n); return it; } template <typename Iterator> constexpr Iterator& reserve(Iterator& it, size_t) { return it; } template <typename OutputIt> using reserve_iterator = remove_reference_t<decltype(reserve(std::declval<OutputIt&>(), 0))>; template <typename T, typename OutputIt> constexpr T* to_pointer(OutputIt, size_t) { return nullptr; } template <typename T> T* to_pointer(buffer_appender<T> it, size_t n) { buffer<T>& buf = get_container(it); auto size = buf.size(); if (buf.capacity() < size + n) return nullptr; buf.try_resize(size + n); return buf.data() + size; } template <typename Container, FMT_ENABLE_IF(is_contiguous<Container>::value)> inline std::back_insert_iterator<Container> base_iterator( std::back_insert_iterator<Container>& it, checked_ptr<typename Container::value_type>) { return it; } template <typename Iterator> constexpr Iterator base_iterator(Iterator, Iterator it) { return it; } // An output iterator that counts the number of objects written to it and // discards them. class counting_iterator { private: size_t count_; public: using iterator_category = std::output_iterator_tag; using difference_type = std::ptrdiff_t; using pointer = void; using reference = void; using _Unchecked_type = counting_iterator; // Mark iterator as checked. struct value_type { template <typename T> void operator=(const T&) {} }; counting_iterator() : count_(0) {} size_t count() const { return count_; } counting_iterator& operator++() { ++count_; return *this; } counting_iterator operator++(int) { auto it = *this; ++*this; return it; } friend counting_iterator operator+(counting_iterator it, difference_type n) { it.count_ += static_cast<size_t>(n); return it; } value_type operator*() const { return {}; } }; // <algorithm> is spectacularly slow to compile in C++20 so use a simple fill_n // instead (#1998). template <typename OutputIt, typename Size, typename T> FMT_CONSTEXPR OutputIt fill_n(OutputIt out, Size count, const T& value) { for (Size i = 0; i < count; ++i) *out++ = value; return out; } template <typename T, typename Size> FMT_CONSTEXPR20 T* fill_n(T* out, Size count, char value) { if (is_constant_evaluated()) { return fill_n<T*, Size, T>(out, count, value); } std::memset(out, value, to_unsigned(count)); return out + count; } template <typename InputIt, typename OutChar> using needs_conversion = bool_constant< std::is_same<typename std::iterator_traits<InputIt>::value_type, char>::value && std::is_same<OutChar, char8_type>::value>; template <typename OutChar, typename InputIt, typename OutputIt, FMT_ENABLE_IF(!needs_conversion<InputIt, OutChar>::value)> FMT_CONSTEXPR OutputIt copy_str(InputIt begin, InputIt end, OutputIt it) { while (begin != end) *it++ = *begin++; return it; } template <typename OutChar, typename InputIt, FMT_ENABLE_IF(!needs_conversion<InputIt, OutChar>::value)> FMT_CONSTEXPR20 OutChar* copy_str(InputIt begin, InputIt end, OutChar* out) { if (is_constant_evaluated()) { return copy_str<OutChar, InputIt, OutChar*>(begin, end, out); } return std::uninitialized_copy(begin, end, out); } template <typename OutChar, typename InputIt, typename OutputIt, FMT_ENABLE_IF(needs_conversion<InputIt, OutChar>::value)> OutputIt copy_str(InputIt begin, InputIt end, OutputIt it) { while (begin != end) *it++ = static_cast<char8_type>(*begin++); return it; } template <typename OutChar, typename InputIt, FMT_ENABLE_IF(!needs_conversion<InputIt, OutChar>::value)> buffer_appender<OutChar> copy_str(InputIt begin, InputIt end, buffer_appender<OutChar> out) { get_container(out).append(begin, end); return out; } template <typename Char, typename InputIt> inline counting_iterator copy_str(InputIt begin, InputIt end, counting_iterator it) { return it + (end - begin); } template <typename Char> FMT_CONSTEXPR int code_point_length(const Char* begin) { if (const_check(sizeof(Char) != 1)) return 1; constexpr char lengths[] = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 3, 3, 4, 0}; int len = lengths[static_cast<unsigned char>(*begin) >> 3]; // Compute the pointer to the next character early so that the next // iteration can start working on the next character. Neither Clang // nor GCC figure out this reordering on their own. return len + !len; } // A public domain branchless UTF-8 decoder by Christopher Wellons: // https://github.com/skeeto/branchless-utf8 /* Decode the next character, c, from s, reporting errors in e. * * Since this is a branchless decoder, four bytes will be read from the * buffer regardless of the actual length of the next character. This * means the buffer _must_ have at least three bytes of zero padding * following the end of the data stream. * * Errors are reported in e, which will be non-zero if the parsed * character was somehow invalid: invalid byte sequence, non-canonical * encoding, or a surrogate half. * * The function returns a pointer to the next character. When an error * occurs, this pointer will be a guess that depends on the particular * error, but it will always advance at least one byte. */ FMT_CONSTEXPR inline const char* utf8_decode(const char* s, uint32_t* c, int* e) { constexpr const int masks[] = {0x00, 0x7f, 0x1f, 0x0f, 0x07}; constexpr const uint32_t mins[] = {4194304, 0, 128, 2048, 65536}; constexpr const int shiftc[] = {0, 18, 12, 6, 0}; constexpr const int shifte[] = {0, 6, 4, 2, 0}; int len = code_point_length(s); const char* next = s + len; // Assume a four-byte character and load four bytes. Unused bits are // shifted out. *c = uint32_t(s[0] & masks[len]) << 18; *c |= uint32_t(s[1] & 0x3f) << 12; *c |= uint32_t(s[2] & 0x3f) << 6; *c |= uint32_t(s[3] & 0x3f) << 0; *c >>= shiftc[len]; // Accumulate the various error conditions. using uchar = unsigned char; *e = (*c < mins[len]) << 6; // non-canonical encoding *e |= ((*c >> 11) == 0x1b) << 7; // surrogate half? *e |= (*c > 0x10FFFF) << 8; // out of range? *e |= (uchar(s[1]) & 0xc0) >> 2; *e |= (uchar(s[2]) & 0xc0) >> 4; *e |= uchar(s[3]) >> 6; *e ^= 0x2a; // top two bits of each tail byte correct? *e >>= shifte[len]; return next; } template <typename F> FMT_CONSTEXPR void for_each_codepoint(string_view s, F f) { auto decode = [f](const char* p) { auto cp = uint32_t(); auto error = 0; p = utf8_decode(p, &cp, &error); f(cp, error); return p; }; auto p = s.data(); const size_t block_size = 4; // utf8_decode always reads blocks of 4 chars. if (s.size() >= block_size) { for (auto end = p + s.size() - block_size + 1; p < end;) p = decode(p); } if (auto num_chars_left = s.data() + s.size() - p) { char buf[2 * block_size - 1] = {}; copy_str<char>(p, p + num_chars_left, buf); p = buf; do { p = decode(p); } while (p - buf < num_chars_left); } } template <typename Char> inline size_t compute_width(basic_string_view<Char> s) { return s.size(); } // Computes approximate display width of a UTF-8 string. FMT_CONSTEXPR inline size_t compute_width(string_view s) { size_t num_code_points = 0; // It is not a lambda for compatibility with C++14. struct count_code_points { size_t* count; FMT_CONSTEXPR void operator()(uint32_t cp, int error) const { *count += 1 + (error == 0 && cp >= 0x1100 && (cp <= 0x115f || // Hangul Jamo init. consonants cp == 0x2329 || // LEFT-POINTING ANGLE BRACKET〈 cp == 0x232a || // RIGHT-POINTING ANGLE BRACKET 〉 // CJK ... Yi except Unicode Character “〿”: (cp >= 0x2e80 && cp <= 0xa4cf && cp != 0x303f) || (cp >= 0xac00 && cp <= 0xd7a3) || // Hangul Syllables (cp >= 0xf900 && cp <= 0xfaff) || // CJK Compatibility Ideographs (cp >= 0xfe10 && cp <= 0xfe19) || // Vertical Forms (cp >= 0xfe30 && cp <= 0xfe6f) || // CJK Compatibility Forms (cp >= 0xff00 && cp <= 0xff60) || // Fullwidth Forms (cp >= 0xffe0 && cp <= 0xffe6) || // Fullwidth Forms (cp >= 0x20000 && cp <= 0x2fffd) || // CJK (cp >= 0x30000 && cp <= 0x3fffd) || // Miscellaneous Symbols and Pictographs + Emoticons: (cp >= 0x1f300 && cp <= 0x1f64f) || // Supplemental Symbols and Pictographs: (cp >= 0x1f900 && cp <= 0x1f9ff))); } }; for_each_codepoint(s, count_code_points{&num_code_points}); return num_code_points; } inline size_t compute_width(basic_string_view<char8_type> s) { return compute_width(basic_string_view<char>( reinterpret_cast<const char*>(s.data()), s.size())); } template <typename Char> inline size_t code_point_index(basic_string_view<Char> s, size_t n) { size_t size = s.size(); return n < size ? n : size; } // Calculates the index of the nth code point in a UTF-8 string. inline size_t code_point_index(basic_string_view<char8_type> s, size_t n) { const char8_type* data = s.data(); size_t num_code_points = 0; for (size_t i = 0, size = s.size(); i != size; ++i) { if ((data[i] & 0xc0) != 0x80 && ++num_code_points > n) return i; } return s.size(); } template <typename T> using is_fast_float = bool_constant<std::numeric_limits<T>::is_iec559 && sizeof(T) <= sizeof(double)>; #ifndef FMT_USE_FULL_CACHE_DRAGONBOX # define FMT_USE_FULL_CACHE_DRAGONBOX 0 #endif template <typename T> template <typename U> void buffer<T>::append(const U* begin, const U* end) { do { auto count = to_unsigned(end - begin); try_reserve(size_ + count); auto free_cap = capacity_ - size_; if (free_cap < count) count = free_cap; std::uninitialized_copy_n(begin, count, make_checked(ptr_ + size_, count)); size_ += count; begin += count; } while (begin != end); } template <typename OutputIt, typename T, typename Traits> void iterator_buffer<OutputIt, T, Traits>::flush() { auto size = this->size(); this->clear(); out_ = copy_str<T>(data_, data_ + this->limit(size), out_); } } // namespace detail // The number of characters to store in the basic_memory_buffer object itself // to avoid dynamic memory allocation. enum { inline_buffer_size = 500 }; /** \rst A dynamically growing memory buffer for trivially copyable/constructible types with the first ``SIZE`` elements stored in the object itself. You can use one of the following type aliases for common character types: +----------------+------------------------------+ | Type | Definition | +================+==============================+ | memory_buffer | basic_memory_buffer<char> | +----------------+------------------------------+ | wmemory_buffer | basic_memory_buffer<wchar_t> | +----------------+------------------------------+ **Example**:: fmt::memory_buffer out; format_to(out, "The answer is {}.", 42); This will append the following output to the ``out`` object: .. code-block:: none The answer is 42. The output can be converted to an ``std::string`` with ``to_string(out)``. \endrst */ template <typename T, size_t SIZE = inline_buffer_size, typename Allocator = std::allocator<T>> class basic_memory_buffer final : public detail::buffer<T> { private: T store_[SIZE]; // Don't inherit from Allocator avoid generating type_info for it. Allocator alloc_; // Deallocate memory allocated by the buffer. void deallocate() { T* data = this->data(); if (data != store_) alloc_.deallocate(data, this->capacity()); } protected: void grow(size_t size) final FMT_OVERRIDE; public: using value_type = T; using const_reference = const T&; explicit basic_memory_buffer(const Allocator& alloc = Allocator()) : alloc_(alloc) { this->set(store_, SIZE); } ~basic_memory_buffer() { deallocate(); } private: // Move data from other to this buffer. void move(basic_memory_buffer& other) { alloc_ = std::move(other.alloc_); T* data = other.data(); size_t size = other.size(), capacity = other.capacity(); if (data == other.store_) { this->set(store_, capacity); std::uninitialized_copy(other.store_, other.store_ + size, detail::make_checked(store_, capacity)); } else { this->set(data, capacity); // Set pointer to the inline array so that delete is not called // when deallocating. other.set(other.store_, 0); } this->resize(size); } public: /** \rst Constructs a :class:`fmt::basic_memory_buffer` object moving the content of the other object to it. \endrst */ basic_memory_buffer(basic_memory_buffer&& other) FMT_NOEXCEPT { move(other); } /** \rst Moves the content of the other ``basic_memory_buffer`` object to this one. \endrst */ basic_memory_buffer& operator=(basic_memory_buffer&& other) FMT_NOEXCEPT { FMT_ASSERT(this != &other, ""); deallocate(); move(other); return *this; } // Returns a copy of the allocator associated with this buffer. Allocator get_allocator() const { return alloc_; } /** Resizes the buffer to contain *count* elements. If T is a POD type new elements may not be initialized. */ void resize(size_t count) { this->try_resize(count); } /** Increases the buffer capacity to *new_capacity*. */ void reserve(size_t new_capacity) { this->try_reserve(new_capacity); } // Directly append data into the buffer using detail::buffer<T>::append; template <typename ContiguousRange> void append(const ContiguousRange& range) { append(range.data(), range.data() + range.size()); } }; template <typename T, size_t SIZE, typename Allocator> void basic_memory_buffer<T, SIZE, Allocator>::grow(size_t size) { #ifdef FMT_FUZZ if (size > 5000) throw std::runtime_error("fuzz mode - won't grow that much"); #endif const size_t max_size = std::allocator_traits<Allocator>::max_size(alloc_); size_t old_capacity = this->capacity(); size_t new_capacity = old_capacity + old_capacity / 2; if (size > new_capacity) new_capacity = size; else if (new_capacity > max_size) new_capacity = size > max_size ? size : max_size; T* old_data = this->data(); T* new_data = std::allocator_traits<Allocator>::allocate(alloc_, new_capacity); // The following code doesn't throw, so the raw pointer above doesn't leak. std::uninitialized_copy(old_data, old_data + this->size(), detail::make_checked(new_data, new_capacity)); this->set(new_data, new_capacity); // deallocate must not throw according to the standard, but even if it does, // the buffer already uses the new storage and will deallocate it in // destructor. if (old_data != store_) alloc_.deallocate(old_data, old_capacity); } using memory_buffer = basic_memory_buffer<char>; using wmemory_buffer = basic_memory_buffer<wchar_t>; template <typename T, size_t SIZE, typename Allocator> struct is_contiguous<basic_memory_buffer<T, SIZE, Allocator>> : std::true_type { }; /** A formatting error such as invalid format string. */ FMT_CLASS_API class FMT_API format_error : public std::runtime_error { public: explicit format_error(const char* message) : std::runtime_error(message) {} explicit format_error(const std::string& message) : std::runtime_error(message) {} format_error(const format_error&) = default; format_error& operator=(const format_error&) = default; format_error(format_error&&) = default; format_error& operator=(format_error&&) = default; ~format_error() FMT_NOEXCEPT FMT_OVERRIDE; }; namespace detail { template <typename T> using is_signed = std::integral_constant<bool, std::numeric_limits<T>::is_signed || std::is_same<T, int128_t>::value>; // Returns true if value is negative, false otherwise. // Same as `value < 0` but doesn't produce warnings if T is an unsigned type. template <typename T, FMT_ENABLE_IF(is_signed<T>::value)> FMT_CONSTEXPR bool is_negative(T value) { return value < 0; } template <typename T, FMT_ENABLE_IF(!is_signed<T>::value)> FMT_CONSTEXPR bool is_negative(T) { return false; } template <typename T, FMT_ENABLE_IF(std::is_floating_point<T>::value)> FMT_CONSTEXPR bool is_supported_floating_point(T) { return (std::is_same<T, float>::value && FMT_USE_FLOAT) || (std::is_same<T, double>::value && FMT_USE_DOUBLE) || (std::is_same<T, long double>::value && FMT_USE_LONG_DOUBLE); } // Smallest of uint32_t, uint64_t, uint128_t that is large enough to // represent all values of an integral type T. template <typename T> using uint32_or_64_or_128_t = conditional_t<num_bits<T>() <= 32 && !FMT_REDUCE_INT_INSTANTIATIONS, uint32_t, conditional_t<num_bits<T>() <= 64, uint64_t, uint128_t>>; template <typename T> using uint64_or_128_t = conditional_t<num_bits<T>() <= 64, uint64_t, uint128_t>; // 128-bit integer type used internally struct FMT_EXTERN_TEMPLATE_API uint128_wrapper { uint128_wrapper() = default; #if FMT_USE_INT128 uint128_t internal_; uint128_wrapper(uint64_t high, uint64_t low) FMT_NOEXCEPT : internal_{static_cast<uint128_t>(low) | (static_cast<uint128_t>(high) << 64)} {} uint128_wrapper(uint128_t u) : internal_{u} {} uint64_t high() const FMT_NOEXCEPT { return uint64_t(internal_ >> 64); } uint64_t low() const FMT_NOEXCEPT { return uint64_t(internal_); } uint128_wrapper& operator+=(uint64_t n) FMT_NOEXCEPT { internal_ += n; return *this; } #else uint64_t high_; uint64_t low_; uint128_wrapper(uint64_t high, uint64_t low) FMT_NOEXCEPT : high_{high}, low_{low} {} uint64_t high() const FMT_NOEXCEPT { return high_; } uint64_t low() const FMT_NOEXCEPT { return low_; } uint128_wrapper& operator+=(uint64_t n) FMT_NOEXCEPT { # if defined(_MSC_VER) && defined(_M_X64) unsigned char carry = _addcarry_u64(0, low_, n, &low_); _addcarry_u64(carry, high_, 0, &high_); return *this; # else uint64_t sum = low_ + n; high_ += (sum < low_ ? 1 : 0); low_ = sum; return *this; # endif } #endif }; // Table entry type for divisibility test used internally template <typename T> struct FMT_EXTERN_TEMPLATE_API divtest_table_entry { T mod_inv; T max_quotient; }; // Static data is placed in this class template for the header-only config. template <typename T = void> struct FMT_EXTERN_TEMPLATE_API basic_data { static const uint64_t powers_of_10_64[]; static const uint32_t zero_or_powers_of_10_32_new[]; static const uint64_t zero_or_powers_of_10_64_new[]; static const uint64_t grisu_pow10_significands[]; static const int16_t grisu_pow10_exponents[]; static const divtest_table_entry<uint32_t> divtest_table_for_pow5_32[]; static const divtest_table_entry<uint64_t> divtest_table_for_pow5_64[]; static const uint64_t dragonbox_pow10_significands_64[]; static const uint128_wrapper dragonbox_pow10_significands_128[]; // log10(2) = 0x0.4d104d427de7fbcc... static const uint64_t log10_2_significand = 0x4d104d427de7fbcc; #if !FMT_USE_FULL_CACHE_DRAGONBOX static const uint64_t powers_of_5_64[]; static const uint32_t dragonbox_pow10_recovery_errors[]; #endif // GCC generates slightly better code for pairs than chars. using digit_pair = char[2]; static const digit_pair digits[]; static constexpr const char hex_digits[] = "0123456789abcdef"; static const char foreground_color[]; static const char background_color[]; static const char reset_color[5]; static const wchar_t wreset_color[5]; static const char signs[]; static constexpr const char left_padding_shifts[5] = {31, 31, 0, 1, 0}; static constexpr const char right_padding_shifts[5] = {0, 31, 0, 1, 0}; // DEPRECATED! These are for ABI compatibility. static const uint32_t zero_or_powers_of_10_32[]; static const uint64_t zero_or_powers_of_10_64[]; }; // Maps bsr(n) to ceil(log10(pow(2, bsr(n) + 1) - 1)). // This is a function instead of an array to workaround a bug in GCC10 (#1810). FMT_INLINE uint16_t bsr2log10(int bsr) { static constexpr uint16_t data[] = { 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10, 10, 10, 10, 11, 11, 11, 12, 12, 12, 13, 13, 13, 13, 14, 14, 14, 15, 15, 15, 16, 16, 16, 16, 17, 17, 17, 18, 18, 18, 19, 19, 19, 19, 20}; return data[bsr]; } #ifndef FMT_EXPORTED FMT_EXTERN template struct basic_data<void>; #endif // This is a struct rather than an alias to avoid shadowing warnings in gcc. struct data : basic_data<> {}; template <typename T> FMT_CONSTEXPR int count_digits_fallback(T n) { int count = 1; for (;;) { // Integer division is slow so do it for a group of four digits instead // of for every digit. The idea comes from the talk by Alexandrescu // "Three Optimization Tips for C++". See speed-test for a comparison. if (n < 10) return count; if (n < 100) return count + 1; if (n < 1000) return count + 2; if (n < 10000) return count + 3; n /= 10000u; count += 4; } } #if FMT_USE_INT128 FMT_CONSTEXPR inline int count_digits(uint128_t n) { return count_digits_fallback(n); } #endif // Returns the number of decimal digits in n. Leading zeros are not counted // except for n == 0 in which case count_digits returns 1. FMT_CONSTEXPR20 inline int count_digits(uint64_t n) { if (is_constant_evaluated()) { return count_digits_fallback(n); } #ifdef FMT_BUILTIN_CLZLL // https://github.com/fmtlib/format-benchmark/blob/master/digits10 auto t = bsr2log10(FMT_BUILTIN_CLZLL(n | 1) ^ 63); return t - (n < data::zero_or_powers_of_10_64_new[t]); #else return count_digits_fallback(n); #endif } // Counts the number of digits in n. BITS = log2(radix). template <int BITS, typename UInt> FMT_CONSTEXPR int count_digits(UInt n) { #ifdef FMT_BUILTIN_CLZ if (num_bits<UInt>() == 32) return (FMT_BUILTIN_CLZ(static_cast<uint32_t>(n) | 1) ^ 31) / BITS + 1; #endif int num_digits = 0; do { ++num_digits; } while ((n >>= BITS) != 0); return num_digits; } template <> int count_digits<4>(detail::fallback_uintptr n); #if FMT_GCC_VERSION || FMT_CLANG_VERSION # define FMT_ALWAYS_INLINE inline __attribute__((always_inline)) #elif FMT_MSC_VER # define FMT_ALWAYS_INLINE __forceinline #else # define FMT_ALWAYS_INLINE inline #endif #ifdef FMT_BUILTIN_CLZ // Optional version of count_digits for better performance on 32-bit platforms. FMT_CONSTEXPR20 inline int count_digits(uint32_t n) { if (is_constant_evaluated()) { return count_digits_fallback(n); } auto t = bsr2log10(FMT_BUILTIN_CLZ(n | 1) ^ 31); return t - (n < data::zero_or_powers_of_10_32_new[t]); } #endif template <typename Int> constexpr int digits10() FMT_NOEXCEPT { return std::numeric_limits<Int>::digits10; } template <> constexpr int digits10<int128_t>() FMT_NOEXCEPT { return 38; } template <> constexpr int digits10<uint128_t>() FMT_NOEXCEPT { return 38; } template <typename Char> FMT_API std::string grouping_impl(locale_ref loc); template <typename Char> inline std::string grouping(locale_ref loc) { return grouping_impl<char>(loc); } template <> inline std::string grouping<wchar_t>(locale_ref loc) { return grouping_impl<wchar_t>(loc); } template <typename Char> FMT_API Char thousands_sep_impl(locale_ref loc); template <typename Char> inline Char thousands_sep(locale_ref loc) { return Char(thousands_sep_impl<char>(loc)); } template <> inline wchar_t thousands_sep(locale_ref loc) { return thousands_sep_impl<wchar_t>(loc); } template <typename Char> FMT_API Char decimal_point_impl(locale_ref loc); template <typename Char> inline Char decimal_point(locale_ref loc) { return Char(decimal_point_impl<char>(loc)); } template <> inline wchar_t decimal_point(locale_ref loc) { return decimal_point_impl<wchar_t>(loc); } // Compares two characters for equality. template <typename Char> bool equal2(const Char* lhs, const char* rhs) { return lhs[0] == rhs[0] && lhs[1] == rhs[1]; } inline bool equal2(const char* lhs, const char* rhs) { return memcmp(lhs, rhs, 2) == 0; } // Copies two characters from src to dst. template <typename Char> void copy2(Char* dst, const char* src) { *dst++ = static_cast<Char>(*src++); *dst = static_cast<Char>(*src); } FMT_INLINE void copy2(char* dst, const char* src) { memcpy(dst, src, 2); } template <typename Iterator> struct format_decimal_result { Iterator begin; Iterator end; }; // Formats a decimal unsigned integer value writing into out pointing to a // buffer of specified size. The caller must ensure that the buffer is large // enough. template <typename Char, typename UInt> FMT_CONSTEXPR20 format_decimal_result<Char*> format_decimal(Char* out, UInt value, int size) { FMT_ASSERT(size >= count_digits(value), "invalid digit count"); out += size; Char* end = out; if (is_constant_evaluated()) { while (value >= 10) { *--out = static_cast<Char>('0' + value % 10); value /= 10; } *--out = static_cast<Char>('0' + value); return {out, end}; } while (value >= 100) { // Integer division is slow so do it for a group of two digits instead // of for every digit. The idea comes from the talk by Alexandrescu // "Three Optimization Tips for C++". See speed-test for a comparison. out -= 2; copy2(out, data::digits[value % 100]); value /= 100; } if (value < 10) { *--out = static_cast<Char>('0' + value); return {out, end}; } out -= 2; copy2(out, data::digits[value]); return {out, end}; } template <typename Char, typename UInt, typename Iterator, FMT_ENABLE_IF(!std::is_pointer<remove_cvref_t<Iterator>>::value)> inline format_decimal_result<Iterator> format_decimal(Iterator out, UInt value, int size) { // Buffer is large enough to hold all digits (digits10 + 1). Char buffer[digits10<UInt>() + 1]; auto end = format_decimal(buffer, value, size).end; return {out, detail::copy_str<Char>(buffer, end, out)}; } template <unsigned BASE_BITS, typename Char, typename UInt> FMT_CONSTEXPR Char* format_uint(Char* buffer, UInt value, int num_digits, bool upper = false) { buffer += num_digits; Char* end = buffer; do { const char* digits = upper ? "0123456789ABCDEF" : data::hex_digits; unsigned digit = (value & ((1 << BASE_BITS) - 1)); *--buffer = static_cast<Char>(BASE_BITS < 4 ? static_cast<char>('0' + digit) : digits[digit]); } while ((value >>= BASE_BITS) != 0); return end; } template <unsigned BASE_BITS, typename Char> Char* format_uint(Char* buffer, detail::fallback_uintptr n, int num_digits, bool = false) { auto char_digits = std::numeric_limits<unsigned char>::digits / 4; int start = (num_digits + char_digits - 1) / char_digits - 1; if (int start_digits = num_digits % char_digits) { unsigned value = n.value[start--]; buffer = format_uint<BASE_BITS>(buffer, value, start_digits); } for (; start >= 0; --start) { unsigned value = n.value[start]; buffer += char_digits; auto p = buffer; for (int i = 0; i < char_digits; ++i) { unsigned digit = (value & ((1 << BASE_BITS) - 1)); *--p = static_cast<Char>(data::hex_digits[digit]); value >>= BASE_BITS; } } return buffer; } template <unsigned BASE_BITS, typename Char, typename It, typename UInt> inline It format_uint(It out, UInt value, int num_digits, bool upper = false) { if (auto ptr = to_pointer<Char>(out, to_unsigned(num_digits))) { format_uint<BASE_BITS>(ptr, value, num_digits, upper); return out; } // Buffer should be large enough to hold all digits (digits / BASE_BITS + 1). char buffer[num_bits<UInt>() / BASE_BITS + 1]; format_uint<BASE_BITS>(buffer, value, num_digits, upper); return detail::copy_str<Char>(buffer, buffer + num_digits, out); } // A converter from UTF-8 to UTF-16. class utf8_to_utf16 { private: wmemory_buffer buffer_; public: FMT_API explicit utf8_to_utf16(string_view s); operator wstring_view() const { return {&buffer_[0], size()}; } size_t size() const { return buffer_.size() - 1; } const wchar_t* c_str() const { return &buffer_[0]; } std::wstring str() const { return {&buffer_[0], size()}; } }; template <typename T = void> struct null {}; // Workaround an array initialization issue in gcc 4.8. template <typename Char> struct fill_t { private: enum { max_size = 4 }; Char data_[max_size] = {Char(' '), Char(0), Char(0), Char(0)}; unsigned char size_ = 1; public: FMT_CONSTEXPR void operator=(basic_string_view<Char> s) { auto size = s.size(); if (size > max_size) { FMT_THROW(format_error("invalid fill")); return; } for (size_t i = 0; i < size; ++i) data_[i] = s[i]; size_ = static_cast<unsigned char>(size); } constexpr size_t size() const { return size_; } constexpr const Char* data() const { return data_; } FMT_CONSTEXPR Char& operator[](size_t index) { return data_[index]; } FMT_CONSTEXPR const Char& operator[](size_t index) const { return data_[index]; } }; } // namespace detail // We cannot use enum classes as bit fields because of a gcc bug // https://gcc.gnu.org/bugzilla/show_bug.cgi?id=61414. namespace align { enum type { none, left, right, center, numeric }; } using align_t = align::type; namespace sign { enum type { none, minus, plus, space }; } using sign_t = sign::type; // Format specifiers for built-in and string types. template <typename Char> struct basic_format_specs { int width; int precision; char type; align_t align : 4; sign_t sign : 3; bool alt : 1; // Alternate form ('#'). bool localized : 1; detail::fill_t<Char> fill; constexpr basic_format_specs() : width(0), precision(-1), type(0), align(align::none), sign(sign::none), alt(false), localized(false) {} }; using format_specs = basic_format_specs<char>; namespace detail { namespace dragonbox { // Type-specific information that Dragonbox uses. template <class T> struct float_info; template <> struct float_info<float> { using carrier_uint = uint32_t; static const int significand_bits = 23; static const int exponent_bits = 8; static const int min_exponent = -126; static const int max_exponent = 127; static const int exponent_bias = -127; static const int decimal_digits = 9; static const int kappa = 1; static const int big_divisor = 100; static const int small_divisor = 10; static const int min_k = -31; static const int max_k = 46; static const int cache_bits = 64; static const int divisibility_check_by_5_threshold = 39; static const int case_fc_pm_half_lower_threshold = -1; static const int case_fc_pm_half_upper_threshold = 6; static const int case_fc_lower_threshold = -2; static const int case_fc_upper_threshold = 6; static const int case_shorter_interval_left_endpoint_lower_threshold = 2; static const int case_shorter_interval_left_endpoint_upper_threshold = 3; static const int shorter_interval_tie_lower_threshold = -35; static const int shorter_interval_tie_upper_threshold = -35; static const int max_trailing_zeros = 7; }; template <> struct float_info<double> { using carrier_uint = uint64_t; static const int significand_bits = 52; static const int exponent_bits = 11; static const int min_exponent = -1022; static const int max_exponent = 1023; static const int exponent_bias = -1023; static const int decimal_digits = 17; static const int kappa = 2; static const int big_divisor = 1000; static const int small_divisor = 100; static const int min_k = -292; static const int max_k = 326; static const int cache_bits = 128; static const int divisibility_check_by_5_threshold = 86; static const int case_fc_pm_half_lower_threshold = -2; static const int case_fc_pm_half_upper_threshold = 9; static const int case_fc_lower_threshold = -4; static const int case_fc_upper_threshold = 9; static const int case_shorter_interval_left_endpoint_lower_threshold = 2; static const int case_shorter_interval_left_endpoint_upper_threshold = 3; static const int shorter_interval_tie_lower_threshold = -77; static const int shorter_interval_tie_upper_threshold = -77; static const int max_trailing_zeros = 16; }; template <typename T> struct decimal_fp { using significand_type = typename float_info<T>::carrier_uint; significand_type significand; int exponent; }; template <typename T> FMT_API decimal_fp<T> to_decimal(T x) FMT_NOEXCEPT; } // namespace dragonbox template <typename T> constexpr typename dragonbox::float_info<T>::carrier_uint exponent_mask() { using uint = typename dragonbox::float_info<T>::carrier_uint; return ((uint(1) << dragonbox::float_info<T>::exponent_bits) - 1) << dragonbox::float_info<T>::significand_bits; } // A floating-point presentation format. enum class float_format : unsigned char { general, // General: exponent notation or fixed point based on magnitude. exp, // Exponent notation with the default precision of 6, e.g. 1.2e-3. fixed, // Fixed point with the default precision of 6, e.g. 0.0012. hex }; struct float_specs { int precision; float_format format : 8; sign_t sign : 8; bool upper : 1; bool locale : 1; bool binary32 : 1; bool use_grisu : 1; bool showpoint : 1; }; // Writes the exponent exp in the form "[+-]d{2,3}" to buffer. template <typename Char, typename It> It write_exponent(int exp, It it) { FMT_ASSERT(-10000 < exp && exp < 10000, "exponent out of range"); if (exp < 0) { *it++ = static_cast<Char>('-'); exp = -exp; } else { *it++ = static_cast<Char>('+'); } if (exp >= 100) { const char* top = data::digits[exp / 100]; if (exp >= 1000) *it++ = static_cast<Char>(top[0]); *it++ = static_cast<Char>(top[1]); exp %= 100; } const char* d = data::digits[exp]; *it++ = static_cast<Char>(d[0]); *it++ = static_cast<Char>(d[1]); return it; } template <typename T> int format_float(T value, int precision, float_specs specs, buffer<char>& buf); // Formats a floating-point number with snprintf. template <typename T> int snprintf_float(T value, int precision, float_specs specs, buffer<char>& buf); template <typename T> T promote_float(T value) { return value; } inline double promote_float(float value) { return static_cast<double>(value); } template <typename Handler> FMT_CONSTEXPR void handle_int_type_spec(char spec, Handler&& handler) { switch (spec) { case 0: case 'd': handler.on_dec(); break; case 'x': case 'X': handler.on_hex(); break; case 'b': case 'B': handler.on_bin(); break; case 'o': handler.on_oct(); break; #ifdef FMT_DEPRECATED_N_SPECIFIER case 'n': handler.on_num(); break; #endif case 'c': handler.on_chr(); break; default: handler.on_error(); } } template <typename Char, typename Handler> FMT_CONSTEXPR void handle_bool_type_spec(const basic_format_specs<Char>* specs, Handler&& handler) { if (!specs) return handler.on_str(); if (specs->type && specs->type != 's') return handler.on_int(); handler.on_str(); } template <typename ErrorHandler = error_handler, typename Char> FMT_CONSTEXPR float_specs parse_float_type_spec( const basic_format_specs<Char>& specs, ErrorHandler&& eh = {}) { auto result = float_specs(); result.showpoint = specs.alt; result.locale = specs.localized; switch (specs.type) { case 0: result.format = float_format::general; break; case 'G': result.upper = true; FMT_FALLTHROUGH; case 'g': result.format = float_format::general; break; case 'E': result.upper = true; FMT_FALLTHROUGH; case 'e': result.format = float_format::exp; result.showpoint |= specs.precision != 0; break; case 'F': result.upper = true; FMT_FALLTHROUGH; case 'f': result.format = float_format::fixed; result.showpoint |= specs.precision != 0; break; case 'A': result.upper = true; FMT_FALLTHROUGH; case 'a': result.format = float_format::hex; break; #ifdef FMT_DEPRECATED_N_SPECIFIER case 'n': result.locale = true; break; #endif default: eh.on_error("invalid type specifier"); break; } return result; } template <typename Char, typename Handler> FMT_CONSTEXPR void handle_char_specs(const basic_format_specs<Char>* specs, Handler&& handler) { if (!specs) return handler.on_char(); if (specs->type && specs->type != 'c') return handler.on_int(); if (specs->align == align::numeric || specs->sign != sign::none || specs->alt) handler.on_error("invalid format specifier for char"); handler.on_char(); } template <typename Char, typename Handler> FMT_CONSTEXPR void handle_cstring_type_spec(Char spec, Handler&& handler) { if (spec == 0 || spec == 's') handler.on_string(); else if (spec == 'p') handler.on_pointer(); else handler.on_error("invalid type specifier"); } template <typename Char, typename ErrorHandler> FMT_CONSTEXPR void check_string_type_spec(Char spec, ErrorHandler&& eh) { if (spec != 0 && spec != 's') eh.on_error("invalid type specifier"); } template <typename Char, typename ErrorHandler> FMT_CONSTEXPR void check_pointer_type_spec(Char spec, ErrorHandler&& eh) { if (spec != 0 && spec != 'p') eh.on_error("invalid type specifier"); } template <typename ErrorHandler> class int_type_checker : private ErrorHandler { public: FMT_CONSTEXPR explicit int_type_checker(ErrorHandler eh) : ErrorHandler(eh) {} FMT_CONSTEXPR void on_dec() {} FMT_CONSTEXPR void on_hex() {} FMT_CONSTEXPR void on_bin() {} FMT_CONSTEXPR void on_oct() {} FMT_CONSTEXPR void on_num() {} FMT_CONSTEXPR void on_chr() {} FMT_CONSTEXPR void on_error() { ErrorHandler::on_error("invalid type specifier"); } }; template <typename ErrorHandler> class char_specs_checker : public ErrorHandler { private: char type_; public: FMT_CONSTEXPR char_specs_checker(char type, ErrorHandler eh) : ErrorHandler(eh), type_(type) {} FMT_CONSTEXPR void on_int() { handle_int_type_spec(type_, int_type_checker<ErrorHandler>(*this)); } FMT_CONSTEXPR void on_char() {} }; template <typename ErrorHandler> class cstring_type_checker : public ErrorHandler { public: FMT_CONSTEXPR explicit cstring_type_checker(ErrorHandler eh) : ErrorHandler(eh) {} FMT_CONSTEXPR void on_string() {} FMT_CONSTEXPR void on_pointer() {} }; template <typename ErrorHandler> class bool_type_checker : private ErrorHandler { private: char type_; public: FMT_CONSTEXPR explicit bool_type_checker(char type, ErrorHandler eh) : ErrorHandler(eh), type_(type) {} FMT_CONSTEXPR void on_int() { handle_int_type_spec(type_, int_type_checker<ErrorHandler>(*this)); } FMT_CONSTEXPR void on_str() {} }; template <typename OutputIt, typename Char> FMT_NOINLINE FMT_CONSTEXPR OutputIt fill(OutputIt it, size_t n, const fill_t<Char>& fill) { auto fill_size = fill.size(); if (fill_size == 1) return detail::fill_n(it, n, fill[0]); auto data = fill.data(); for (size_t i = 0; i < n; ++i) it = copy_str<Char>(data, data + fill_size, it); return it; } // Writes the output of f, padded according to format specifications in specs. // size: output size in code units. // width: output display width in (terminal) column positions. template <align::type align = align::left, typename OutputIt, typename Char, typename F> FMT_CONSTEXPR OutputIt write_padded(OutputIt out, const basic_format_specs<Char>& specs, size_t size, size_t width, F&& f) { static_assert(align == align::left || align == align::right, ""); unsigned spec_width = to_unsigned(specs.width); size_t padding = spec_width > width ? spec_width - width : 0; auto* shifts = align == align::left ? data::left_padding_shifts : data::right_padding_shifts; size_t left_padding = padding >> shifts[specs.align]; size_t right_padding = padding - left_padding; auto it = reserve(out, size + padding * specs.fill.size()); if (left_padding != 0) it = fill(it, left_padding, specs.fill); it = f(it); if (right_padding != 0) it = fill(it, padding - left_padding, specs.fill); return base_iterator(out, it); } template <align::type align = align::left, typename OutputIt, typename Char, typename F> constexpr OutputIt write_padded(OutputIt out, const basic_format_specs<Char>& specs, size_t size, F&& f) { return write_padded<align>(out, specs, size, size, f); } template <typename Char, typename OutputIt> OutputIt write_bytes(OutputIt out, string_view bytes, const basic_format_specs<Char>& specs) { return write_padded(out, specs, bytes.size(), [bytes](reserve_iterator<OutputIt> it) { const char* data = bytes.data(); return copy_str<Char>(data, data + bytes.size(), it); }); } template <typename Char, typename OutputIt> constexpr OutputIt write_char(OutputIt out, Char value, const basic_format_specs<Char>& specs) { return write_padded(out, specs, 1, [=](reserve_iterator<OutputIt> it) { *it++ = value; return it; }); } // Data for write_int that doesn't depend on output iterator type. It is used to // avoid template code bloat. template <typename Char> struct write_int_data { size_t size; size_t padding; FMT_CONSTEXPR write_int_data(int num_digits, string_view prefix, const basic_format_specs<Char>& specs) : size(prefix.size() + to_unsigned(num_digits)), padding(0) { if (specs.align == align::numeric) { auto width = to_unsigned(specs.width); if (width > size) { padding = width - size; size = width; } } else if (specs.precision > num_digits) { size = prefix.size() + to_unsigned(specs.precision); padding = to_unsigned(specs.precision - num_digits); } } }; // Writes an integer in the format // <left-padding><prefix><numeric-padding><digits><right-padding> // where <digits> are written by write_digits(it). template <typename OutputIt, typename Char, typename W> FMT_CONSTEXPR FMT_INLINE OutputIt write_int(OutputIt out, int num_digits, string_view prefix, const basic_format_specs<Char>& specs, W write_digits) { if (specs.width == 0 && specs.precision < 0) { auto it = reserve(out, to_unsigned(num_digits) + prefix.size()); if (prefix.size() != 0) it = copy_str<Char>(prefix.begin(), prefix.end(), it); return base_iterator(out, write_digits(it)); } auto data = write_int_data<Char>(num_digits, prefix, specs); return write_padded<align::right>( out, specs, data.size, [=](reserve_iterator<OutputIt> it) { if (prefix.size() != 0) it = copy_str<Char>(prefix.begin(), prefix.end(), it); it = detail::fill_n(it, data.padding, static_cast<Char>('0')); return write_digits(it); }); } template <typename OutputIt, typename UInt, typename Char> FMT_CONSTEXPR OutputIt write_dec(OutputIt out, UInt value, string_view prefix, const basic_format_specs<Char>& specs) { auto num_digits = count_digits(value); return write_int(out, num_digits, prefix, specs, [=](reserve_iterator<OutputIt> it) { return format_decimal<Char>(it, value, num_digits).end; }); } template <typename OutputIt, typename UInt, typename Char> OutputIt write_int_localized(OutputIt out, UInt value, string_view prefix, const basic_format_specs<Char>& specs, locale_ref loc) { static_assert(std::is_same<uint64_or_128_t<UInt>, UInt>::value, ""); const auto sep_size = 1; std::string groups = grouping<Char>(loc); if (groups.empty()) return write_dec(out, value, prefix, specs); auto sep = thousands_sep<Char>(loc); if (!sep) return write_dec(out, value, prefix, specs); int num_digits = count_digits(value); int size = num_digits, n = num_digits; std::string::const_iterator group = groups.cbegin(); while (group != groups.cend() && n > *group && *group > 0 && *group != max_value<char>()) { size += sep_size; n -= *group; ++group; } if (group == groups.cend()) size += sep_size * ((n - 1) / groups.back()); char digits[40]; format_decimal(digits, value, num_digits); basic_memory_buffer<Char> buffer; size += static_cast<int>(prefix.size()); const auto usize = to_unsigned(size); buffer.resize(usize); basic_string_view<Char> s(&sep, sep_size); // Index of a decimal digit with the least significant digit having index 0. int digit_index = 0; group = groups.cbegin(); auto p = buffer.data() + size - 1; for (int i = num_digits - 1; i > 0; --i) { *p-- = static_cast<Char>(digits[i]); if (*group <= 0 || ++digit_index % *group != 0 || *group == max_value<char>()) continue; if (group + 1 != groups.cend()) { digit_index = 0; ++group; } std::uninitialized_copy(s.data(), s.data() + s.size(), make_checked(p, s.size())); p -= s.size(); } *p-- = static_cast<Char>(*digits); if (prefix.size() != 0) *p = static_cast<Char>(prefix[0]); auto data = buffer.data(); return write_padded<align::right>( out, specs, usize, usize, [=](reserve_iterator<OutputIt> it) { return copy_str<Char>(data, data + size, it); }); } template <typename OutputIt, typename T, typename Char> FMT_CONSTEXPR OutputIt write_int(OutputIt out, T value, const basic_format_specs<Char>& specs, locale_ref loc) { char prefix[4] = {}; auto prefix_size = 0u; auto abs_value = static_cast<uint32_or_64_or_128_t<T>>(value); if (is_negative(value)) { prefix[0] = '-'; ++prefix_size; abs_value = 0 - abs_value; } else if (specs.sign != sign::none && specs.sign != sign::minus) { prefix[0] = specs.sign == sign::plus ? '+' : ' '; ++prefix_size; } switch (specs.type) { case 0: case 'd': return specs.localized ? write_int_localized(out, static_cast<uint64_or_128_t<T>>(abs_value), {prefix, prefix_size}, specs, loc) : write_dec(out, abs_value, {prefix, prefix_size}, specs); case 'x': case 'X': { if (specs.alt) { prefix[prefix_size++] = '0'; prefix[prefix_size++] = specs.type; } bool upper = specs.type != 'x'; int num_digits = count_digits<4>(abs_value); return write_int(out, num_digits, {prefix, prefix_size}, specs, [=](reserve_iterator<OutputIt> it) { return format_uint<4, Char>(it, abs_value, num_digits, upper); }); } case 'b': case 'B': { if (specs.alt) { prefix[prefix_size++] = '0'; prefix[prefix_size++] = static_cast<char>(specs.type); } int num_digits = count_digits<1>(abs_value); return write_int(out, num_digits, {prefix, prefix_size}, specs, [=](reserve_iterator<OutputIt> it) { return format_uint<1, Char>(it, abs_value, num_digits); }); } case 'o': { int num_digits = count_digits<3>(abs_value); if (specs.alt && specs.precision <= num_digits && abs_value != 0) { // Octal prefix '0' is counted as a digit, so only add it if precision // is not greater than the number of digits. prefix[prefix_size++] = '0'; } return write_int(out, num_digits, {prefix, prefix_size}, specs, [=](reserve_iterator<OutputIt> it) { return format_uint<3, Char>(it, abs_value, num_digits); }); } #ifdef FMT_DEPRECATED_N_SPECIFIER case 'n': return write_int_localized(out, abs_value, {prefix, prefix_size}, specs, loc); #endif case 'c': return write_char(out, static_cast<Char>(abs_value), specs); default: FMT_THROW(format_error("invalid type specifier")); } return out; } template <typename OutputIt, typename StrChar, typename Char> FMT_CONSTEXPR OutputIt write(OutputIt out, basic_string_view<StrChar> s, const basic_format_specs<Char>& specs) { auto data = s.data(); auto size = s.size(); if (specs.precision >= 0 && to_unsigned(specs.precision) < size) size = code_point_index(s, to_unsigned(specs.precision)); auto width = specs.width != 0 ? compute_width(basic_string_view<StrChar>(data, size)) : 0; return write_padded(out, specs, size, width, [=](reserve_iterator<OutputIt> it) { return copy_str<Char>(data, data + size, it); }); } template <typename Char, typename OutputIt> OutputIt write_nonfinite(OutputIt out, bool isinf, const basic_format_specs<Char>& specs, const float_specs& fspecs) { auto str = isinf ? (fspecs.upper ? "INF" : "inf") : (fspecs.upper ? "NAN" : "nan"); constexpr size_t str_size = 3; auto sign = fspecs.sign; auto size = str_size + (sign ? 1 : 0); return write_padded(out, specs, size, [=](reserve_iterator<OutputIt> it) { if (sign) *it++ = static_cast<Char>(data::signs[sign]); return copy_str<Char>(str, str + str_size, it); }); } // A decimal floating-point number significand * pow(10, exp). struct big_decimal_fp { const char* significand; int significand_size; int exponent; }; inline int get_significand_size(const big_decimal_fp& fp) { return fp.significand_size; } template <typename T> inline int get_significand_size(const dragonbox::decimal_fp<T>& fp) { return count_digits(fp.significand); } template <typename Char, typename OutputIt> inline OutputIt write_significand(OutputIt out, const char* significand, int& significand_size) { return copy_str<Char>(significand, significand + significand_size, out); } template <typename Char, typename OutputIt, typename UInt> inline OutputIt write_significand(OutputIt out, UInt significand, int significand_size) { return format_decimal<Char>(out, significand, significand_size).end; } template <typename Char, typename UInt, FMT_ENABLE_IF(std::is_integral<UInt>::value)> inline Char* write_significand(Char* out, UInt significand, int significand_size, int integral_size, Char decimal_point) { if (!decimal_point) return format_decimal(out, significand, significand_size).end; auto end = format_decimal(out + 1, significand, significand_size).end; if (integral_size == 1) out[0] = out[1]; else std::uninitialized_copy_n(out + 1, integral_size, out); out[integral_size] = decimal_point; return end; } template <typename OutputIt, typename UInt, typename Char, FMT_ENABLE_IF(!std::is_pointer<remove_cvref_t<OutputIt>>::value)> inline OutputIt write_significand(OutputIt out, UInt significand, int significand_size, int integral_size, Char decimal_point) { // Buffer is large enough to hold digits (digits10 + 1) and a decimal point. Char buffer[digits10<UInt>() + 2]; auto end = write_significand(buffer, significand, significand_size, integral_size, decimal_point); return detail::copy_str<Char>(buffer, end, out); } template <typename OutputIt, typename Char> inline OutputIt write_significand(OutputIt out, const char* significand, int significand_size, int integral_size, Char decimal_point) { out = detail::copy_str<Char>(significand, significand + integral_size, out); if (!decimal_point) return out; *out++ = decimal_point; return detail::copy_str<Char>(significand + integral_size, significand + significand_size, out); } template <typename OutputIt, typename DecimalFP, typename Char> OutputIt write_float(OutputIt out, const DecimalFP& fp, const basic_format_specs<Char>& specs, float_specs fspecs, Char decimal_point) { auto significand = fp.significand; int significand_size = get_significand_size(fp); static const Char zero = static_cast<Char>('0'); auto sign = fspecs.sign; size_t size = to_unsigned(significand_size) + (sign ? 1 : 0); using iterator = reserve_iterator<OutputIt>; int output_exp = fp.exponent + significand_size - 1; auto use_exp_format = [=]() { if (fspecs.format == float_format::exp) return true; if (fspecs.format != float_format::general) return false; // Use the fixed notation if the exponent is in [exp_lower, exp_upper), // e.g. 0.0001 instead of 1e-04. Otherwise use the exponent notation. const int exp_lower = -4, exp_upper = 16; return output_exp < exp_lower || output_exp >= (fspecs.precision > 0 ? fspecs.precision : exp_upper); }; if (use_exp_format()) { int num_zeros = 0; if (fspecs.showpoint) { num_zeros = fspecs.precision - significand_size; if (num_zeros < 0) num_zeros = 0; size += to_unsigned(num_zeros); } else if (significand_size == 1) { decimal_point = Char(); } auto abs_output_exp = output_exp >= 0 ? output_exp : -output_exp; int exp_digits = 2; if (abs_output_exp >= 100) exp_digits = abs_output_exp >= 1000 ? 4 : 3; size += to_unsigned((decimal_point ? 1 : 0) + 2 + exp_digits); char exp_char = fspecs.upper ? 'E' : 'e'; auto write = [=](iterator it) { if (sign) *it++ = static_cast<Char>(data::signs[sign]); // Insert a decimal point after the first digit and add an exponent. it = write_significand(it, significand, significand_size, 1, decimal_point); if (num_zeros > 0) it = detail::fill_n(it, num_zeros, zero); *it++ = static_cast<Char>(exp_char); return write_exponent<Char>(output_exp, it); }; return specs.width > 0 ? write_padded<align::right>(out, specs, size, write) : base_iterator(out, write(reserve(out, size))); } int exp = fp.exponent + significand_size; if (fp.exponent >= 0) { // 1234e5 -> 123400000[.0+] size += to_unsigned(fp.exponent); int num_zeros = fspecs.precision - exp; #ifdef FMT_FUZZ if (num_zeros > 5000) throw std::runtime_error("fuzz mode - avoiding excessive cpu use"); #endif if (fspecs.showpoint) { if (num_zeros <= 0 && fspecs.format != float_format::fixed) num_zeros = 1; if (num_zeros > 0) size += to_unsigned(num_zeros) + 1; } return write_padded<align::right>(out, specs, size, [&](iterator it) { if (sign) *it++ = static_cast<Char>(data::signs[sign]); it = write_significand<Char>(it, significand, significand_size); it = detail::fill_n(it, fp.exponent, zero); if (!fspecs.showpoint) return it; *it++ = decimal_point; return num_zeros > 0 ? detail::fill_n(it, num_zeros, zero) : it; }); } else if (exp > 0) { // 1234e-2 -> 12.34[0+] int num_zeros = fspecs.showpoint ? fspecs.precision - significand_size : 0; size += 1 + to_unsigned(num_zeros > 0 ? num_zeros : 0); return write_padded<align::right>(out, specs, size, [&](iterator it) { if (sign) *it++ = static_cast<Char>(data::signs[sign]); it = write_significand(it, significand, significand_size, exp, decimal_point); return num_zeros > 0 ? detail::fill_n(it, num_zeros, zero) : it; }); } // 1234e-6 -> 0.001234 int num_zeros = -exp; if (significand_size == 0 && fspecs.precision >= 0 && fspecs.precision < num_zeros) { num_zeros = fspecs.precision; } bool pointy = num_zeros != 0 || significand_size != 0 || fspecs.showpoint; size += 1 + (pointy ? 1 : 0) + to_unsigned(num_zeros); return write_padded<align::right>(out, specs, size, [&](iterator it) { if (sign) *it++ = static_cast<Char>(data::signs[sign]); *it++ = zero; if (!pointy) return it; *it++ = decimal_point; it = detail::fill_n(it, num_zeros, zero); return write_significand<Char>(it, significand, significand_size); }); } template <typename Char, typename OutputIt, typename T, FMT_ENABLE_IF(std::is_floating_point<T>::value)> OutputIt write(OutputIt out, T value, basic_format_specs<Char> specs, locale_ref loc = {}) { if (const_check(!is_supported_floating_point(value))) return out; float_specs fspecs = parse_float_type_spec(specs); fspecs.sign = specs.sign; if (std::signbit(value)) { // value < 0 is false for NaN so use signbit. fspecs.sign = sign::minus; value = -value; } else if (fspecs.sign == sign::minus) { fspecs.sign = sign::none; } if (!std::isfinite(value)) return write_nonfinite(out, std::isinf(value), specs, fspecs); if (specs.align == align::numeric && fspecs.sign) { auto it = reserve(out, 1); *it++ = static_cast<Char>(data::signs[fspecs.sign]); out = base_iterator(out, it); fspecs.sign = sign::none; if (specs.width != 0) --specs.width; } memory_buffer buffer; if (fspecs.format == float_format::hex) { if (fspecs.sign) buffer.push_back(data::signs[fspecs.sign]); snprintf_float(promote_float(value), specs.precision, fspecs, buffer); return write_bytes(out, {buffer.data(), buffer.size()}, specs); } int precision = specs.precision >= 0 || !specs.type ? specs.precision : 6; if (fspecs.format == float_format::exp) { if (precision == max_value<int>()) FMT_THROW(format_error("number is too big")); else ++precision; } if (const_check(std::is_same<T, float>())) fspecs.binary32 = true; fspecs.use_grisu = is_fast_float<T>(); int exp = format_float(promote_float(value), precision, fspecs, buffer); fspecs.precision = precision; Char point = fspecs.locale ? decimal_point<Char>(loc) : static_cast<Char>('.'); auto fp = big_decimal_fp{buffer.data(), static_cast<int>(buffer.size()), exp}; return write_float(out, fp, specs, fspecs, point); } template <typename Char, typename OutputIt, typename T, FMT_ENABLE_IF(is_fast_float<T>::value)> OutputIt write(OutputIt out, T value) { if (const_check(!is_supported_floating_point(value))) return out; using floaty = conditional_t<std::is_same<T, long double>::value, double, T>; using uint = typename dragonbox::float_info<floaty>::carrier_uint; auto bits = bit_cast<uint>(value); auto fspecs = float_specs(); auto sign_bit = bits & (uint(1) << (num_bits<uint>() - 1)); if (sign_bit != 0) { fspecs.sign = sign::minus; value = -value; } static const auto specs = basic_format_specs<Char>(); uint mask = exponent_mask<floaty>(); if ((bits & mask) == mask) return write_nonfinite(out, std::isinf(value), specs, fspecs); auto dec = dragonbox::to_decimal(static_cast<floaty>(value)); return write_float(out, dec, specs, fspecs, static_cast<Char>('.')); } template <typename Char, typename OutputIt, typename T, FMT_ENABLE_IF(std::is_floating_point<T>::value && !is_fast_float<T>::value)> inline OutputIt write(OutputIt out, T value) { return write(out, value, basic_format_specs<Char>()); } template <typename Char, typename OutputIt, typename UIntPtr> OutputIt write_ptr(OutputIt out, UIntPtr value, const basic_format_specs<Char>* specs) { int num_digits = count_digits<4>(value); auto size = to_unsigned(num_digits) + size_t(2); auto write = [=](reserve_iterator<OutputIt> it) { *it++ = static_cast<Char>('0'); *it++ = static_cast<Char>('x'); return format_uint<4, Char>(it, value, num_digits); }; return specs ? write_padded<align::right>(out, *specs, size, write) : base_iterator(out, write(reserve(out, size))); } template <typename T> struct is_integral : std::is_integral<T> {}; template <> struct is_integral<int128_t> : std::true_type {}; template <> struct is_integral<uint128_t> : std::true_type {}; template <typename Char, typename OutputIt> OutputIt write(OutputIt out, monostate) { FMT_ASSERT(false, ""); return out; } template <typename Char, typename OutputIt, FMT_ENABLE_IF(!std::is_same<Char, char>::value)> OutputIt write(OutputIt out, string_view value) { auto it = reserve(out, value.size()); it = copy_str<Char>(value.begin(), value.end(), it); return base_iterator(out, it); } template <typename Char, typename OutputIt> FMT_CONSTEXPR OutputIt write(OutputIt out, basic_string_view<Char> value) { auto it = reserve(out, value.size()); it = copy_str<Char>(value.begin(), value.end(), it); return base_iterator(out, it); } template <typename Char, typename OutputIt, typename T, FMT_ENABLE_IF(is_integral<T>::value && !std::is_same<T, bool>::value && !std::is_same<T, Char>::value)> FMT_CONSTEXPR OutputIt write(OutputIt out, T value) { auto abs_value = static_cast<uint32_or_64_or_128_t<T>>(value); bool negative = is_negative(value); // Don't do -abs_value since it trips unsigned-integer-overflow sanitizer. if (negative) abs_value = ~abs_value + 1; int num_digits = count_digits(abs_value); auto size = (negative ? 1 : 0) + static_cast<size_t>(num_digits); auto it = reserve(out, size); if (auto ptr = to_pointer<Char>(it, size)) { if (negative) *ptr++ = static_cast<Char>('-'); format_decimal<Char>(ptr, abs_value, num_digits); return out; } if (negative) *it++ = static_cast<Char>('-'); it = format_decimal<Char>(it, abs_value, num_digits).end; return base_iterator(out, it); } // FMT_ENABLE_IF() condition separated to workaround MSVC bug template < typename Char, typename OutputIt, typename T, bool check = std::is_enum<T>::value && !std::is_same<T, Char>::value && mapped_type_constant<T, basic_format_context<OutputIt, Char>>::value != type::custom_type, FMT_ENABLE_IF(check)> FMT_CONSTEXPR OutputIt write(OutputIt out, T value) { return write<Char>( out, static_cast<typename std::underlying_type<T>::type>(value)); } template <typename Char, typename OutputIt> constexpr OutputIt write(OutputIt out, bool value) { return write<Char>(out, string_view(value ? "true" : "false")); } template <typename Char, typename OutputIt> FMT_CONSTEXPR OutputIt write(OutputIt out, Char value) { auto it = reserve(out, 1); *it++ = value; return base_iterator(out, it); } template <typename Char, typename OutputIt> FMT_CONSTEXPR OutputIt write(OutputIt out, const Char* value) { if (!value) { FMT_THROW(format_error("string pointer is null")); } else { auto length = std::char_traits<Char>::length(value); out = write(out, basic_string_view<Char>(value, length)); } return out; } template <typename Char, typename OutputIt> OutputIt write(OutputIt out, const void* value) { return write_ptr<Char>(out, to_uintptr(value), nullptr); } template <typename Char, typename OutputIt, typename T> auto write(OutputIt out, const T& value) -> typename std::enable_if< mapped_type_constant<T, basic_format_context<OutputIt, Char>>::value == type::custom_type, OutputIt>::type { using context_type = basic_format_context<OutputIt, Char>; using formatter_type = conditional_t<has_formatter<T, context_type>::value, typename context_type::template formatter_type<T>, fallback_formatter<T, Char>>; context_type ctx(out, {}, {}); return formatter_type().format(value, ctx); } // An argument visitor that formats the argument and writes it via the output // iterator. It's a class and not a generic lambda for compatibility with C++11. template <typename OutputIt, typename Char> struct default_arg_formatter { using context = basic_format_context<OutputIt, Char>; OutputIt out; basic_format_args<context> args; locale_ref loc; template <typename T> OutputIt operator()(T value) { return write<Char>(out, value); } OutputIt operator()(typename basic_format_arg<context>::handle handle) { basic_format_parse_context<Char> parse_ctx({}); basic_format_context<OutputIt, Char> format_ctx(out, args, loc); handle.format(parse_ctx, format_ctx); return format_ctx.out(); } }; template <typename OutputIt, typename Char, typename ErrorHandler = error_handler> class arg_formatter_base { public: using iterator = OutputIt; using char_type = Char; using format_specs = basic_format_specs<Char>; private: iterator out_; locale_ref locale_; format_specs* specs_; // Attempts to reserve space for n extra characters in the output range. // Returns a pointer to the reserved range or a reference to out_. auto reserve(size_t n) -> decltype(detail::reserve(out_, n)) { return detail::reserve(out_, n); } void write(char value) { auto&& it = reserve(1); *it++ = value; } template <typename Ch, FMT_ENABLE_IF(std::is_same<Ch, Char>::value)> void write(Ch value) { out_ = detail::write<Char>(out_, value); } void write(string_view value) { auto&& it = reserve(value.size()); it = copy_str<Char>(value.begin(), value.end(), it); } void write(wstring_view value) { static_assert(std::is_same<Char, wchar_t>::value, ""); auto&& it = reserve(value.size()); it = copy_str<Char>(value.begin(), value.end(), it); } template <typename Ch> void write(const Ch* s, size_t size, const format_specs& specs) { auto width = specs.width != 0 ? compute_width(basic_string_view<Ch>(s, size)) : 0; out_ = write_padded(out_, specs, size, width, [=](reserve_iterator<OutputIt> it) { return copy_str<Char>(s, s + size, it); }); } template <typename Ch> FMT_CONSTEXPR void write(basic_string_view<Ch> s, const format_specs& specs = {}) { out_ = detail::write(out_, s, specs); } void write_pointer(const void* p) { out_ = write_ptr<char_type>(out_, to_uintptr(p), specs_); } struct char_spec_handler : ErrorHandler { arg_formatter_base& formatter; Char value; constexpr char_spec_handler(arg_formatter_base& f, Char val) : formatter(f), value(val) {} FMT_CONSTEXPR void on_int() { // char is only formatted as int if there are specs. formatter.out_ = detail::write_int(formatter.out_, static_cast<int>(value), *formatter.specs_, formatter.locale_); } FMT_CONSTEXPR void on_char() { if (formatter.specs_) formatter.out_ = write_char(formatter.out_, value, *formatter.specs_); else formatter.write(value); } }; struct cstring_spec_handler : error_handler { arg_formatter_base& formatter; const Char* value; cstring_spec_handler(arg_formatter_base& f, const Char* val) : formatter(f), value(val) {} void on_string() { formatter.write(value); } void on_pointer() { formatter.write_pointer(value); } }; protected: iterator out() { return out_; } format_specs* specs() { return specs_; } FMT_CONSTEXPR void write(bool value) { if (specs_) write(string_view(value ? "true" : "false"), *specs_); else out_ = detail::write<Char>(out_, value); } void write(const Char* value) { if (!value) { FMT_THROW(format_error("string pointer is null")); } else { auto length = std::char_traits<char_type>::length(value); basic_string_view<char_type> sv(value, length); specs_ ? write(sv, *specs_) : write(sv); } } public: constexpr arg_formatter_base(OutputIt out, format_specs* s, locale_ref loc) : out_(out), locale_(loc), specs_(s) {} iterator operator()(monostate) { FMT_ASSERT(false, "invalid argument type"); return out_; } template <typename T, FMT_ENABLE_IF(is_integral<T>::value)> FMT_CONSTEXPR FMT_INLINE iterator operator()(T value) { return out_ = specs_ ? detail::write_int(out_, value, *specs_, locale_) : detail::write<Char>(out_, value); } FMT_CONSTEXPR iterator operator()(Char value) { handle_char_specs(specs_, char_spec_handler(*this, static_cast<Char>(value))); return out_; } FMT_CONSTEXPR iterator operator()(bool value) { if (specs_ && specs_->type && specs_->type != 's') return (*this)(value ? 1 : 0); write(value != 0); return out_; } template <typename T, FMT_ENABLE_IF(std::is_floating_point<T>::value)> iterator operator()(T value) { auto specs = specs_ ? *specs_ : format_specs(); if (const_check(is_supported_floating_point(value))) out_ = detail::write(out_, value, specs, locale_); else FMT_ASSERT(false, "unsupported float argument type"); return out_; } iterator operator()(const Char* value) { if (!specs_) return write(value), out_; handle_cstring_type_spec(specs_->type, cstring_spec_handler(*this, value)); return out_; } FMT_CONSTEXPR iterator operator()(basic_string_view<Char> value) { if (specs_) { check_string_type_spec(specs_->type, error_handler()); write(value, *specs_); } else { write(value); } return out_; } iterator operator()(const void* value) { if (specs_) check_pointer_type_spec(specs_->type, error_handler()); write_pointer(value); return out_; } }; /** The default argument formatter. */ template <typename OutputIt, typename Char> class arg_formatter : public arg_formatter_base<OutputIt, Char> { private: using char_type = Char; using base = arg_formatter_base<OutputIt, Char>; using context_type = basic_format_context<OutputIt, Char>; context_type& ctx_; public: using iterator = typename base::iterator; using format_specs = typename base::format_specs; /** \rst Constructs an argument formatter object. *ctx* is a reference to the formatting context, *specs* contains format specifier information for standard argument types. \endrst */ constexpr explicit arg_formatter(context_type& ctx, format_specs* specs = nullptr) : base(ctx.out(), specs, ctx.locale()), ctx_(ctx) {} using base::operator(); iterator operator()(typename basic_format_arg<context_type>::handle) { // User-defined types are handled separately because they require access to // the parse context. return ctx_.out(); } }; template <typename Char> FMT_CONSTEXPR bool is_name_start(Char c) { return ('a' <= c && c <= 'z') || ('A' <= c && c <= 'Z') || '_' == c; } // Parses the range [begin, end) as an unsigned integer. This function assumes // that the range is non-empty and the first character is a digit. template <typename Char, typename ErrorHandler> FMT_CONSTEXPR int parse_nonnegative_int(const Char*& begin, const Char* end, ErrorHandler&& eh) { FMT_ASSERT(begin != end && '0' <= *begin && *begin <= '9', ""); unsigned value = 0; // Convert to unsigned to prevent a warning. constexpr unsigned max_int = max_value<int>(); unsigned big = max_int / 10; do { // Check for overflow. if (value > big) { value = max_int + 1; break; } value = value * 10 + unsigned(*begin - '0'); ++begin; } while (begin != end && '0' <= *begin && *begin <= '9'); if (value > max_int) eh.on_error("number is too big"); return static_cast<int>(value); } template <typename Context> class custom_formatter { private: using char_type = typename Context::char_type; basic_format_parse_context<char_type>& parse_ctx_; Context& ctx_; public: explicit custom_formatter(basic_format_parse_context<char_type>& parse_ctx, Context& ctx) : parse_ctx_(parse_ctx), ctx_(ctx) {} void operator()(typename basic_format_arg<Context>::handle h) const { h.format(parse_ctx_, ctx_); } template <typename T> void operator()(T) const {} }; template <typename T> using is_integer = bool_constant<is_integral<T>::value && !std::is_same<T, bool>::value && !std::is_same<T, char>::value && !std::is_same<T, wchar_t>::value>; template <typename ErrorHandler> class width_checker { public: explicit FMT_CONSTEXPR width_checker(ErrorHandler& eh) : handler_(eh) {} template <typename T, FMT_ENABLE_IF(is_integer<T>::value)> FMT_CONSTEXPR unsigned long long operator()(T value) { if (is_negative(value)) handler_.on_error("negative width"); return static_cast<unsigned long long>(value); } template <typename T, FMT_ENABLE_IF(!is_integer<T>::value)> FMT_CONSTEXPR unsigned long long operator()(T) { handler_.on_error("width is not integer"); return 0; } private: ErrorHandler& handler_; }; template <typename ErrorHandler> class precision_checker { public: explicit FMT_CONSTEXPR precision_checker(ErrorHandler& eh) : handler_(eh) {} template <typename T, FMT_ENABLE_IF(is_integer<T>::value)> FMT_CONSTEXPR unsigned long long operator()(T value) { if (is_negative(value)) handler_.on_error("negative precision"); return static_cast<unsigned long long>(value); } template <typename T, FMT_ENABLE_IF(!is_integer<T>::value)> FMT_CONSTEXPR unsigned long long operator()(T) { handler_.on_error("precision is not integer"); return 0; } private: ErrorHandler& handler_; }; // A format specifier handler that sets fields in basic_format_specs. template <typename Char> class specs_setter { public: explicit FMT_CONSTEXPR specs_setter(basic_format_specs<Char>& specs) : specs_(specs) {} FMT_CONSTEXPR specs_setter(const specs_setter& other) : specs_(other.specs_) {} FMT_CONSTEXPR void on_align(align_t align) { specs_.align = align; } FMT_CONSTEXPR void on_fill(basic_string_view<Char> fill) { specs_.fill = fill; } FMT_CONSTEXPR void on_plus() { specs_.sign = sign::plus; } FMT_CONSTEXPR void on_minus() { specs_.sign = sign::minus; } FMT_CONSTEXPR void on_space() { specs_.sign = sign::space; } FMT_CONSTEXPR void on_hash() { specs_.alt = true; } FMT_CONSTEXPR void on_localized() { specs_.localized = true; } FMT_CONSTEXPR void on_zero() { specs_.align = align::numeric; specs_.fill[0] = Char('0'); } FMT_CONSTEXPR void on_width(int width) { specs_.width = width; } FMT_CONSTEXPR void on_precision(int precision) { specs_.precision = precision; } FMT_CONSTEXPR void end_precision() {} FMT_CONSTEXPR void on_type(Char type) { specs_.type = static_cast<char>(type); } protected: basic_format_specs<Char>& specs_; }; template <typename ErrorHandler> class numeric_specs_checker { public: FMT_CONSTEXPR numeric_specs_checker(ErrorHandler& eh, detail::type arg_type) : error_handler_(eh), arg_type_(arg_type) {} FMT_CONSTEXPR void require_numeric_argument() { if (!is_arithmetic_type(arg_type_)) error_handler_.on_error("format specifier requires numeric argument"); } FMT_CONSTEXPR void check_sign() { require_numeric_argument(); if (is_integral_type(arg_type_) && arg_type_ != type::int_type && arg_type_ != type::long_long_type && arg_type_ != type::char_type) { error_handler_.on_error("format specifier requires signed argument"); } } FMT_CONSTEXPR void check_precision() { if (is_integral_type(arg_type_) || arg_type_ == type::pointer_type) error_handler_.on_error("precision not allowed for this argument type"); } private: ErrorHandler& error_handler_; detail::type arg_type_; }; // A format specifier handler that checks if specifiers are consistent with the // argument type. template <typename Handler> class specs_checker : public Handler { private: numeric_specs_checker<Handler> checker_; // Suppress an MSVC warning about using this in initializer list. FMT_CONSTEXPR Handler& error_handler() { return *this; } public: FMT_CONSTEXPR specs_checker(const Handler& handler, detail::type arg_type) : Handler(handler), checker_(error_handler(), arg_type) {} FMT_CONSTEXPR specs_checker(const specs_checker& other) : Handler(other), checker_(error_handler(), other.arg_type_) {} FMT_CONSTEXPR void on_align(align_t align) { if (align == align::numeric) checker_.require_numeric_argument(); Handler::on_align(align); } FMT_CONSTEXPR void on_plus() { checker_.check_sign(); Handler::on_plus(); } FMT_CONSTEXPR void on_minus() { checker_.check_sign(); Handler::on_minus(); } FMT_CONSTEXPR void on_space() { checker_.check_sign(); Handler::on_space(); } FMT_CONSTEXPR void on_hash() { checker_.require_numeric_argument(); Handler::on_hash(); } FMT_CONSTEXPR void on_localized() { checker_.require_numeric_argument(); Handler::on_localized(); } FMT_CONSTEXPR void on_zero() { checker_.require_numeric_argument(); Handler::on_zero(); } FMT_CONSTEXPR void end_precision() { checker_.check_precision(); } }; template <template <typename> class Handler, typename FormatArg, typename ErrorHandler> FMT_CONSTEXPR int get_dynamic_spec(FormatArg arg, ErrorHandler eh) { unsigned long long value = visit_format_arg(Handler<ErrorHandler>(eh), arg); if (value > to_unsigned(max_value<int>())) eh.on_error("number is too big"); return static_cast<int>(value); } struct auto_id {}; template <typename Context, typename ID> FMT_CONSTEXPR typename Context::format_arg get_arg(Context& ctx, ID id) { auto arg = ctx.arg(id); if (!arg) ctx.on_error("argument not found"); return arg; } // The standard format specifier handler with checking. template <typename ParseContext, typename Context> class specs_handler : public specs_setter<typename Context::char_type> { public: using char_type = typename Context::char_type; FMT_CONSTEXPR specs_handler(basic_format_specs<char_type>& specs, ParseContext& parse_ctx, Context& ctx) : specs_setter<char_type>(specs), parse_context_(parse_ctx), context_(ctx) {} template <typename Id> FMT_CONSTEXPR void on_dynamic_width(Id arg_id) { this->specs_.width = get_dynamic_spec<width_checker>( get_arg(arg_id), context_.error_handler()); } template <typename Id> FMT_CONSTEXPR void on_dynamic_precision(Id arg_id) { this->specs_.precision = get_dynamic_spec<precision_checker>( get_arg(arg_id), context_.error_handler()); } void on_error(const char* message) { context_.on_error(message); } private: // This is only needed for compatibility with gcc 4.4. using format_arg = typename Context::format_arg; FMT_CONSTEXPR format_arg get_arg(auto_id) { return detail::get_arg(context_, parse_context_.next_arg_id()); } FMT_CONSTEXPR format_arg get_arg(int arg_id) { parse_context_.check_arg_id(arg_id); return detail::get_arg(context_, arg_id); } FMT_CONSTEXPR format_arg get_arg(basic_string_view<char_type> arg_id) { parse_context_.check_arg_id(arg_id); return detail::get_arg(context_, arg_id); } ParseContext& parse_context_; Context& context_; }; enum class arg_id_kind { none, index, name }; // An argument reference. template <typename Char> struct arg_ref { FMT_CONSTEXPR arg_ref() : kind(arg_id_kind::none), val() {} FMT_CONSTEXPR explicit arg_ref(int index) : kind(arg_id_kind::index), val(index) {} FMT_CONSTEXPR explicit arg_ref(basic_string_view<Char> name) : kind(arg_id_kind::name), val(name) {} FMT_CONSTEXPR arg_ref& operator=(int idx) { kind = arg_id_kind::index; val.index = idx; return *this; } arg_id_kind kind; union value { FMT_CONSTEXPR value(int id = 0) : index{id} {} FMT_CONSTEXPR value(basic_string_view<Char> n) : name(n) {} int index; basic_string_view<Char> name; } val; }; // Format specifiers with width and precision resolved at formatting rather // than parsing time to allow re-using the same parsed specifiers with // different sets of arguments (precompilation of format strings). template <typename Char> struct dynamic_format_specs : basic_format_specs<Char> { arg_ref<Char> width_ref; arg_ref<Char> precision_ref; }; // Format spec handler that saves references to arguments representing dynamic // width and precision to be resolved at formatting time. template <typename ParseContext> class dynamic_specs_handler : public specs_setter<typename ParseContext::char_type> { public: using char_type = typename ParseContext::char_type; FMT_CONSTEXPR dynamic_specs_handler(dynamic_format_specs<char_type>& specs, ParseContext& ctx) : specs_setter<char_type>(specs), specs_(specs), context_(ctx) {} FMT_CONSTEXPR dynamic_specs_handler(const dynamic_specs_handler& other) : specs_setter<char_type>(other), specs_(other.specs_), context_(other.context_) {} template <typename Id> FMT_CONSTEXPR void on_dynamic_width(Id arg_id) { specs_.width_ref = make_arg_ref(arg_id); } template <typename Id> FMT_CONSTEXPR void on_dynamic_precision(Id arg_id) { specs_.precision_ref = make_arg_ref(arg_id); } FMT_CONSTEXPR void on_error(const char* message) { context_.on_error(message); } private: using arg_ref_type = arg_ref<char_type>; FMT_CONSTEXPR arg_ref_type make_arg_ref(int arg_id) { context_.check_arg_id(arg_id); return arg_ref_type(arg_id); } FMT_CONSTEXPR arg_ref_type make_arg_ref(auto_id) { return arg_ref_type(context_.next_arg_id()); } FMT_CONSTEXPR arg_ref_type make_arg_ref(basic_string_view<char_type> arg_id) { context_.check_arg_id(arg_id); basic_string_view<char_type> format_str( context_.begin(), to_unsigned(context_.end() - context_.begin())); return arg_ref_type(arg_id); } dynamic_format_specs<char_type>& specs_; ParseContext& context_; }; template <typename Char, typename IDHandler> FMT_CONSTEXPR const Char* do_parse_arg_id(const Char* begin, const Char* end, IDHandler&& handler) { FMT_ASSERT(begin != end, ""); Char c = *begin; if (c >= '0' && c <= '9') { int index = 0; if (c != '0') index = parse_nonnegative_int(begin, end, handler); else ++begin; if (begin == end || (*begin != '}' && *begin != ':')) handler.on_error("invalid format string"); else handler(index); return begin; } if (!is_name_start(c)) { handler.on_error("invalid format string"); return begin; } auto it = begin; do { ++it; } while (it != end && (is_name_start(c = *it) || ('0' <= c && c <= '9'))); handler(basic_string_view<Char>(begin, to_unsigned(it - begin))); return it; } template <typename Char, typename IDHandler> FMT_CONSTEXPR_DECL FMT_INLINE const Char* parse_arg_id(const Char* begin, const Char* end, IDHandler&& handler) { Char c = *begin; if (c != '}' && c != ':') return do_parse_arg_id(begin, end, handler); handler(); return begin; } // Adapts SpecHandler to IDHandler API for dynamic width. template <typename SpecHandler, typename Char> struct width_adapter { explicit FMT_CONSTEXPR width_adapter(SpecHandler& h) : handler(h) {} FMT_CONSTEXPR void operator()() { handler.on_dynamic_width(auto_id()); } FMT_CONSTEXPR void operator()(int id) { handler.on_dynamic_width(id); } FMT_CONSTEXPR void operator()(basic_string_view<Char> id) { handler.on_dynamic_width(id); } FMT_CONSTEXPR void on_error(const char* message) { handler.on_error(message); } SpecHandler& handler; }; // Adapts SpecHandler to IDHandler API for dynamic precision. template <typename SpecHandler, typename Char> struct precision_adapter { explicit FMT_CONSTEXPR precision_adapter(SpecHandler& h) : handler(h) {} FMT_CONSTEXPR void operator()() { handler.on_dynamic_precision(auto_id()); } FMT_CONSTEXPR void operator()(int id) { handler.on_dynamic_precision(id); } FMT_CONSTEXPR void operator()(basic_string_view<Char> id) { handler.on_dynamic_precision(id); } FMT_CONSTEXPR void on_error(const char* message) { handler.on_error(message); } SpecHandler& handler; }; template <typename Char> constexpr bool is_ascii_letter(Char c) { return (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z'); } // Converts a character to ASCII. Returns a number > 127 on conversion failure. template <typename Char, FMT_ENABLE_IF(std::is_integral<Char>::value)> constexpr Char to_ascii(Char value) { return value; } template <typename Char, FMT_ENABLE_IF(std::is_enum<Char>::value)> constexpr typename std::underlying_type<Char>::type to_ascii(Char value) { return value; } // Parses fill and alignment. template <typename Char, typename Handler> FMT_CONSTEXPR const Char* parse_align(const Char* begin, const Char* end, Handler&& handler) { FMT_ASSERT(begin != end, ""); auto align = align::none; auto p = begin + code_point_length(begin); if (p >= end) p = begin; for (;;) { switch (to_ascii(*p)) { case '<': align = align::left; break; case '>': align = align::right; break; #if FMT_DEPRECATED_NUMERIC_ALIGN case '=': align = align::numeric; break; #endif case '^': align = align::center; break; } if (align != align::none) { if (p != begin) { auto c = *begin; if (c == '{') return handler.on_error("invalid fill character '{'"), begin; handler.on_fill(basic_string_view<Char>(begin, to_unsigned(p - begin))); begin = p + 1; } else ++begin; handler.on_align(align); break; } else if (p == begin) { break; } p = begin; } return begin; } template <typename Char, typename Handler> FMT_CONSTEXPR const Char* parse_width(const Char* begin, const Char* end, Handler&& handler) { FMT_ASSERT(begin != end, ""); if ('0' <= *begin && *begin <= '9') { handler.on_width(parse_nonnegative_int(begin, end, handler)); } else if (*begin == '{') { ++begin; if (begin != end) begin = parse_arg_id(begin, end, width_adapter<Handler, Char>(handler)); if (begin == end || *begin != '}') return handler.on_error("invalid format string"), begin; ++begin; } return begin; } template <typename Char, typename Handler> FMT_CONSTEXPR const Char* parse_precision(const Char* begin, const Char* end, Handler&& handler) { ++begin; auto c = begin != end ? *begin : Char(); if ('0' <= c && c <= '9') { handler.on_precision(parse_nonnegative_int(begin, end, handler)); } else if (c == '{') { ++begin; if (begin != end) { begin = parse_arg_id(begin, end, precision_adapter<Handler, Char>(handler)); } if (begin == end || *begin++ != '}') return handler.on_error("invalid format string"), begin; } else { return handler.on_error("missing precision specifier"), begin; } handler.end_precision(); return begin; } // Parses standard format specifiers and sends notifications about parsed // components to handler. template <typename Char, typename SpecHandler> FMT_CONSTEXPR_DECL FMT_INLINE const Char* parse_format_specs( const Char* begin, const Char* end, SpecHandler&& handler) { if (begin + 1 < end && begin[1] == '}' && is_ascii_letter(*begin) && *begin != 'L') { handler.on_type(*begin++); return begin; } if (begin == end) return begin; begin = parse_align(begin, end, handler); if (begin == end) return begin; // Parse sign. switch (to_ascii(*begin)) { case '+': handler.on_plus(); ++begin; break; case '-': handler.on_minus(); ++begin; break; case ' ': handler.on_space(); ++begin; break; } if (begin == end) return begin; if (*begin == '#') { handler.on_hash(); if (++begin == end) return begin; } // Parse zero flag. if (*begin == '0') { handler.on_zero(); if (++begin == end) return begin; } begin = parse_width(begin, end, handler); if (begin == end) return begin; // Parse precision. if (*begin == '.') { begin = parse_precision(begin, end, handler); if (begin == end) return begin; } if (*begin == 'L') { handler.on_localized(); ++begin; } // Parse type. if (begin != end && *begin != '}') handler.on_type(*begin++); return begin; } // Return the result via the out param to workaround gcc bug 77539. template <bool IS_CONSTEXPR, typename T, typename Ptr = const T*> FMT_CONSTEXPR bool find(Ptr first, Ptr last, T value, Ptr& out) { for (out = first; out != last; ++out) { if (*out == value) return true; } return false; } template <> inline bool find<false, char>(const char* first, const char* last, char value, const char*& out) { out = static_cast<const char*>( std::memchr(first, value, detail::to_unsigned(last - first))); return out != nullptr; } template <typename Handler, typename Char> struct id_adapter { Handler& handler; int arg_id; FMT_CONSTEXPR void operator()() { arg_id = handler.on_arg_id(); } FMT_CONSTEXPR void operator()(int id) { arg_id = handler.on_arg_id(id); } FMT_CONSTEXPR void operator()(basic_string_view<Char> id) { arg_id = handler.on_arg_id(id); } FMT_CONSTEXPR void on_error(const char* message) { handler.on_error(message); } }; template <typename Char, typename Handler> FMT_CONSTEXPR const Char* parse_replacement_field(const Char* begin, const Char* end, Handler&& handler) { ++begin; if (begin == end) return handler.on_error("invalid format string"), end; if (*begin == '}') { handler.on_replacement_field(handler.on_arg_id(), begin); } else if (*begin == '{') { handler.on_text(begin, begin + 1); } else { auto adapter = id_adapter<Handler, Char>{handler, 0}; begin = parse_arg_id(begin, end, adapter); Char c = begin != end ? *begin : Char(); if (c == '}') { handler.on_replacement_field(adapter.arg_id, begin); } else if (c == ':') { begin = handler.on_format_specs(adapter.arg_id, begin + 1, end); if (begin == end || *begin != '}') return handler.on_error("unknown format specifier"), end; } else { return handler.on_error("missing '}' in format string"), end; } } return begin + 1; } template <bool IS_CONSTEXPR, typename Char, typename Handler> FMT_CONSTEXPR_DECL FMT_INLINE void parse_format_string( basic_string_view<Char> format_str, Handler&& handler) { auto begin = format_str.data(); auto end = begin + format_str.size(); if (end - begin < 32) { // Use a simple loop instead of memchr for small strings. const Char* p = begin; while (p != end) { auto c = *p++; if (c == '{') { handler.on_text(begin, p - 1); begin = p = parse_replacement_field(p - 1, end, handler); } else if (c == '}') { if (p == end || *p != '}') return handler.on_error("unmatched '}' in format string"); handler.on_text(begin, p); begin = ++p; } } handler.on_text(begin, end); return; } struct writer { FMT_CONSTEXPR void operator()(const Char* pbegin, const Char* pend) { if (pbegin == pend) return; for (;;) { const Char* p = nullptr; if (!find<IS_CONSTEXPR>(pbegin, pend, '}', p)) return handler_.on_text(pbegin, pend); ++p; if (p == pend || *p != '}') return handler_.on_error("unmatched '}' in format string"); handler_.on_text(pbegin, p); pbegin = p + 1; } } Handler& handler_; } write{handler}; while (begin != end) { // Doing two passes with memchr (one for '{' and another for '}') is up to // 2.5x faster than the naive one-pass implementation on big format strings. const Char* p = begin; if (*begin != '{' && !find<IS_CONSTEXPR>(begin + 1, end, '{', p)) return write(begin, end); write(begin, p); begin = parse_replacement_field(p, end, handler); } } template <typename T, typename ParseContext> FMT_CONSTEXPR const typename ParseContext::char_type* parse_format_specs( ParseContext& ctx) { using char_type = typename ParseContext::char_type; using context = buffer_context<char_type>; using mapped_type = conditional_t< detail::mapped_type_constant<T, context>::value != type::custom_type, decltype(arg_mapper<context>().map(std::declval<const T&>())), T>; auto f = conditional_t<has_formatter<mapped_type, context>::value, formatter<mapped_type, char_type>, detail::fallback_formatter<T, char_type>>(); return f.parse(ctx); } template <typename OutputIt, typename Char, typename Context> struct format_handler : detail::error_handler { basic_format_parse_context<Char> parse_context; Context context; format_handler(OutputIt out, basic_string_view<Char> str, basic_format_args<Context> format_args, detail::locale_ref loc) : parse_context(str), context(out, format_args, loc) {} void on_text(const Char* begin, const Char* end) { auto text = basic_string_view<Char>(begin, to_unsigned(end - begin)); context.advance_to(write<Char>(context.out(), text)); } int on_arg_id() { return parse_context.next_arg_id(); } int on_arg_id(int id) { return parse_context.check_arg_id(id), id; } int on_arg_id(basic_string_view<Char> id) { int arg_id = context.arg_id(id); if (arg_id < 0) on_error("argument not found"); return arg_id; } FMT_INLINE void on_replacement_field(int id, const Char*) { auto arg = get_arg(context, id); context.advance_to(visit_format_arg( default_arg_formatter<OutputIt, Char>{context.out(), context.args(), context.locale()}, arg)); } const Char* on_format_specs(int id, const Char* begin, const Char* end) { auto arg = get_arg(context, id); if (arg.type() == type::custom_type) { advance_to(parse_context, begin); visit_format_arg(custom_formatter<Context>(parse_context, context), arg); return parse_context.begin(); } auto specs = basic_format_specs<Char>(); using parse_context_t = basic_format_parse_context<Char>; specs_checker<specs_handler<parse_context_t, Context>> handler( specs_handler<parse_context_t, Context>(specs, parse_context, context), arg.type()); begin = parse_format_specs(begin, end, handler); if (begin == end || *begin != '}') on_error("missing '}' in format string"); context.advance_to( visit_format_arg(arg_formatter<OutputIt, Char>(context, &specs), arg)); return begin; } }; // A parse context with extra argument id checks. It is only used at compile // time because adding checks at runtime would introduce substantial overhead // and would be redundant since argument ids are checked when arguments are // retrieved anyway. template <typename Char, typename ErrorHandler = error_handler> class compile_parse_context : public basic_format_parse_context<Char, ErrorHandler> { private: int num_args_; using base = basic_format_parse_context<Char, ErrorHandler>; public: explicit FMT_CONSTEXPR compile_parse_context( basic_string_view<Char> format_str, int num_args = max_value<int>(), ErrorHandler eh = {}) : base(format_str, eh), num_args_(num_args) {} FMT_CONSTEXPR int next_arg_id() { int id = base::next_arg_id(); if (id >= num_args_) this->on_error("argument not found"); return id; } FMT_CONSTEXPR void check_arg_id(int id) { base::check_arg_id(id); if (id >= num_args_) this->on_error("argument not found"); } using base::check_arg_id; }; template <typename Char, typename ErrorHandler, typename... Args> class format_string_checker { public: explicit FMT_CONSTEXPR format_string_checker( basic_string_view<Char> format_str, ErrorHandler eh) : context_(format_str, num_args, eh), parse_funcs_{&parse_format_specs<Args, parse_context_type>...} {} FMT_CONSTEXPR void on_text(const Char*, const Char*) {} FMT_CONSTEXPR int on_arg_id() { return context_.next_arg_id(); } FMT_CONSTEXPR int on_arg_id(int id) { return context_.check_arg_id(id), id; } FMT_CONSTEXPR int on_arg_id(basic_string_view<Char>) { on_error("compile-time checks don't support named arguments"); return 0; } FMT_CONSTEXPR void on_replacement_field(int, const Char*) {} FMT_CONSTEXPR const Char* on_format_specs(int id, const Char* begin, const Char*) { advance_to(context_, begin); // id >= 0 check is a workaround for gcc 10 bug (#2065). return id >= 0 && id < num_args ? parse_funcs_[id](context_) : begin; } FMT_CONSTEXPR void on_error(const char* message) { context_.on_error(message); } private: using parse_context_type = compile_parse_context<Char, ErrorHandler>; enum { num_args = sizeof...(Args) }; // Format specifier parsing function. using parse_func = const Char* (*)(parse_context_type&); parse_context_type context_; parse_func parse_funcs_[num_args > 0 ? num_args : 1]; }; // Converts string literals to basic_string_view. template <typename Char, size_t N> FMT_CONSTEXPR basic_string_view<Char> compile_string_to_view( const Char (&s)[N]) { // Remove trailing null character if needed. Won't be present if this is used // with raw character array (i.e. not defined as a string). return {s, N - ((std::char_traits<Char>::to_int_type(s[N - 1]) == 0) ? 1 : 0)}; } // Converts string_view to basic_string_view. template <typename Char> FMT_CONSTEXPR basic_string_view<Char> compile_string_to_view( const std_string_view<Char>& s) { return {s.data(), s.size()}; } #define FMT_STRING_IMPL(s, base) \ [] { \ /* Use the hidden visibility as a workaround for a GCC bug (#1973). */ \ /* Use a macro-like name to avoid shadowing warnings. */ \ struct FMT_GCC_VISIBILITY_HIDDEN FMT_COMPILE_STRING : base { \ using char_type = fmt::remove_cvref_t<decltype(s[0])>; \ FMT_MAYBE_UNUSED FMT_CONSTEXPR \ operator fmt::basic_string_view<char_type>() const { \ return fmt::detail::compile_string_to_view<char_type>(s); \ } \ }; \ return FMT_COMPILE_STRING(); \ }() /** \rst Constructs a compile-time format string from a string literal *s*. **Example**:: // A compile-time error because 'd' is an invalid specifier for strings. std::string s = fmt::format(FMT_STRING("{:d}"), "foo"); \endrst */ #define FMT_STRING(s) FMT_STRING_IMPL(s, fmt::compile_string) template <typename... Args, typename S, enable_if_t<(is_compile_string<S>::value), int>> void check_format_string(S format_str) { FMT_CONSTEXPR_DECL auto s = to_string_view(format_str); using checker = format_string_checker<typename S::char_type, error_handler, remove_cvref_t<Args>...>; FMT_CONSTEXPR_DECL bool invalid_format = (parse_format_string<true>(s, checker(s, {})), true); (void)invalid_format; } template <template <typename> class Handler, typename Context> FMT_CONSTEXPR void handle_dynamic_spec(int& value, arg_ref<typename Context::char_type> ref, Context& ctx) { switch (ref.kind) { case arg_id_kind::none: break; case arg_id_kind::index: value = detail::get_dynamic_spec<Handler>(ctx.arg(ref.val.index), ctx.error_handler()); break; case arg_id_kind::name: value = detail::get_dynamic_spec<Handler>(ctx.arg(ref.val.name), ctx.error_handler()); break; } } using format_func = void (*)(detail::buffer<char>&, int, string_view); FMT_API void format_error_code(buffer<char>& out, int error_code, string_view message) FMT_NOEXCEPT; FMT_API void report_error(format_func func, int error_code, string_view message) FMT_NOEXCEPT; } // namespace detail template <typename OutputIt, typename Char> using arg_formatter FMT_DEPRECATED_ALIAS = detail::arg_formatter<OutputIt, Char>; /** An error returned by an operating system or a language runtime, for example a file opening error. */ FMT_CLASS_API class FMT_API system_error : public std::runtime_error { private: void init(int err_code, string_view format_str, format_args args); protected: int error_code_; system_error() : std::runtime_error(""), error_code_(0) {} public: /** \rst Constructs a :class:`fmt::system_error` object with a description formatted with `fmt::format_system_error`. *message* and additional arguments passed into the constructor are formatted similarly to `fmt::format`. **Example**:: // This throws a system_error with the description // cannot open file 'madeup': No such file or directory // or similar (system message may vary). const char *filename = "madeup"; std::FILE *file = std::fopen(filename, "r"); if (!file) throw fmt::system_error(errno, "cannot open file '{}'", filename); \endrst */ template <typename... Args> system_error(int error_code, string_view message, const Args&... args) : std::runtime_error("") { init(error_code, message, make_format_args(args...)); } system_error(const system_error&) = default; system_error& operator=(const system_error&) = default; system_error(system_error&&) = default; system_error& operator=(system_error&&) = default; ~system_error() FMT_NOEXCEPT FMT_OVERRIDE; int error_code() const { return error_code_; } }; /** \rst Formats an error returned by an operating system or a language runtime, for example a file opening error, and writes it to *out* in the following form: .. parsed-literal:: *<message>*: *<system-message>* where *<message>* is the passed message and *<system-message>* is the system message corresponding to the error code. *error_code* is a system error code as given by ``errno``. If *error_code* is not a valid error code such as -1, the system message may look like "Unknown error -1" and is platform-dependent. \endrst */ FMT_API void format_system_error(detail::buffer<char>& out, int error_code, string_view message) FMT_NOEXCEPT; // Reports a system error without throwing an exception. // Can be used to report errors from destructors. FMT_API void report_system_error(int error_code, string_view message) FMT_NOEXCEPT; /** Fast integer formatter. */ class format_int { private: // Buffer should be large enough to hold all digits (digits10 + 1), // a sign and a null character. enum { buffer_size = std::numeric_limits<unsigned long long>::digits10 + 3 }; mutable char buffer_[buffer_size]; char* str_; template <typename UInt> char* format_unsigned(UInt value) { auto n = static_cast<detail::uint32_or_64_or_128_t<UInt>>(value); return detail::format_decimal(buffer_, n, buffer_size - 1).begin; } template <typename Int> char* format_signed(Int value) { auto abs_value = static_cast<detail::uint32_or_64_or_128_t<Int>>(value); bool negative = value < 0; if (negative) abs_value = 0 - abs_value; auto begin = format_unsigned(abs_value); if (negative) *--begin = '-'; return begin; } public: explicit format_int(int value) : str_(format_signed(value)) {} explicit format_int(long value) : str_(format_signed(value)) {} explicit format_int(long long value) : str_(format_signed(value)) {} explicit format_int(unsigned value) : str_(format_unsigned(value)) {} explicit format_int(unsigned long value) : str_(format_unsigned(value)) {} explicit format_int(unsigned long long value) : str_(format_unsigned(value)) {} /** Returns the number of characters written to the output buffer. */ size_t size() const { return detail::to_unsigned(buffer_ - str_ + buffer_size - 1); } /** Returns a pointer to the output buffer content. No terminating null character is appended. */ const char* data() const { return str_; } /** Returns a pointer to the output buffer content with terminating null character appended. */ const char* c_str() const { buffer_[buffer_size - 1] = '\0'; return str_; } /** \rst Returns the content of the output buffer as an ``std::string``. \endrst */ std::string str() const { return std::string(str_, size()); } }; // A formatter specialization for the core types corresponding to detail::type // constants. template <typename T, typename Char> struct formatter<T, Char, enable_if_t<detail::type_constant<T, Char>::value != detail::type::custom_type>> { FMT_CONSTEXPR formatter() = default; // Parses format specifiers stopping either at the end of the range or at the // terminating '}'. template <typename ParseContext> FMT_CONSTEXPR auto parse(ParseContext& ctx) -> decltype(ctx.begin()) { using handler_type = detail::dynamic_specs_handler<ParseContext>; auto type = detail::type_constant<T, Char>::value; detail::specs_checker<handler_type> handler(handler_type(specs_, ctx), type); auto it = parse_format_specs(ctx.begin(), ctx.end(), handler); auto eh = ctx.error_handler(); switch (type) { case detail::type::none_type: FMT_ASSERT(false, "invalid argument type"); break; case detail::type::int_type: case detail::type::uint_type: case detail::type::long_long_type: case detail::type::ulong_long_type: case detail::type::int128_type: case detail::type::uint128_type: handle_int_type_spec(specs_.type, detail::int_type_checker<decltype(eh)>(eh)); break; case detail::type::bool_type: handle_bool_type_spec( &specs_, detail::bool_type_checker<decltype(eh)>(specs_.type, eh)); break; case detail::type::char_type: handle_char_specs( &specs_, detail::char_specs_checker<decltype(eh)>(specs_.type, eh)); break; case detail::type::float_type: if (detail::const_check(FMT_USE_FLOAT)) detail::parse_float_type_spec(specs_, eh); else FMT_ASSERT(false, "float support disabled"); break; case detail::type::double_type: if (detail::const_check(FMT_USE_DOUBLE)) detail::parse_float_type_spec(specs_, eh); else FMT_ASSERT(false, "double support disabled"); break; case detail::type::long_double_type: if (detail::const_check(FMT_USE_LONG_DOUBLE)) detail::parse_float_type_spec(specs_, eh); else FMT_ASSERT(false, "long double support disabled"); break; case detail::type::cstring_type: detail::handle_cstring_type_spec( specs_.type, detail::cstring_type_checker<decltype(eh)>(eh)); break; case detail::type::string_type: detail::check_string_type_spec(specs_.type, eh); break; case detail::type::pointer_type: detail::check_pointer_type_spec(specs_.type, eh); break; case detail::type::custom_type: // Custom format specifiers should be checked in parse functions of // formatter specializations. break; } return it; } template <typename FormatContext> FMT_CONSTEXPR auto format(const T& val, FormatContext& ctx) const -> decltype(ctx.out()) { auto specs = specs_; detail::handle_dynamic_spec<detail::width_checker>(specs.width, specs.width_ref, ctx); detail::handle_dynamic_spec<detail::precision_checker>( specs.precision, specs.precision_ref, ctx); using af = detail::arg_formatter<typename FormatContext::iterator, typename FormatContext::char_type>; return visit_format_arg(af(ctx, &specs), detail::make_arg<FormatContext>(val)); } private: detail::dynamic_format_specs<Char> specs_; }; #define FMT_FORMAT_AS(Type, Base) \ template <typename Char> \ struct formatter<Type, Char> : formatter<Base, Char> { \ template <typename FormatContext> \ auto format(Type const& val, FormatContext& ctx) const \ -> decltype(ctx.out()) { \ return formatter<Base, Char>::format(static_cast<Base>(val), ctx); \ } \ } FMT_FORMAT_AS(signed char, int); FMT_FORMAT_AS(unsigned char, unsigned); FMT_FORMAT_AS(short, int); FMT_FORMAT_AS(unsigned short, unsigned); FMT_FORMAT_AS(long, long long); FMT_FORMAT_AS(unsigned long, unsigned long long); FMT_FORMAT_AS(Char*, const Char*); FMT_FORMAT_AS(std::basic_string<Char>, basic_string_view<Char>); FMT_FORMAT_AS(std::nullptr_t, const void*); FMT_FORMAT_AS(detail::std_string_view<Char>, basic_string_view<Char>); #ifdef __cpp_lib_byte FMT_FORMAT_AS(std::byte, unsigned); #endif template <typename Char> struct formatter<void*, Char> : formatter<const void*, Char> { template <typename FormatContext> auto format(void* val, FormatContext& ctx) const -> decltype(ctx.out()) { return formatter<const void*, Char>::format(val, ctx); } }; template <typename Char, size_t N> struct formatter<Char[N], Char> : formatter<basic_string_view<Char>, Char> { template <typename FormatContext> FMT_CONSTEXPR auto format(const Char* val, FormatContext& ctx) const -> decltype(ctx.out()) { return formatter<basic_string_view<Char>, Char>::format(val, ctx); } }; // A formatter for types known only at run time such as variant alternatives. // // Usage: // using variant = std::variant<int, std::string>; // template <> // struct formatter<variant>: dynamic_formatter<> { // auto format(const variant& v, format_context& ctx) { // return visit([&](const auto& val) { // return dynamic_formatter<>::format(val, ctx); // }, v); // } // }; template <typename Char = char> class dynamic_formatter { private: struct null_handler : detail::error_handler { void on_align(align_t) {} void on_plus() {} void on_minus() {} void on_space() {} void on_hash() {} }; public: template <typename ParseContext> FMT_CONSTEXPR auto parse(ParseContext& ctx) -> decltype(ctx.begin()) { format_str_ = ctx.begin(); // Checks are deferred to formatting time when the argument type is known. detail::dynamic_specs_handler<ParseContext> handler(specs_, ctx); return parse_format_specs(ctx.begin(), ctx.end(), handler); } template <typename T, typename FormatContext> auto format(const T& val, FormatContext& ctx) -> decltype(ctx.out()) { handle_specs(ctx); detail::specs_checker<null_handler> checker( null_handler(), detail::mapped_type_constant<T, FormatContext>::value); checker.on_align(specs_.align); switch (specs_.sign) { case sign::none: break; case sign::plus: checker.on_plus(); break; case sign::minus: checker.on_minus(); break; case sign::space: checker.on_space(); break; } if (specs_.alt) checker.on_hash(); if (specs_.precision >= 0) checker.end_precision(); using af = detail::arg_formatter<typename FormatContext::iterator, typename FormatContext::char_type>; visit_format_arg(af(ctx, &specs_), detail::make_arg<FormatContext>(val)); return ctx.out(); } private: template <typename Context> void handle_specs(Context& ctx) { detail::handle_dynamic_spec<detail::width_checker>(specs_.width, specs_.width_ref, ctx); detail::handle_dynamic_spec<detail::precision_checker>( specs_.precision, specs_.precision_ref, ctx); } detail::dynamic_format_specs<Char> specs_; const Char* format_str_; }; template <typename Char, typename ErrorHandler> FMT_CONSTEXPR void advance_to( basic_format_parse_context<Char, ErrorHandler>& ctx, const Char* p) { ctx.advance_to(ctx.begin() + (p - &*ctx.begin())); } /** \rst Converts ``p`` to ``const void*`` for pointer formatting. **Example**:: auto s = fmt::format("{}", fmt::ptr(p)); \endrst */ template <typename T> const void* ptr(T p) { static_assert(std::is_pointer<T>::value, ""); return detail::bit_cast<const void*>(p); } template <typename T> const void* ptr(const std::unique_ptr<T>& p) { return p.get(); } template <typename T> const void* ptr(const std::shared_ptr<T>& p) { return p.get(); } class bytes { private: string_view data_; friend struct formatter<bytes>; public: explicit bytes(string_view data) : data_(data) {} }; template <> struct formatter<bytes> { private: detail::dynamic_format_specs<char> specs_; public: template <typename ParseContext> FMT_CONSTEXPR auto parse(ParseContext& ctx) -> decltype(ctx.begin()) { using handler_type = detail::dynamic_specs_handler<ParseContext>; detail::specs_checker<handler_type> handler(handler_type(specs_, ctx), detail::type::string_type); auto it = parse_format_specs(ctx.begin(), ctx.end(), handler); detail::check_string_type_spec(specs_.type, ctx.error_handler()); return it; } template <typename FormatContext> auto format(bytes b, FormatContext& ctx) -> decltype(ctx.out()) { detail::handle_dynamic_spec<detail::width_checker>(specs_.width, specs_.width_ref, ctx); detail::handle_dynamic_spec<detail::precision_checker>( specs_.precision, specs_.precision_ref, ctx); return detail::write_bytes(ctx.out(), b.data_, specs_); } }; template <typename It, typename Sentinel, typename Char> struct arg_join : detail::view { It begin; Sentinel end; basic_string_view<Char> sep; arg_join(It b, Sentinel e, basic_string_view<Char> s) : begin(b), end(e), sep(s) {} }; template <typename It, typename Sentinel, typename Char> struct formatter<arg_join<It, Sentinel, Char>, Char> { private: using value_type = typename std::iterator_traits<It>::value_type; using formatter_type = conditional_t<has_formatter<value_type, format_context>::value, formatter<value_type, Char>, detail::fallback_formatter<value_type, Char>>; formatter_type value_formatter_; public: template <typename ParseContext> FMT_CONSTEXPR auto parse(ParseContext& ctx) -> decltype(ctx.begin()) { return value_formatter_.parse(ctx); } template <typename FormatContext> auto format(const arg_join<It, Sentinel, Char>& value, FormatContext& ctx) -> decltype(ctx.out()) { auto it = value.begin; auto out = ctx.out(); if (it != value.end) { out = value_formatter_.format(*it++, ctx); while (it != value.end) { out = detail::copy_str<Char>(value.sep.begin(), value.sep.end(), out); ctx.advance_to(out); out = value_formatter_.format(*it++, ctx); } } return out; } }; /** Returns an object that formats the iterator range `[begin, end)` with elements separated by `sep`. */ template <typename It, typename Sentinel> arg_join<It, Sentinel, char> join(It begin, Sentinel end, string_view sep) { return {begin, end, sep}; } template <typename It, typename Sentinel> arg_join<It, Sentinel, wchar_t> join(It begin, Sentinel end, wstring_view sep) { return {begin, end, sep}; } /** \rst Returns an object that formats `range` with elements separated by `sep`. **Example**:: std::vector<int> v = {1, 2, 3}; fmt::print("{}", fmt::join(v, ", ")); // Output: "1, 2, 3" ``fmt::join`` applies passed format specifiers to the range elements:: fmt::print("{:02}", fmt::join(v, ", ")); // Output: "01, 02, 03" \endrst */ template <typename Range> arg_join<detail::iterator_t<Range>, detail::sentinel_t<Range>, char> join( Range&& range, string_view sep) { return join(std::begin(range), std::end(range), sep); } template <typename Range> arg_join<detail::iterator_t<Range>, detail::sentinel_t<Range>, wchar_t> join( Range&& range, wstring_view sep) { return join(std::begin(range), std::end(range), sep); } /** \rst Converts *value* to ``std::string`` using the default format for type *T*. **Example**:: #include <fmt/format.h> std::string answer = fmt::to_string(42); \endrst */ template <typename T, FMT_ENABLE_IF(!std::is_integral<T>::value)> inline std::string to_string(const T& value) { std::string result; detail::write<char>(std::back_inserter(result), value); return result; } template <typename T, FMT_ENABLE_IF(std::is_integral<T>::value)> inline std::string to_string(T value) { // The buffer should be large enough to store the number including the sign or // "false" for bool. constexpr int max_size = detail::digits10<T>() + 2; char buffer[max_size > 5 ? static_cast<unsigned>(max_size) : 5]; char* begin = buffer; return std::string(begin, detail::write<char>(begin, value)); } /** Converts *value* to ``std::wstring`` using the default format for type *T*. */ template <typename T> inline std::wstring to_wstring(const T& value) { return format(FMT_STRING(L"{}"), value); } template <typename Char, size_t SIZE> std::basic_string<Char> to_string(const basic_memory_buffer<Char, SIZE>& buf) { auto size = buf.size(); detail::assume(size < std::basic_string<Char>().max_size()); return std::basic_string<Char>(buf.data(), size); } template <typename Char> void detail::vformat_to( detail::buffer<Char>& buf, basic_string_view<Char> format_str, basic_format_args<buffer_context<type_identity_t<Char>>> args, detail::locale_ref loc) { using iterator = typename buffer_context<Char>::iterator; auto out = buffer_appender<Char>(buf); if (format_str.size() == 2 && equal2(format_str.data(), "{}")) { auto arg = args.get(0); if (!arg) error_handler().on_error("argument not found"); visit_format_arg(default_arg_formatter<iterator, Char>{out, args, loc}, arg); return; } format_handler<iterator, Char, buffer_context<Char>> h(out, format_str, args, loc); parse_format_string<false>(format_str, h); } #ifndef FMT_HEADER_ONLY extern template void detail::vformat_to(detail::buffer<char>&, string_view, basic_format_args<format_context>, detail::locale_ref); namespace detail { extern template FMT_API std::string grouping_impl<char>(locale_ref loc); extern template FMT_API std::string grouping_impl<wchar_t>(locale_ref loc); extern template FMT_API char thousands_sep_impl<char>(locale_ref loc); extern template FMT_API wchar_t thousands_sep_impl<wchar_t>(locale_ref loc); extern template FMT_API char decimal_point_impl(locale_ref loc); extern template FMT_API wchar_t decimal_point_impl(locale_ref loc); extern template int format_float<double>(double value, int precision, float_specs specs, buffer<char>& buf); extern template int format_float<long double>(long double value, int precision, float_specs specs, buffer<char>& buf); int snprintf_float(float value, int precision, float_specs specs, buffer<char>& buf) = delete; extern template int snprintf_float<double>(double value, int precision, float_specs specs, buffer<char>& buf); extern template int snprintf_float<long double>(long double value, int precision, float_specs specs, buffer<char>& buf); } // namespace detail #endif template <typename S, typename Char = char_t<S>, FMT_ENABLE_IF(detail::is_string<S>::value)> inline void vformat_to( detail::buffer<Char>& buf, const S& format_str, basic_format_args<FMT_BUFFER_CONTEXT(type_identity_t<Char>)> args) { return detail::vformat_to(buf, to_string_view(format_str), args); } template <typename S, typename... Args, size_t SIZE = inline_buffer_size, typename Char = enable_if_t<detail::is_string<S>::value, char_t<S>>> inline typename buffer_context<Char>::iterator format_to( basic_memory_buffer<Char, SIZE>& buf, const S& format_str, Args&&... args) { const auto& vargs = fmt::make_args_checked<Args...>(format_str, args...); detail::vformat_to(buf, to_string_view(format_str), vargs); return detail::buffer_appender<Char>(buf); } template <typename OutputIt, typename Char = char> using format_context_t = basic_format_context<OutputIt, Char>; template <typename OutputIt, typename Char = char> using format_args_t = basic_format_args<format_context_t<OutputIt, Char>>; template <typename OutputIt, typename Char = typename OutputIt::value_type> using format_to_n_context FMT_DEPRECATED_ALIAS = buffer_context<Char>; template <typename OutputIt, typename Char = typename OutputIt::value_type> using format_to_n_args FMT_DEPRECATED_ALIAS = basic_format_args<buffer_context<Char>>; template <typename OutputIt, typename Char, typename... Args> FMT_DEPRECATED format_arg_store<buffer_context<Char>, Args...> make_format_to_n_args(const Args&... args) { return format_arg_store<buffer_context<Char>, Args...>(args...); } #if FMT_COMPILE_TIME_CHECKS template <typename... Args> struct format_string { string_view str; template <size_t N> consteval format_string(const char (&s)[N]) : str(s) { if constexpr (detail::count_named_args<Args...>() == 0) { using checker = detail::format_string_checker<char, detail::error_handler, remove_cvref_t<Args>...>; detail::parse_format_string<true>(string_view(s, N), checker(s, {})); } } template <typename T, FMT_ENABLE_IF(std::is_constructible_v<string_view, const T&>)> format_string(const T& s) : str(s) {} }; template <typename... Args> FMT_INLINE std::string format( format_string<std::type_identity_t<Args>...> format_str, Args&&... args) { return detail::vformat(format_str.str, make_format_args(args...)); } #endif template <typename Char, enable_if_t<(!std::is_same<Char, char>::value), int>> std::basic_string<Char> detail::vformat( basic_string_view<Char> format_str, basic_format_args<buffer_context<type_identity_t<Char>>> args) { basic_memory_buffer<Char> buffer; detail::vformat_to(buffer, format_str, args); return to_string(buffer); } template <typename Char, FMT_ENABLE_IF(std::is_same<Char, wchar_t>::value)> void vprint(std::FILE* f, basic_string_view<Char> format_str, wformat_args args) { wmemory_buffer buffer; detail::vformat_to(buffer, format_str, args); buffer.push_back(L'\0'); if (std::fputws(buffer.data(), f) == -1) FMT_THROW(system_error(errno, "cannot write to file")); } template <typename Char, FMT_ENABLE_IF(std::is_same<Char, wchar_t>::value)> void vprint(basic_string_view<Char> format_str, wformat_args args) { vprint(stdout, format_str, args); } #if FMT_USE_USER_DEFINED_LITERALS namespace detail { # if FMT_USE_UDL_TEMPLATE template <typename Char, Char... CHARS> class udl_formatter { public: template <typename... Args> std::basic_string<Char> operator()(Args&&... args) const { static FMT_CONSTEXPR_DECL Char s[] = {CHARS..., '\0'}; return format(FMT_STRING(s), std::forward<Args>(args)...); } }; # else template <typename Char> struct udl_formatter { basic_string_view<Char> str; template <typename... Args> std::basic_string<Char> operator()(Args&&... args) const { return format(str, std::forward<Args>(args)...); } }; # endif // FMT_USE_UDL_TEMPLATE template <typename Char> struct udl_arg { const Char* str; template <typename T> named_arg<Char, T> operator=(T&& value) const { return {str, std::forward<T>(value)}; } }; } // namespace detail inline namespace literals { # if FMT_USE_UDL_TEMPLATE # pragma GCC diagnostic push # pragma GCC diagnostic ignored "-Wpedantic" # if FMT_CLANG_VERSION # pragma GCC diagnostic ignored "-Wgnu-string-literal-operator-template" # endif template <typename Char, Char... CHARS> FMT_CONSTEXPR detail::udl_formatter<Char, CHARS...> operator""_format() { return {}; } # pragma GCC diagnostic pop # else /** \rst User-defined literal equivalent of :func:`fmt::format`. **Example**:: using namespace fmt::literals; std::string message = "The answer is {}"_format(42); \endrst */ FMT_CONSTEXPR inline detail::udl_formatter<char> operator"" _format( const char* s, size_t n) { return {{s, n}}; } FMT_CONSTEXPR inline detail::udl_formatter<wchar_t> operator"" _format( const wchar_t* s, size_t n) { return {{s, n}}; } # endif // FMT_USE_UDL_TEMPLATE /** \rst User-defined literal equivalent of :func:`fmt::arg`. **Example**:: using namespace fmt::literals; fmt::print("Elapsed time: {s:.2f} seconds", "s"_a=1.23); \endrst */ FMT_CONSTEXPR inline detail::udl_arg<char> operator"" _a(const char* s, size_t) { return {s}; } FMT_CONSTEXPR inline detail::udl_arg<wchar_t> operator"" _a(const wchar_t* s, size_t) { return {s}; } } // namespace literals #endif // FMT_USE_USER_DEFINED_LITERALS FMT_END_NAMESPACE #ifdef FMT_HEADER_ONLY # define FMT_FUNC inline // Formatting library for C++ - implementation // // Copyright (c) 2012 - 2016, Victor Zverovich // All rights reserved. // // For the license information refer to format.h. #ifndef FMT_FORMAT_INL_H_ #define FMT_FORMAT_INL_H_ #include <algorithm> #include <cctype> #include <climits> #include <cmath> #include <cstdarg> #include <cstring> // std::memmove #include <cwchar> #include <exception> #ifndef FMT_STATIC_THOUSANDS_SEPARATOR # include <locale> #endif #ifdef _WIN32 # include <io.h> // _isatty #endif // Dummy implementations of strerror_r and strerror_s called if corresponding // system functions are not available. inline fmt::detail::null<> strerror_r(int, char*, ...) { return {}; } inline fmt::detail::null<> strerror_s(char*, size_t, ...) { return {}; } FMT_BEGIN_NAMESPACE namespace detail { FMT_FUNC void assert_fail(const char* file, int line, const char* message) { // Use unchecked std::fprintf to avoid triggering another assertion when // writing to stderr fails std::fprintf(stderr, "%s:%d: assertion failed: %s", file, line, message); // Chosen instead of std::abort to satisfy Clang in CUDA mode during device // code pass. std::terminate(); } #ifndef _MSC_VER # define FMT_SNPRINTF snprintf #else // _MSC_VER inline int fmt_snprintf(char* buffer, size_t size, const char* format, ...) { va_list args; va_start(args, format); int result = vsnprintf_s(buffer, size, _TRUNCATE, format, args); va_end(args); return result; } # define FMT_SNPRINTF fmt_snprintf #endif // _MSC_VER // A portable thread-safe version of strerror. // Sets buffer to point to a string describing the error code. // This can be either a pointer to a string stored in buffer, // or a pointer to some static immutable string. // Returns one of the following values: // 0 - success // ERANGE - buffer is not large enough to store the error message // other - failure // Buffer should be at least of size 1. inline int safe_strerror(int error_code, char*& buffer, size_t buffer_size) FMT_NOEXCEPT { FMT_ASSERT(buffer != nullptr && buffer_size != 0, "invalid buffer"); class dispatcher { private: int error_code_; char*& buffer_; size_t buffer_size_; // A noop assignment operator to avoid bogus warnings. void operator=(const dispatcher&) {} // Handle the result of XSI-compliant version of strerror_r. int handle(int result) { // glibc versions before 2.13 return result in errno. return result == -1 ? errno : result; } // Handle the result of GNU-specific version of strerror_r. FMT_MAYBE_UNUSED int handle(char* message) { // If the buffer is full then the message is probably truncated. if (message == buffer_ && strlen(buffer_) == buffer_size_ - 1) return ERANGE; buffer_ = message; return 0; } // Handle the case when strerror_r is not available. FMT_MAYBE_UNUSED int handle(detail::null<>) { return fallback(strerror_s(buffer_, buffer_size_, error_code_)); } // Fallback to strerror_s when strerror_r is not available. FMT_MAYBE_UNUSED int fallback(int result) { // If the buffer is full then the message is probably truncated. return result == 0 && strlen(buffer_) == buffer_size_ - 1 ? ERANGE : result; } #if !FMT_MSC_VER // Fallback to strerror if strerror_r and strerror_s are not available. int fallback(detail::null<>) { errno = 0; buffer_ = strerror(error_code_); return errno; } #endif public: dispatcher(int err_code, char*& buf, size_t buf_size) : error_code_(err_code), buffer_(buf), buffer_size_(buf_size) {} int run() { return handle(strerror_r(error_code_, buffer_, buffer_size_)); } }; return dispatcher(error_code, buffer, buffer_size).run(); } FMT_FUNC void format_error_code(detail::buffer<char>& out, int error_code, string_view message) FMT_NOEXCEPT { // Report error code making sure that the output fits into // inline_buffer_size to avoid dynamic memory allocation and potential // bad_alloc. out.try_resize(0); static const char SEP[] = ": "; static const char ERROR_STR[] = "error "; // Subtract 2 to account for terminating null characters in SEP and ERROR_STR. size_t error_code_size = sizeof(SEP) + sizeof(ERROR_STR) - 2; auto abs_value = static_cast<uint32_or_64_or_128_t<int>>(error_code); if (detail::is_negative(error_code)) { abs_value = 0 - abs_value; ++error_code_size; } error_code_size += detail::to_unsigned(detail::count_digits(abs_value)); auto it = buffer_appender<char>(out); if (message.size() <= inline_buffer_size - error_code_size) format_to(it, FMT_STRING("{}{}"), message, SEP); format_to(it, FMT_STRING("{}{}"), ERROR_STR, error_code); FMT_ASSERT(out.size() <= inline_buffer_size, ""); } FMT_FUNC void report_error(format_func func, int error_code, string_view message) FMT_NOEXCEPT { memory_buffer full_message; func(full_message, error_code, message); // Don't use fwrite_fully because the latter may throw. (void)std::fwrite(full_message.data(), full_message.size(), 1, stderr); std::fputc('\n', stderr); } // A wrapper around fwrite that throws on error. inline void fwrite_fully(const void* ptr, size_t size, size_t count, FILE* stream) { size_t written = std::fwrite(ptr, size, count, stream); if (written < count) FMT_THROW(system_error(errno, "cannot write to file")); } #ifndef FMT_STATIC_THOUSANDS_SEPARATOR template <typename Locale> locale_ref::locale_ref(const Locale& loc) : locale_(&loc) { static_assert(std::is_same<Locale, std::locale>::value, ""); } template <typename Locale> Locale locale_ref::get() const { static_assert(std::is_same<Locale, std::locale>::value, ""); return locale_ ? *static_cast<const std::locale*>(locale_) : std::locale(); } template <typename Char> FMT_FUNC std::string grouping_impl(locale_ref loc) { return std::use_facet<std::numpunct<Char>>(loc.get<std::locale>()).grouping(); } template <typename Char> FMT_FUNC Char thousands_sep_impl(locale_ref loc) { return std::use_facet<std::numpunct<Char>>(loc.get<std::locale>()) .thousands_sep(); } template <typename Char> FMT_FUNC Char decimal_point_impl(locale_ref loc) { return std::use_facet<std::numpunct<Char>>(loc.get<std::locale>()) .decimal_point(); } #else template <typename Char> FMT_FUNC std::string grouping_impl(locale_ref) { return "\03"; } template <typename Char> FMT_FUNC Char thousands_sep_impl(locale_ref) { return FMT_STATIC_THOUSANDS_SEPARATOR; } template <typename Char> FMT_FUNC Char decimal_point_impl(locale_ref) { return '.'; } #endif } // namespace detail FMT_API FMT_FUNC format_error::~format_error() FMT_NOEXCEPT = default; FMT_API FMT_FUNC system_error::~system_error() FMT_NOEXCEPT = default; FMT_FUNC void system_error::init(int err_code, string_view format_str, format_args args) { error_code_ = err_code; memory_buffer buffer; format_system_error(buffer, err_code, vformat(format_str, args)); std::runtime_error& base = *this; base = std::runtime_error(to_string(buffer)); } namespace detail { template <> FMT_FUNC int count_digits<4>(detail::fallback_uintptr n) { // fallback_uintptr is always stored in little endian. int i = static_cast<int>(sizeof(void*)) - 1; while (i > 0 && n.value[i] == 0) --i; auto char_digits = std::numeric_limits<unsigned char>::digits / 4; return i >= 0 ? i * char_digits + count_digits<4, unsigned>(n.value[i]) : 1; } template <typename T> const typename basic_data<T>::digit_pair basic_data<T>::digits[] = { {'0', '0'}, {'0', '1'}, {'0', '2'}, {'0', '3'}, {'0', '4'}, {'0', '5'}, {'0', '6'}, {'0', '7'}, {'0', '8'}, {'0', '9'}, {'1', '0'}, {'1', '1'}, {'1', '2'}, {'1', '3'}, {'1', '4'}, {'1', '5'}, {'1', '6'}, {'1', '7'}, {'1', '8'}, {'1', '9'}, {'2', '0'}, {'2', '1'}, {'2', '2'}, {'2', '3'}, {'2', '4'}, {'2', '5'}, {'2', '6'}, {'2', '7'}, {'2', '8'}, {'2', '9'}, {'3', '0'}, {'3', '1'}, {'3', '2'}, {'3', '3'}, {'3', '4'}, {'3', '5'}, {'3', '6'}, {'3', '7'}, {'3', '8'}, {'3', '9'}, {'4', '0'}, {'4', '1'}, {'4', '2'}, {'4', '3'}, {'4', '4'}, {'4', '5'}, {'4', '6'}, {'4', '7'}, {'4', '8'}, {'4', '9'}, {'5', '0'}, {'5', '1'}, {'5', '2'}, {'5', '3'}, {'5', '4'}, {'5', '5'}, {'5', '6'}, {'5', '7'}, {'5', '8'}, {'5', '9'}, {'6', '0'}, {'6', '1'}, {'6', '2'}, {'6', '3'}, {'6', '4'}, {'6', '5'}, {'6', '6'}, {'6', '7'}, {'6', '8'}, {'6', '9'}, {'7', '0'}, {'7', '1'}, {'7', '2'}, {'7', '3'}, {'7', '4'}, {'7', '5'}, {'7', '6'}, {'7', '7'}, {'7', '8'}, {'7', '9'}, {'8', '0'}, {'8', '1'}, {'8', '2'}, {'8', '3'}, {'8', '4'}, {'8', '5'}, {'8', '6'}, {'8', '7'}, {'8', '8'}, {'8', '9'}, {'9', '0'}, {'9', '1'}, {'9', '2'}, {'9', '3'}, {'9', '4'}, {'9', '5'}, {'9', '6'}, {'9', '7'}, {'9', '8'}, {'9', '9'}}; #define FMT_POWERS_OF_10(factor) \ factor * 10, (factor)*100, (factor)*1000, (factor)*10000, (factor)*100000, \ (factor)*1000000, (factor)*10000000, (factor)*100000000, \ (factor)*1000000000 template <typename T> const uint64_t basic_data<T>::powers_of_10_64[] = { 1, FMT_POWERS_OF_10(1), FMT_POWERS_OF_10(1000000000ULL), 10000000000000000000ULL}; template <typename T> const uint32_t basic_data<T>::zero_or_powers_of_10_32[] = {0, FMT_POWERS_OF_10(1)}; template <typename T> const uint64_t basic_data<T>::zero_or_powers_of_10_64[] = { 0, FMT_POWERS_OF_10(1), FMT_POWERS_OF_10(1000000000ULL), 10000000000000000000ULL}; template <typename T> const uint32_t basic_data<T>::zero_or_powers_of_10_32_new[] = { 0, 0, FMT_POWERS_OF_10(1)}; template <typename T> const uint64_t basic_data<T>::zero_or_powers_of_10_64_new[] = { 0, 0, FMT_POWERS_OF_10(1), FMT_POWERS_OF_10(1000000000ULL), 10000000000000000000ULL}; // Normalized 64-bit significands of pow(10, k), for k = -348, -340, ..., 340. // These are generated by support/compute-powers.py. template <typename T> const uint64_t basic_data<T>::grisu_pow10_significands[] = { 0xfa8fd5a0081c0288, 0xbaaee17fa23ebf76, 0x8b16fb203055ac76, 0xcf42894a5dce35ea, 0x9a6bb0aa55653b2d, 0xe61acf033d1a45df, 0xab70fe17c79ac6ca, 0xff77b1fcbebcdc4f, 0xbe5691ef416bd60c, 0x8dd01fad907ffc3c, 0xd3515c2831559a83, 0x9d71ac8fada6c9b5, 0xea9c227723ee8bcb, 0xaecc49914078536d, 0x823c12795db6ce57, 0xc21094364dfb5637, 0x9096ea6f3848984f, 0xd77485cb25823ac7, 0xa086cfcd97bf97f4, 0xef340a98172aace5, 0xb23867fb2a35b28e, 0x84c8d4dfd2c63f3b, 0xc5dd44271ad3cdba, 0x936b9fcebb25c996, 0xdbac6c247d62a584, 0xa3ab66580d5fdaf6, 0xf3e2f893dec3f126, 0xb5b5ada8aaff80b8, 0x87625f056c7c4a8b, 0xc9bcff6034c13053, 0x964e858c91ba2655, 0xdff9772470297ebd, 0xa6dfbd9fb8e5b88f, 0xf8a95fcf88747d94, 0xb94470938fa89bcf, 0x8a08f0f8bf0f156b, 0xcdb02555653131b6, 0x993fe2c6d07b7fac, 0xe45c10c42a2b3b06, 0xaa242499697392d3, 0xfd87b5f28300ca0e, 0xbce5086492111aeb, 0x8cbccc096f5088cc, 0xd1b71758e219652c, 0x9c40000000000000, 0xe8d4a51000000000, 0xad78ebc5ac620000, 0x813f3978f8940984, 0xc097ce7bc90715b3, 0x8f7e32ce7bea5c70, 0xd5d238a4abe98068, 0x9f4f2726179a2245, 0xed63a231d4c4fb27, 0xb0de65388cc8ada8, 0x83c7088e1aab65db, 0xc45d1df942711d9a, 0x924d692ca61be758, 0xda01ee641a708dea, 0xa26da3999aef774a, 0xf209787bb47d6b85, 0xb454e4a179dd1877, 0x865b86925b9bc5c2, 0xc83553c5c8965d3d, 0x952ab45cfa97a0b3, 0xde469fbd99a05fe3, 0xa59bc234db398c25, 0xf6c69a72a3989f5c, 0xb7dcbf5354e9bece, 0x88fcf317f22241e2, 0xcc20ce9bd35c78a5, 0x98165af37b2153df, 0xe2a0b5dc971f303a, 0xa8d9d1535ce3b396, 0xfb9b7cd9a4a7443c, 0xbb764c4ca7a44410, 0x8bab8eefb6409c1a, 0xd01fef10a657842c, 0x9b10a4e5e9913129, 0xe7109bfba19c0c9d, 0xac2820d9623bf429, 0x80444b5e7aa7cf85, 0xbf21e44003acdd2d, 0x8e679c2f5e44ff8f, 0xd433179d9c8cb841, 0x9e19db92b4e31ba9, 0xeb96bf6ebadf77d9, 0xaf87023b9bf0ee6b, }; // Binary exponents of pow(10, k), for k = -348, -340, ..., 340, corresponding // to significands above. template <typename T> const int16_t basic_data<T>::grisu_pow10_exponents[] = { -1220, -1193, -1166, -1140, -1113, -1087, -1060, -1034, -1007, -980, -954, -927, -901, -874, -847, -821, -794, -768, -741, -715, -688, -661, -635, -608, -582, -555, -529, -502, -475, -449, -422, -396, -369, -343, -316, -289, -263, -236, -210, -183, -157, -130, -103, -77, -50, -24, 3, 30, 56, 83, 109, 136, 162, 189, 216, 242, 269, 295, 322, 348, 375, 402, 428, 455, 481, 508, 534, 561, 588, 614, 641, 667, 694, 720, 747, 774, 800, 827, 853, 880, 907, 933, 960, 986, 1013, 1039, 1066}; template <typename T> const divtest_table_entry<uint32_t> basic_data<T>::divtest_table_for_pow5_32[] = {{0x00000001, 0xffffffff}, {0xcccccccd, 0x33333333}, {0xc28f5c29, 0x0a3d70a3}, {0x26e978d5, 0x020c49ba}, {0x3afb7e91, 0x0068db8b}, {0x0bcbe61d, 0x0014f8b5}, {0x68c26139, 0x000431bd}, {0xae8d46a5, 0x0000d6bf}, {0x22e90e21, 0x00002af3}, {0x3a2e9c6d, 0x00000897}, {0x3ed61f49, 0x000001b7}}; template <typename T> const divtest_table_entry<uint64_t> basic_data<T>::divtest_table_for_pow5_64[] = {{0x0000000000000001, 0xffffffffffffffff}, {0xcccccccccccccccd, 0x3333333333333333}, {0x8f5c28f5c28f5c29, 0x0a3d70a3d70a3d70}, {0x1cac083126e978d5, 0x020c49ba5e353f7c}, {0xd288ce703afb7e91, 0x0068db8bac710cb2}, {0x5d4e8fb00bcbe61d, 0x0014f8b588e368f0}, {0x790fb65668c26139, 0x000431bde82d7b63}, {0xe5032477ae8d46a5, 0x0000d6bf94d5e57a}, {0xc767074b22e90e21, 0x00002af31dc46118}, {0x8e47ce423a2e9c6d, 0x0000089705f4136b}, {0x4fa7f60d3ed61f49, 0x000001b7cdfd9d7b}, {0x0fee64690c913975, 0x00000057f5ff85e5}, {0x3662e0e1cf503eb1, 0x000000119799812d}, {0xa47a2cf9f6433fbd, 0x0000000384b84d09}, {0x54186f653140a659, 0x00000000b424dc35}, {0x7738164770402145, 0x0000000024075f3d}, {0xe4a4d1417cd9a041, 0x000000000734aca5}, {0xc75429d9e5c5200d, 0x000000000170ef54}, {0xc1773b91fac10669, 0x000000000049c977}, {0x26b172506559ce15, 0x00000000000ec1e4}, {0xd489e3a9addec2d1, 0x000000000002f394}, {0x90e860bb892c8d5d, 0x000000000000971d}, {0x502e79bf1b6f4f79, 0x0000000000001e39}, {0xdcd618596be30fe5, 0x000000000000060b}}; template <typename T> const uint64_t basic_data<T>::dragonbox_pow10_significands_64[] = { 0x81ceb32c4b43fcf5, 0xa2425ff75e14fc32, 0xcad2f7f5359a3b3f, 0xfd87b5f28300ca0e, 0x9e74d1b791e07e49, 0xc612062576589ddb, 0xf79687aed3eec552, 0x9abe14cd44753b53, 0xc16d9a0095928a28, 0xf1c90080baf72cb2, 0x971da05074da7bef, 0xbce5086492111aeb, 0xec1e4a7db69561a6, 0x9392ee8e921d5d08, 0xb877aa3236a4b44a, 0xe69594bec44de15c, 0x901d7cf73ab0acda, 0xb424dc35095cd810, 0xe12e13424bb40e14, 0x8cbccc096f5088cc, 0xafebff0bcb24aaff, 0xdbe6fecebdedd5bf, 0x89705f4136b4a598, 0xabcc77118461cefd, 0xd6bf94d5e57a42bd, 0x8637bd05af6c69b6, 0xa7c5ac471b478424, 0xd1b71758e219652c, 0x83126e978d4fdf3c, 0xa3d70a3d70a3d70b, 0xcccccccccccccccd, 0x8000000000000000, 0xa000000000000000, 0xc800000000000000, 0xfa00000000000000, 0x9c40000000000000, 0xc350000000000000, 0xf424000000000000, 0x9896800000000000, 0xbebc200000000000, 0xee6b280000000000, 0x9502f90000000000, 0xba43b74000000000, 0xe8d4a51000000000, 0x9184e72a00000000, 0xb5e620f480000000, 0xe35fa931a0000000, 0x8e1bc9bf04000000, 0xb1a2bc2ec5000000, 0xde0b6b3a76400000, 0x8ac7230489e80000, 0xad78ebc5ac620000, 0xd8d726b7177a8000, 0x878678326eac9000, 0xa968163f0a57b400, 0xd3c21bcecceda100, 0x84595161401484a0, 0xa56fa5b99019a5c8, 0xcecb8f27f4200f3a, 0x813f3978f8940984, 0xa18f07d736b90be5, 0xc9f2c9cd04674ede, 0xfc6f7c4045812296, 0x9dc5ada82b70b59d, 0xc5371912364ce305, 0xf684df56c3e01bc6, 0x9a130b963a6c115c, 0xc097ce7bc90715b3, 0xf0bdc21abb48db20, 0x96769950b50d88f4, 0xbc143fa4e250eb31, 0xeb194f8e1ae525fd, 0x92efd1b8d0cf37be, 0xb7abc627050305ad, 0xe596b7b0c643c719, 0x8f7e32ce7bea5c6f, 0xb35dbf821ae4f38b, 0xe0352f62a19e306e}; template <typename T> const uint128_wrapper basic_data<T>::dragonbox_pow10_significands_128[] = { #if FMT_USE_FULL_CACHE_DRAGONBOX {0xff77b1fcbebcdc4f, 0x25e8e89c13bb0f7b}, {0x9faacf3df73609b1, 0x77b191618c54e9ad}, {0xc795830d75038c1d, 0xd59df5b9ef6a2418}, {0xf97ae3d0d2446f25, 0x4b0573286b44ad1e}, {0x9becce62836ac577, 0x4ee367f9430aec33}, {0xc2e801fb244576d5, 0x229c41f793cda740}, {0xf3a20279ed56d48a, 0x6b43527578c11110}, {0x9845418c345644d6, 0x830a13896b78aaaa}, {0xbe5691ef416bd60c, 0x23cc986bc656d554}, {0xedec366b11c6cb8f, 0x2cbfbe86b7ec8aa9}, {0x94b3a202eb1c3f39, 0x7bf7d71432f3d6aa}, {0xb9e08a83a5e34f07, 0xdaf5ccd93fb0cc54}, {0xe858ad248f5c22c9, 0xd1b3400f8f9cff69}, {0x91376c36d99995be, 0x23100809b9c21fa2}, {0xb58547448ffffb2d, 0xabd40a0c2832a78b}, {0xe2e69915b3fff9f9, 0x16c90c8f323f516d}, {0x8dd01fad907ffc3b, 0xae3da7d97f6792e4}, {0xb1442798f49ffb4a, 0x99cd11cfdf41779d}, {0xdd95317f31c7fa1d, 0x40405643d711d584}, {0x8a7d3eef7f1cfc52, 0x482835ea666b2573}, {0xad1c8eab5ee43b66, 0xda3243650005eed0}, {0xd863b256369d4a40, 0x90bed43e40076a83}, {0x873e4f75e2224e68, 0x5a7744a6e804a292}, {0xa90de3535aaae202, 0x711515d0a205cb37}, {0xd3515c2831559a83, 0x0d5a5b44ca873e04}, {0x8412d9991ed58091, 0xe858790afe9486c3}, {0xa5178fff668ae0b6, 0x626e974dbe39a873}, {0xce5d73ff402d98e3, 0xfb0a3d212dc81290}, {0x80fa687f881c7f8e, 0x7ce66634bc9d0b9a}, {0xa139029f6a239f72, 0x1c1fffc1ebc44e81}, {0xc987434744ac874e, 0xa327ffb266b56221}, {0xfbe9141915d7a922, 0x4bf1ff9f0062baa9}, {0x9d71ac8fada6c9b5, 0x6f773fc3603db4aa}, {0xc4ce17b399107c22, 0xcb550fb4384d21d4}, {0xf6019da07f549b2b, 0x7e2a53a146606a49}, {0x99c102844f94e0fb, 0x2eda7444cbfc426e}, {0xc0314325637a1939, 0xfa911155fefb5309}, {0xf03d93eebc589f88, 0x793555ab7eba27cb}, {0x96267c7535b763b5, 0x4bc1558b2f3458df}, {0xbbb01b9283253ca2, 0x9eb1aaedfb016f17}, {0xea9c227723ee8bcb, 0x465e15a979c1cadd}, {0x92a1958a7675175f, 0x0bfacd89ec191eca}, {0xb749faed14125d36, 0xcef980ec671f667c}, {0xe51c79a85916f484, 0x82b7e12780e7401b}, {0x8f31cc0937ae58d2, 0xd1b2ecb8b0908811}, {0xb2fe3f0b8599ef07, 0x861fa7e6dcb4aa16}, {0xdfbdcece67006ac9, 0x67a791e093e1d49b}, {0x8bd6a141006042bd, 0xe0c8bb2c5c6d24e1}, {0xaecc49914078536d, 0x58fae9f773886e19}, {0xda7f5bf590966848, 0xaf39a475506a899f}, {0x888f99797a5e012d, 0x6d8406c952429604}, {0xaab37fd7d8f58178, 0xc8e5087ba6d33b84}, {0xd5605fcdcf32e1d6, 0xfb1e4a9a90880a65}, {0x855c3be0a17fcd26, 0x5cf2eea09a550680}, {0xa6b34ad8c9dfc06f, 0xf42faa48c0ea481f}, {0xd0601d8efc57b08b, 0xf13b94daf124da27}, {0x823c12795db6ce57, 0x76c53d08d6b70859}, {0xa2cb1717b52481ed, 0x54768c4b0c64ca6f}, {0xcb7ddcdda26da268, 0xa9942f5dcf7dfd0a}, {0xfe5d54150b090b02, 0xd3f93b35435d7c4d}, {0x9efa548d26e5a6e1, 0xc47bc5014a1a6db0}, {0xc6b8e9b0709f109a, 0x359ab6419ca1091c}, {0xf867241c8cc6d4c0, 0xc30163d203c94b63}, {0x9b407691d7fc44f8, 0x79e0de63425dcf1e}, {0xc21094364dfb5636, 0x985915fc12f542e5}, {0xf294b943e17a2bc4, 0x3e6f5b7b17b2939e}, {0x979cf3ca6cec5b5a, 0xa705992ceecf9c43}, {0xbd8430bd08277231, 0x50c6ff782a838354}, {0xece53cec4a314ebd, 0xa4f8bf5635246429}, {0x940f4613ae5ed136, 0x871b7795e136be9a}, {0xb913179899f68584, 0x28e2557b59846e40}, {0xe757dd7ec07426e5, 0x331aeada2fe589d0}, {0x9096ea6f3848984f, 0x3ff0d2c85def7622}, {0xb4bca50b065abe63, 0x0fed077a756b53aa}, {0xe1ebce4dc7f16dfb, 0xd3e8495912c62895}, {0x8d3360f09cf6e4bd, 0x64712dd7abbbd95d}, {0xb080392cc4349dec, 0xbd8d794d96aacfb4}, {0xdca04777f541c567, 0xecf0d7a0fc5583a1}, {0x89e42caaf9491b60, 0xf41686c49db57245}, {0xac5d37d5b79b6239, 0x311c2875c522ced6}, {0xd77485cb25823ac7, 0x7d633293366b828c}, {0x86a8d39ef77164bc, 0xae5dff9c02033198}, {0xa8530886b54dbdeb, 0xd9f57f830283fdfd}, {0xd267caa862a12d66, 0xd072df63c324fd7c}, {0x8380dea93da4bc60, 0x4247cb9e59f71e6e}, {0xa46116538d0deb78, 0x52d9be85f074e609}, {0xcd795be870516656, 0x67902e276c921f8c}, {0x806bd9714632dff6, 0x00ba1cd8a3db53b7}, {0xa086cfcd97bf97f3, 0x80e8a40eccd228a5}, {0xc8a883c0fdaf7df0, 0x6122cd128006b2ce}, {0xfad2a4b13d1b5d6c, 0x796b805720085f82}, {0x9cc3a6eec6311a63, 0xcbe3303674053bb1}, {0xc3f490aa77bd60fc, 0xbedbfc4411068a9d}, {0xf4f1b4d515acb93b, 0xee92fb5515482d45}, {0x991711052d8bf3c5, 0x751bdd152d4d1c4b}, {0xbf5cd54678eef0b6, 0xd262d45a78a0635e}, {0xef340a98172aace4, 0x86fb897116c87c35}, {0x9580869f0e7aac0e, 0xd45d35e6ae3d4da1}, {0xbae0a846d2195712, 0x8974836059cca10a}, {0xe998d258869facd7, 0x2bd1a438703fc94c}, {0x91ff83775423cc06, 0x7b6306a34627ddd0}, {0xb67f6455292cbf08, 0x1a3bc84c17b1d543}, {0xe41f3d6a7377eeca, 0x20caba5f1d9e4a94}, {0x8e938662882af53e, 0x547eb47b7282ee9d}, {0xb23867fb2a35b28d, 0xe99e619a4f23aa44}, {0xdec681f9f4c31f31, 0x6405fa00e2ec94d5}, {0x8b3c113c38f9f37e, 0xde83bc408dd3dd05}, {0xae0b158b4738705e, 0x9624ab50b148d446}, {0xd98ddaee19068c76, 0x3badd624dd9b0958}, {0x87f8a8d4cfa417c9, 0xe54ca5d70a80e5d7}, {0xa9f6d30a038d1dbc, 0x5e9fcf4ccd211f4d}, {0xd47487cc8470652b, 0x7647c32000696720}, {0x84c8d4dfd2c63f3b, 0x29ecd9f40041e074}, {0xa5fb0a17c777cf09, 0xf468107100525891}, {0xcf79cc9db955c2cc, 0x7182148d4066eeb5}, {0x81ac1fe293d599bf, 0xc6f14cd848405531}, {0xa21727db38cb002f, 0xb8ada00e5a506a7d}, {0xca9cf1d206fdc03b, 0xa6d90811f0e4851d}, {0xfd442e4688bd304a, 0x908f4a166d1da664}, {0x9e4a9cec15763e2e, 0x9a598e4e043287ff}, {0xc5dd44271ad3cdba, 0x40eff1e1853f29fe}, {0xf7549530e188c128, 0xd12bee59e68ef47d}, {0x9a94dd3e8cf578b9, 0x82bb74f8301958cf}, {0xc13a148e3032d6e7, 0xe36a52363c1faf02}, {0xf18899b1bc3f8ca1, 0xdc44e6c3cb279ac2}, {0x96f5600f15a7b7e5, 0x29ab103a5ef8c0ba}, {0xbcb2b812db11a5de, 0x7415d448f6b6f0e8}, {0xebdf661791d60f56, 0x111b495b3464ad22}, {0x936b9fcebb25c995, 0xcab10dd900beec35}, {0xb84687c269ef3bfb, 0x3d5d514f40eea743}, {0xe65829b3046b0afa, 0x0cb4a5a3112a5113}, {0x8ff71a0fe2c2e6dc, 0x47f0e785eaba72ac}, {0xb3f4e093db73a093, 0x59ed216765690f57}, {0xe0f218b8d25088b8, 0x306869c13ec3532d}, {0x8c974f7383725573, 0x1e414218c73a13fc}, {0xafbd2350644eeacf, 0xe5d1929ef90898fb}, {0xdbac6c247d62a583, 0xdf45f746b74abf3a}, {0x894bc396ce5da772, 0x6b8bba8c328eb784}, {0xab9eb47c81f5114f, 0x066ea92f3f326565}, {0xd686619ba27255a2, 0xc80a537b0efefebe}, {0x8613fd0145877585, 0xbd06742ce95f5f37}, {0xa798fc4196e952e7, 0x2c48113823b73705}, {0xd17f3b51fca3a7a0, 0xf75a15862ca504c6}, {0x82ef85133de648c4, 0x9a984d73dbe722fc}, {0xa3ab66580d5fdaf5, 0xc13e60d0d2e0ebbb}, {0xcc963fee10b7d1b3, 0x318df905079926a9}, {0xffbbcfe994e5c61f, 0xfdf17746497f7053}, {0x9fd561f1fd0f9bd3, 0xfeb6ea8bedefa634}, {0xc7caba6e7c5382c8, 0xfe64a52ee96b8fc1}, {0xf9bd690a1b68637b, 0x3dfdce7aa3c673b1}, {0x9c1661a651213e2d, 0x06bea10ca65c084f}, {0xc31bfa0fe5698db8, 0x486e494fcff30a63}, {0xf3e2f893dec3f126, 0x5a89dba3c3efccfb}, {0x986ddb5c6b3a76b7, 0xf89629465a75e01d}, {0xbe89523386091465, 0xf6bbb397f1135824}, {0xee2ba6c0678b597f, 0x746aa07ded582e2d}, {0x94db483840b717ef, 0xa8c2a44eb4571cdd}, {0xba121a4650e4ddeb, 0x92f34d62616ce414}, {0xe896a0d7e51e1566, 0x77b020baf9c81d18}, {0x915e2486ef32cd60, 0x0ace1474dc1d122f}, {0xb5b5ada8aaff80b8, 0x0d819992132456bb}, {0xe3231912d5bf60e6, 0x10e1fff697ed6c6a}, {0x8df5efabc5979c8f, 0xca8d3ffa1ef463c2}, {0xb1736b96b6fd83b3, 0xbd308ff8a6b17cb3}, {0xddd0467c64bce4a0, 0xac7cb3f6d05ddbdf}, {0x8aa22c0dbef60ee4, 0x6bcdf07a423aa96c}, {0xad4ab7112eb3929d, 0x86c16c98d2c953c7}, {0xd89d64d57a607744, 0xe871c7bf077ba8b8}, {0x87625f056c7c4a8b, 0x11471cd764ad4973}, {0xa93af6c6c79b5d2d, 0xd598e40d3dd89bd0}, {0xd389b47879823479, 0x4aff1d108d4ec2c4}, {0x843610cb4bf160cb, 0xcedf722a585139bb}, {0xa54394fe1eedb8fe, 0xc2974eb4ee658829}, {0xce947a3da6a9273e, 0x733d226229feea33}, {0x811ccc668829b887, 0x0806357d5a3f5260}, {0xa163ff802a3426a8, 0xca07c2dcb0cf26f8}, {0xc9bcff6034c13052, 0xfc89b393dd02f0b6}, {0xfc2c3f3841f17c67, 0xbbac2078d443ace3}, {0x9d9ba7832936edc0, 0xd54b944b84aa4c0e}, {0xc5029163f384a931, 0x0a9e795e65d4df12}, {0xf64335bcf065d37d, 0x4d4617b5ff4a16d6}, {0x99ea0196163fa42e, 0x504bced1bf8e4e46}, {0xc06481fb9bcf8d39, 0xe45ec2862f71e1d7}, {0xf07da27a82c37088, 0x5d767327bb4e5a4d}, {0x964e858c91ba2655, 0x3a6a07f8d510f870}, {0xbbe226efb628afea, 0x890489f70a55368c}, {0xeadab0aba3b2dbe5, 0x2b45ac74ccea842f}, {0x92c8ae6b464fc96f, 0x3b0b8bc90012929e}, {0xb77ada0617e3bbcb, 0x09ce6ebb40173745}, {0xe55990879ddcaabd, 0xcc420a6a101d0516}, {0x8f57fa54c2a9eab6, 0x9fa946824a12232e}, {0xb32df8e9f3546564, 0x47939822dc96abfa}, {0xdff9772470297ebd, 0x59787e2b93bc56f8}, {0x8bfbea76c619ef36, 0x57eb4edb3c55b65b}, {0xaefae51477a06b03, 0xede622920b6b23f2}, {0xdab99e59958885c4, 0xe95fab368e45ecee}, {0x88b402f7fd75539b, 0x11dbcb0218ebb415}, {0xaae103b5fcd2a881, 0xd652bdc29f26a11a}, {0xd59944a37c0752a2, 0x4be76d3346f04960}, {0x857fcae62d8493a5, 0x6f70a4400c562ddc}, {0xa6dfbd9fb8e5b88e, 0xcb4ccd500f6bb953}, {0xd097ad07a71f26b2, 0x7e2000a41346a7a8}, {0x825ecc24c873782f, 0x8ed400668c0c28c9}, {0xa2f67f2dfa90563b, 0x728900802f0f32fb}, {0xcbb41ef979346bca, 0x4f2b40a03ad2ffba}, {0xfea126b7d78186bc, 0xe2f610c84987bfa9}, {0x9f24b832e6b0f436, 0x0dd9ca7d2df4d7ca}, {0xc6ede63fa05d3143, 0x91503d1c79720dbc}, {0xf8a95fcf88747d94, 0x75a44c6397ce912b}, {0x9b69dbe1b548ce7c, 0xc986afbe3ee11abb}, {0xc24452da229b021b, 0xfbe85badce996169}, {0xf2d56790ab41c2a2, 0xfae27299423fb9c4}, {0x97c560ba6b0919a5, 0xdccd879fc967d41b}, {0xbdb6b8e905cb600f, 0x5400e987bbc1c921}, {0xed246723473e3813, 0x290123e9aab23b69}, {0x9436c0760c86e30b, 0xf9a0b6720aaf6522}, {0xb94470938fa89bce, 0xf808e40e8d5b3e6a}, {0xe7958cb87392c2c2, 0xb60b1d1230b20e05}, {0x90bd77f3483bb9b9, 0xb1c6f22b5e6f48c3}, {0xb4ecd5f01a4aa828, 0x1e38aeb6360b1af4}, {0xe2280b6c20dd5232, 0x25c6da63c38de1b1}, {0x8d590723948a535f, 0x579c487e5a38ad0f}, {0xb0af48ec79ace837, 0x2d835a9df0c6d852}, {0xdcdb1b2798182244, 0xf8e431456cf88e66}, {0x8a08f0f8bf0f156b, 0x1b8e9ecb641b5900}, {0xac8b2d36eed2dac5, 0xe272467e3d222f40}, {0xd7adf884aa879177, 0x5b0ed81dcc6abb10}, {0x86ccbb52ea94baea, 0x98e947129fc2b4ea}, {0xa87fea27a539e9a5, 0x3f2398d747b36225}, {0xd29fe4b18e88640e, 0x8eec7f0d19a03aae}, {0x83a3eeeef9153e89, 0x1953cf68300424ad}, {0xa48ceaaab75a8e2b, 0x5fa8c3423c052dd8}, {0xcdb02555653131b6, 0x3792f412cb06794e}, {0x808e17555f3ebf11, 0xe2bbd88bbee40bd1}, {0xa0b19d2ab70e6ed6, 0x5b6aceaeae9d0ec5}, {0xc8de047564d20a8b, 0xf245825a5a445276}, {0xfb158592be068d2e, 0xeed6e2f0f0d56713}, {0x9ced737bb6c4183d, 0x55464dd69685606c}, {0xc428d05aa4751e4c, 0xaa97e14c3c26b887}, {0xf53304714d9265df, 0xd53dd99f4b3066a9}, {0x993fe2c6d07b7fab, 0xe546a8038efe402a}, {0xbf8fdb78849a5f96, 0xde98520472bdd034}, {0xef73d256a5c0f77c, 0x963e66858f6d4441}, {0x95a8637627989aad, 0xdde7001379a44aa9}, {0xbb127c53b17ec159, 0x5560c018580d5d53}, {0xe9d71b689dde71af, 0xaab8f01e6e10b4a7}, {0x9226712162ab070d, 0xcab3961304ca70e9}, {0xb6b00d69bb55c8d1, 0x3d607b97c5fd0d23}, {0xe45c10c42a2b3b05, 0x8cb89a7db77c506b}, {0x8eb98a7a9a5b04e3, 0x77f3608e92adb243}, {0xb267ed1940f1c61c, 0x55f038b237591ed4}, {0xdf01e85f912e37a3, 0x6b6c46dec52f6689}, {0x8b61313bbabce2c6, 0x2323ac4b3b3da016}, {0xae397d8aa96c1b77, 0xabec975e0a0d081b}, {0xd9c7dced53c72255, 0x96e7bd358c904a22}, {0x881cea14545c7575, 0x7e50d64177da2e55}, {0xaa242499697392d2, 0xdde50bd1d5d0b9ea}, {0xd4ad2dbfc3d07787, 0x955e4ec64b44e865}, {0x84ec3c97da624ab4, 0xbd5af13bef0b113f}, {0xa6274bbdd0fadd61, 0xecb1ad8aeacdd58f}, {0xcfb11ead453994ba, 0x67de18eda5814af3}, {0x81ceb32c4b43fcf4, 0x80eacf948770ced8}, {0xa2425ff75e14fc31, 0xa1258379a94d028e}, {0xcad2f7f5359a3b3e, 0x096ee45813a04331}, {0xfd87b5f28300ca0d, 0x8bca9d6e188853fd}, {0x9e74d1b791e07e48, 0x775ea264cf55347e}, {0xc612062576589dda, 0x95364afe032a819e}, {0xf79687aed3eec551, 0x3a83ddbd83f52205}, {0x9abe14cd44753b52, 0xc4926a9672793543}, {0xc16d9a0095928a27, 0x75b7053c0f178294}, {0xf1c90080baf72cb1, 0x5324c68b12dd6339}, {0x971da05074da7bee, 0xd3f6fc16ebca5e04}, {0xbce5086492111aea, 0x88f4bb1ca6bcf585}, {0xec1e4a7db69561a5, 0x2b31e9e3d06c32e6}, {0x9392ee8e921d5d07, 0x3aff322e62439fd0}, {0xb877aa3236a4b449, 0x09befeb9fad487c3}, {0xe69594bec44de15b, 0x4c2ebe687989a9b4}, {0x901d7cf73ab0acd9, 0x0f9d37014bf60a11}, {0xb424dc35095cd80f, 0x538484c19ef38c95}, {0xe12e13424bb40e13, 0x2865a5f206b06fba}, {0x8cbccc096f5088cb, 0xf93f87b7442e45d4}, {0xafebff0bcb24aafe, 0xf78f69a51539d749}, {0xdbe6fecebdedd5be, 0xb573440e5a884d1c}, {0x89705f4136b4a597, 0x31680a88f8953031}, {0xabcc77118461cefc, 0xfdc20d2b36ba7c3e}, {0xd6bf94d5e57a42bc, 0x3d32907604691b4d}, {0x8637bd05af6c69b5, 0xa63f9a49c2c1b110}, {0xa7c5ac471b478423, 0x0fcf80dc33721d54}, {0xd1b71758e219652b, 0xd3c36113404ea4a9}, {0x83126e978d4fdf3b, 0x645a1cac083126ea}, {0xa3d70a3d70a3d70a, 0x3d70a3d70a3d70a4}, {0xcccccccccccccccc, 0xcccccccccccccccd}, {0x8000000000000000, 0x0000000000000000}, {0xa000000000000000, 0x0000000000000000}, {0xc800000000000000, 0x0000000000000000}, {0xfa00000000000000, 0x0000000000000000}, {0x9c40000000000000, 0x0000000000000000}, {0xc350000000000000, 0x0000000000000000}, {0xf424000000000000, 0x0000000000000000}, {0x9896800000000000, 0x0000000000000000}, {0xbebc200000000000, 0x0000000000000000}, {0xee6b280000000000, 0x0000000000000000}, {0x9502f90000000000, 0x0000000000000000}, {0xba43b74000000000, 0x0000000000000000}, {0xe8d4a51000000000, 0x0000000000000000}, {0x9184e72a00000000, 0x0000000000000000}, {0xb5e620f480000000, 0x0000000000000000}, {0xe35fa931a0000000, 0x0000000000000000}, {0x8e1bc9bf04000000, 0x0000000000000000}, {0xb1a2bc2ec5000000, 0x0000000000000000}, {0xde0b6b3a76400000, 0x0000000000000000}, {0x8ac7230489e80000, 0x0000000000000000}, {0xad78ebc5ac620000, 0x0000000000000000}, {0xd8d726b7177a8000, 0x0000000000000000}, {0x878678326eac9000, 0x0000000000000000}, {0xa968163f0a57b400, 0x0000000000000000}, {0xd3c21bcecceda100, 0x0000000000000000}, {0x84595161401484a0, 0x0000000000000000}, {0xa56fa5b99019a5c8, 0x0000000000000000}, {0xcecb8f27f4200f3a, 0x0000000000000000}, {0x813f3978f8940984, 0x4000000000000000}, {0xa18f07d736b90be5, 0x5000000000000000}, {0xc9f2c9cd04674ede, 0xa400000000000000}, {0xfc6f7c4045812296, 0x4d00000000000000}, {0x9dc5ada82b70b59d, 0xf020000000000000}, {0xc5371912364ce305, 0x6c28000000000000}, {0xf684df56c3e01bc6, 0xc732000000000000}, {0x9a130b963a6c115c, 0x3c7f400000000000}, {0xc097ce7bc90715b3, 0x4b9f100000000000}, {0xf0bdc21abb48db20, 0x1e86d40000000000}, {0x96769950b50d88f4, 0x1314448000000000}, {0xbc143fa4e250eb31, 0x17d955a000000000}, {0xeb194f8e1ae525fd, 0x5dcfab0800000000}, {0x92efd1b8d0cf37be, 0x5aa1cae500000000}, {0xb7abc627050305ad, 0xf14a3d9e40000000}, {0xe596b7b0c643c719, 0x6d9ccd05d0000000}, {0x8f7e32ce7bea5c6f, 0xe4820023a2000000}, {0xb35dbf821ae4f38b, 0xdda2802c8a800000}, {0xe0352f62a19e306e, 0xd50b2037ad200000}, {0x8c213d9da502de45, 0x4526f422cc340000}, {0xaf298d050e4395d6, 0x9670b12b7f410000}, {0xdaf3f04651d47b4c, 0x3c0cdd765f114000}, {0x88d8762bf324cd0f, 0xa5880a69fb6ac800}, {0xab0e93b6efee0053, 0x8eea0d047a457a00}, {0xd5d238a4abe98068, 0x72a4904598d6d880}, {0x85a36366eb71f041, 0x47a6da2b7f864750}, {0xa70c3c40a64e6c51, 0x999090b65f67d924}, {0xd0cf4b50cfe20765, 0xfff4b4e3f741cf6d}, {0x82818f1281ed449f, 0xbff8f10e7a8921a4}, {0xa321f2d7226895c7, 0xaff72d52192b6a0d}, {0xcbea6f8ceb02bb39, 0x9bf4f8a69f764490}, {0xfee50b7025c36a08, 0x02f236d04753d5b4}, {0x9f4f2726179a2245, 0x01d762422c946590}, {0xc722f0ef9d80aad6, 0x424d3ad2b7b97ef5}, {0xf8ebad2b84e0d58b, 0xd2e0898765a7deb2}, {0x9b934c3b330c8577, 0x63cc55f49f88eb2f}, {0xc2781f49ffcfa6d5, 0x3cbf6b71c76b25fb}, {0xf316271c7fc3908a, 0x8bef464e3945ef7a}, {0x97edd871cfda3a56, 0x97758bf0e3cbb5ac}, {0xbde94e8e43d0c8ec, 0x3d52eeed1cbea317}, {0xed63a231d4c4fb27, 0x4ca7aaa863ee4bdd}, {0x945e455f24fb1cf8, 0x8fe8caa93e74ef6a}, {0xb975d6b6ee39e436, 0xb3e2fd538e122b44}, {0xe7d34c64a9c85d44, 0x60dbbca87196b616}, {0x90e40fbeea1d3a4a, 0xbc8955e946fe31cd}, {0xb51d13aea4a488dd, 0x6babab6398bdbe41}, {0xe264589a4dcdab14, 0xc696963c7eed2dd1}, {0x8d7eb76070a08aec, 0xfc1e1de5cf543ca2}, {0xb0de65388cc8ada8, 0x3b25a55f43294bcb}, {0xdd15fe86affad912, 0x49ef0eb713f39ebe}, {0x8a2dbf142dfcc7ab, 0x6e3569326c784337}, {0xacb92ed9397bf996, 0x49c2c37f07965404}, {0xd7e77a8f87daf7fb, 0xdc33745ec97be906}, {0x86f0ac99b4e8dafd, 0x69a028bb3ded71a3}, {0xa8acd7c0222311bc, 0xc40832ea0d68ce0c}, {0xd2d80db02aabd62b, 0xf50a3fa490c30190}, {0x83c7088e1aab65db, 0x792667c6da79e0fa}, {0xa4b8cab1a1563f52, 0x577001b891185938}, {0xcde6fd5e09abcf26, 0xed4c0226b55e6f86}, {0x80b05e5ac60b6178, 0x544f8158315b05b4}, {0xa0dc75f1778e39d6, 0x696361ae3db1c721}, {0xc913936dd571c84c, 0x03bc3a19cd1e38e9}, {0xfb5878494ace3a5f, 0x04ab48a04065c723}, {0x9d174b2dcec0e47b, 0x62eb0d64283f9c76}, {0xc45d1df942711d9a, 0x3ba5d0bd324f8394}, {0xf5746577930d6500, 0xca8f44ec7ee36479}, {0x9968bf6abbe85f20, 0x7e998b13cf4e1ecb}, {0xbfc2ef456ae276e8, 0x9e3fedd8c321a67e}, {0xefb3ab16c59b14a2, 0xc5cfe94ef3ea101e}, {0x95d04aee3b80ece5, 0xbba1f1d158724a12}, {0xbb445da9ca61281f, 0x2a8a6e45ae8edc97}, {0xea1575143cf97226, 0xf52d09d71a3293bd}, {0x924d692ca61be758, 0x593c2626705f9c56}, {0xb6e0c377cfa2e12e, 0x6f8b2fb00c77836c}, {0xe498f455c38b997a, 0x0b6dfb9c0f956447}, {0x8edf98b59a373fec, 0x4724bd4189bd5eac}, {0xb2977ee300c50fe7, 0x58edec91ec2cb657}, {0xdf3d5e9bc0f653e1, 0x2f2967b66737e3ed}, {0x8b865b215899f46c, 0xbd79e0d20082ee74}, {0xae67f1e9aec07187, 0xecd8590680a3aa11}, {0xda01ee641a708de9, 0xe80e6f4820cc9495}, {0x884134fe908658b2, 0x3109058d147fdcdd}, {0xaa51823e34a7eede, 0xbd4b46f0599fd415}, {0xd4e5e2cdc1d1ea96, 0x6c9e18ac7007c91a}, {0x850fadc09923329e, 0x03e2cf6bc604ddb0}, {0xa6539930bf6bff45, 0x84db8346b786151c}, {0xcfe87f7cef46ff16, 0xe612641865679a63}, {0x81f14fae158c5f6e, 0x4fcb7e8f3f60c07e}, {0xa26da3999aef7749, 0xe3be5e330f38f09d}, {0xcb090c8001ab551c, 0x5cadf5bfd3072cc5}, {0xfdcb4fa002162a63, 0x73d9732fc7c8f7f6}, {0x9e9f11c4014dda7e, 0x2867e7fddcdd9afa}, {0xc646d63501a1511d, 0xb281e1fd541501b8}, {0xf7d88bc24209a565, 0x1f225a7ca91a4226}, {0x9ae757596946075f, 0x3375788de9b06958}, {0xc1a12d2fc3978937, 0x0052d6b1641c83ae}, {0xf209787bb47d6b84, 0xc0678c5dbd23a49a}, {0x9745eb4d50ce6332, 0xf840b7ba963646e0}, {0xbd176620a501fbff, 0xb650e5a93bc3d898}, {0xec5d3fa8ce427aff, 0xa3e51f138ab4cebe}, {0x93ba47c980e98cdf, 0xc66f336c36b10137}, {0xb8a8d9bbe123f017, 0xb80b0047445d4184}, {0xe6d3102ad96cec1d, 0xa60dc059157491e5}, {0x9043ea1ac7e41392, 0x87c89837ad68db2f}, {0xb454e4a179dd1877, 0x29babe4598c311fb}, {0xe16a1dc9d8545e94, 0xf4296dd6fef3d67a}, {0x8ce2529e2734bb1d, 0x1899e4a65f58660c}, {0xb01ae745b101e9e4, 0x5ec05dcff72e7f8f}, {0xdc21a1171d42645d, 0x76707543f4fa1f73}, {0x899504ae72497eba, 0x6a06494a791c53a8}, {0xabfa45da0edbde69, 0x0487db9d17636892}, {0xd6f8d7509292d603, 0x45a9d2845d3c42b6}, {0x865b86925b9bc5c2, 0x0b8a2392ba45a9b2}, {0xa7f26836f282b732, 0x8e6cac7768d7141e}, {0xd1ef0244af2364ff, 0x3207d795430cd926}, {0x8335616aed761f1f, 0x7f44e6bd49e807b8}, {0xa402b9c5a8d3a6e7, 0x5f16206c9c6209a6}, {0xcd036837130890a1, 0x36dba887c37a8c0f}, {0x802221226be55a64, 0xc2494954da2c9789}, {0xa02aa96b06deb0fd, 0xf2db9baa10b7bd6c}, {0xc83553c5c8965d3d, 0x6f92829494e5acc7}, {0xfa42a8b73abbf48c, 0xcb772339ba1f17f9}, {0x9c69a97284b578d7, 0xff2a760414536efb}, {0xc38413cf25e2d70d, 0xfef5138519684aba}, {0xf46518c2ef5b8cd1, 0x7eb258665fc25d69}, {0x98bf2f79d5993802, 0xef2f773ffbd97a61}, {0xbeeefb584aff8603, 0xaafb550ffacfd8fa}, {0xeeaaba2e5dbf6784, 0x95ba2a53f983cf38}, {0x952ab45cfa97a0b2, 0xdd945a747bf26183}, {0xba756174393d88df, 0x94f971119aeef9e4}, {0xe912b9d1478ceb17, 0x7a37cd5601aab85d}, {0x91abb422ccb812ee, 0xac62e055c10ab33a}, {0xb616a12b7fe617aa, 0x577b986b314d6009}, {0xe39c49765fdf9d94, 0xed5a7e85fda0b80b}, {0x8e41ade9fbebc27d, 0x14588f13be847307}, {0xb1d219647ae6b31c, 0x596eb2d8ae258fc8}, {0xde469fbd99a05fe3, 0x6fca5f8ed9aef3bb}, {0x8aec23d680043bee, 0x25de7bb9480d5854}, {0xada72ccc20054ae9, 0xaf561aa79a10ae6a}, {0xd910f7ff28069da4, 0x1b2ba1518094da04}, {0x87aa9aff79042286, 0x90fb44d2f05d0842}, {0xa99541bf57452b28, 0x353a1607ac744a53}, {0xd3fa922f2d1675f2, 0x42889b8997915ce8}, {0x847c9b5d7c2e09b7, 0x69956135febada11}, {0xa59bc234db398c25, 0x43fab9837e699095}, {0xcf02b2c21207ef2e, 0x94f967e45e03f4bb}, {0x8161afb94b44f57d, 0x1d1be0eebac278f5}, {0xa1ba1ba79e1632dc, 0x6462d92a69731732}, {0xca28a291859bbf93, 0x7d7b8f7503cfdcfe}, {0xfcb2cb35e702af78, 0x5cda735244c3d43e}, {0x9defbf01b061adab, 0x3a0888136afa64a7}, {0xc56baec21c7a1916, 0x088aaa1845b8fdd0}, {0xf6c69a72a3989f5b, 0x8aad549e57273d45}, {0x9a3c2087a63f6399, 0x36ac54e2f678864b}, {0xc0cb28a98fcf3c7f, 0x84576a1bb416a7dd}, {0xf0fdf2d3f3c30b9f, 0x656d44a2a11c51d5}, {0x969eb7c47859e743, 0x9f644ae5a4b1b325}, {0xbc4665b596706114, 0x873d5d9f0dde1fee}, {0xeb57ff22fc0c7959, 0xa90cb506d155a7ea}, {0x9316ff75dd87cbd8, 0x09a7f12442d588f2}, {0xb7dcbf5354e9bece, 0x0c11ed6d538aeb2f}, {0xe5d3ef282a242e81, 0x8f1668c8a86da5fa}, {0x8fa475791a569d10, 0xf96e017d694487bc}, {0xb38d92d760ec4455, 0x37c981dcc395a9ac}, {0xe070f78d3927556a, 0x85bbe253f47b1417}, {0x8c469ab843b89562, 0x93956d7478ccec8e}, {0xaf58416654a6babb, 0x387ac8d1970027b2}, {0xdb2e51bfe9d0696a, 0x06997b05fcc0319e}, {0x88fcf317f22241e2, 0x441fece3bdf81f03}, {0xab3c2fddeeaad25a, 0xd527e81cad7626c3}, {0xd60b3bd56a5586f1, 0x8a71e223d8d3b074}, {0x85c7056562757456, 0xf6872d5667844e49}, {0xa738c6bebb12d16c, 0xb428f8ac016561db}, {0xd106f86e69d785c7, 0xe13336d701beba52}, {0x82a45b450226b39c, 0xecc0024661173473}, {0xa34d721642b06084, 0x27f002d7f95d0190}, {0xcc20ce9bd35c78a5, 0x31ec038df7b441f4}, {0xff290242c83396ce, 0x7e67047175a15271}, {0x9f79a169bd203e41, 0x0f0062c6e984d386}, {0xc75809c42c684dd1, 0x52c07b78a3e60868}, {0xf92e0c3537826145, 0xa7709a56ccdf8a82}, {0x9bbcc7a142b17ccb, 0x88a66076400bb691}, {0xc2abf989935ddbfe, 0x6acff893d00ea435}, {0xf356f7ebf83552fe, 0x0583f6b8c4124d43}, {0x98165af37b2153de, 0xc3727a337a8b704a}, {0xbe1bf1b059e9a8d6, 0x744f18c0592e4c5c}, {0xeda2ee1c7064130c, 0x1162def06f79df73}, {0x9485d4d1c63e8be7, 0x8addcb5645ac2ba8}, {0xb9a74a0637ce2ee1, 0x6d953e2bd7173692}, {0xe8111c87c5c1ba99, 0xc8fa8db6ccdd0437}, {0x910ab1d4db9914a0, 0x1d9c9892400a22a2}, {0xb54d5e4a127f59c8, 0x2503beb6d00cab4b}, {0xe2a0b5dc971f303a, 0x2e44ae64840fd61d}, {0x8da471a9de737e24, 0x5ceaecfed289e5d2}, {0xb10d8e1456105dad, 0x7425a83e872c5f47}, {0xdd50f1996b947518, 0xd12f124e28f77719}, {0x8a5296ffe33cc92f, 0x82bd6b70d99aaa6f}, {0xace73cbfdc0bfb7b, 0x636cc64d1001550b}, {0xd8210befd30efa5a, 0x3c47f7e05401aa4e}, {0x8714a775e3e95c78, 0x65acfaec34810a71}, {0xa8d9d1535ce3b396, 0x7f1839a741a14d0d}, {0xd31045a8341ca07c, 0x1ede48111209a050}, {0x83ea2b892091e44d, 0x934aed0aab460432}, {0xa4e4b66b68b65d60, 0xf81da84d5617853f}, {0xce1de40642e3f4b9, 0x36251260ab9d668e}, {0x80d2ae83e9ce78f3, 0xc1d72b7c6b426019}, {0xa1075a24e4421730, 0xb24cf65b8612f81f}, {0xc94930ae1d529cfc, 0xdee033f26797b627}, {0xfb9b7cd9a4a7443c, 0x169840ef017da3b1}, {0x9d412e0806e88aa5, 0x8e1f289560ee864e}, {0xc491798a08a2ad4e, 0xf1a6f2bab92a27e2}, {0xf5b5d7ec8acb58a2, 0xae10af696774b1db}, {0x9991a6f3d6bf1765, 0xacca6da1e0a8ef29}, {0xbff610b0cc6edd3f, 0x17fd090a58d32af3}, {0xeff394dcff8a948e, 0xddfc4b4cef07f5b0}, {0x95f83d0a1fb69cd9, 0x4abdaf101564f98e}, {0xbb764c4ca7a4440f, 0x9d6d1ad41abe37f1}, {0xea53df5fd18d5513, 0x84c86189216dc5ed}, {0x92746b9be2f8552c, 0x32fd3cf5b4e49bb4}, {0xb7118682dbb66a77, 0x3fbc8c33221dc2a1}, {0xe4d5e82392a40515, 0x0fabaf3feaa5334a}, {0x8f05b1163ba6832d, 0x29cb4d87f2a7400e}, {0xb2c71d5bca9023f8, 0x743e20e9ef511012}, {0xdf78e4b2bd342cf6, 0x914da9246b255416}, {0x8bab8eefb6409c1a, 0x1ad089b6c2f7548e}, {0xae9672aba3d0c320, 0xa184ac2473b529b1}, {0xda3c0f568cc4f3e8, 0xc9e5d72d90a2741e}, {0x8865899617fb1871, 0x7e2fa67c7a658892}, {0xaa7eebfb9df9de8d, 0xddbb901b98feeab7}, {0xd51ea6fa85785631, 0x552a74227f3ea565}, {0x8533285c936b35de, 0xd53a88958f87275f}, {0xa67ff273b8460356, 0x8a892abaf368f137}, {0xd01fef10a657842c, 0x2d2b7569b0432d85}, {0x8213f56a67f6b29b, 0x9c3b29620e29fc73}, {0xa298f2c501f45f42, 0x8349f3ba91b47b8f}, {0xcb3f2f7642717713, 0x241c70a936219a73}, {0xfe0efb53d30dd4d7, 0xed238cd383aa0110}, {0x9ec95d1463e8a506, 0xf4363804324a40aa}, {0xc67bb4597ce2ce48, 0xb143c6053edcd0d5}, {0xf81aa16fdc1b81da, 0xdd94b7868e94050a}, {0x9b10a4e5e9913128, 0xca7cf2b4191c8326}, {0xc1d4ce1f63f57d72, 0xfd1c2f611f63a3f0}, {0xf24a01a73cf2dccf, 0xbc633b39673c8cec}, {0x976e41088617ca01, 0xd5be0503e085d813}, {0xbd49d14aa79dbc82, 0x4b2d8644d8a74e18}, {0xec9c459d51852ba2, 0xddf8e7d60ed1219e}, {0x93e1ab8252f33b45, 0xcabb90e5c942b503}, {0xb8da1662e7b00a17, 0x3d6a751f3b936243}, {0xe7109bfba19c0c9d, 0x0cc512670a783ad4}, {0x906a617d450187e2, 0x27fb2b80668b24c5}, {0xb484f9dc9641e9da, 0xb1f9f660802dedf6}, {0xe1a63853bbd26451, 0x5e7873f8a0396973}, {0x8d07e33455637eb2, 0xdb0b487b6423e1e8}, {0xb049dc016abc5e5f, 0x91ce1a9a3d2cda62}, {0xdc5c5301c56b75f7, 0x7641a140cc7810fb}, {0x89b9b3e11b6329ba, 0xa9e904c87fcb0a9d}, {0xac2820d9623bf429, 0x546345fa9fbdcd44}, {0xd732290fbacaf133, 0xa97c177947ad4095}, {0x867f59a9d4bed6c0, 0x49ed8eabcccc485d}, {0xa81f301449ee8c70, 0x5c68f256bfff5a74}, {0xd226fc195c6a2f8c, 0x73832eec6fff3111}, {0x83585d8fd9c25db7, 0xc831fd53c5ff7eab}, {0xa42e74f3d032f525, 0xba3e7ca8b77f5e55}, {0xcd3a1230c43fb26f, 0x28ce1bd2e55f35eb}, {0x80444b5e7aa7cf85, 0x7980d163cf5b81b3}, {0xa0555e361951c366, 0xd7e105bcc332621f}, {0xc86ab5c39fa63440, 0x8dd9472bf3fefaa7}, {0xfa856334878fc150, 0xb14f98f6f0feb951}, {0x9c935e00d4b9d8d2, 0x6ed1bf9a569f33d3}, {0xc3b8358109e84f07, 0x0a862f80ec4700c8}, {0xf4a642e14c6262c8, 0xcd27bb612758c0fa}, {0x98e7e9cccfbd7dbd, 0x8038d51cb897789c}, {0xbf21e44003acdd2c, 0xe0470a63e6bd56c3}, {0xeeea5d5004981478, 0x1858ccfce06cac74}, {0x95527a5202df0ccb, 0x0f37801e0c43ebc8}, {0xbaa718e68396cffd, 0xd30560258f54e6ba}, {0xe950df20247c83fd, 0x47c6b82ef32a2069}, {0x91d28b7416cdd27e, 0x4cdc331d57fa5441}, {0xb6472e511c81471d, 0xe0133fe4adf8e952}, {0xe3d8f9e563a198e5, 0x58180fddd97723a6}, {0x8e679c2f5e44ff8f, 0x570f09eaa7ea7648}, {0xb201833b35d63f73, 0x2cd2cc6551e513da}, {0xde81e40a034bcf4f, 0xf8077f7ea65e58d1}, {0x8b112e86420f6191, 0xfb04afaf27faf782}, {0xadd57a27d29339f6, 0x79c5db9af1f9b563}, {0xd94ad8b1c7380874, 0x18375281ae7822bc}, {0x87cec76f1c830548, 0x8f2293910d0b15b5}, {0xa9c2794ae3a3c69a, 0xb2eb3875504ddb22}, {0xd433179d9c8cb841, 0x5fa60692a46151eb}, {0x849feec281d7f328, 0xdbc7c41ba6bcd333}, {0xa5c7ea73224deff3, 0x12b9b522906c0800}, {0xcf39e50feae16bef, 0xd768226b34870a00}, {0x81842f29f2cce375, 0xe6a1158300d46640}, {0xa1e53af46f801c53, 0x60495ae3c1097fd0}, {0xca5e89b18b602368, 0x385bb19cb14bdfc4}, {0xfcf62c1dee382c42, 0x46729e03dd9ed7b5}, {0x9e19db92b4e31ba9, 0x6c07a2c26a8346d1}, {0xc5a05277621be293, 0xc7098b7305241885}, {0xf70867153aa2db38, 0xb8cbee4fc66d1ea7} #else {0xff77b1fcbebcdc4f, 0x25e8e89c13bb0f7b}, {0xce5d73ff402d98e3, 0xfb0a3d212dc81290}, {0xa6b34ad8c9dfc06f, 0xf42faa48c0ea481f}, {0x86a8d39ef77164bc, 0xae5dff9c02033198}, {0xd98ddaee19068c76, 0x3badd624dd9b0958}, {0xafbd2350644eeacf, 0xe5d1929ef90898fb}, {0x8df5efabc5979c8f, 0xca8d3ffa1ef463c2}, {0xe55990879ddcaabd, 0xcc420a6a101d0516}, {0xb94470938fa89bce, 0xf808e40e8d5b3e6a}, {0x95a8637627989aad, 0xdde7001379a44aa9}, {0xf1c90080baf72cb1, 0x5324c68b12dd6339}, {0xc350000000000000, 0x0000000000000000}, {0x9dc5ada82b70b59d, 0xf020000000000000}, {0xfee50b7025c36a08, 0x02f236d04753d5b4}, {0xcde6fd5e09abcf26, 0xed4c0226b55e6f86}, {0xa6539930bf6bff45, 0x84db8346b786151c}, {0x865b86925b9bc5c2, 0x0b8a2392ba45a9b2}, {0xd910f7ff28069da4, 0x1b2ba1518094da04}, {0xaf58416654a6babb, 0x387ac8d1970027b2}, {0x8da471a9de737e24, 0x5ceaecfed289e5d2}, {0xe4d5e82392a40515, 0x0fabaf3feaa5334a}, {0xb8da1662e7b00a17, 0x3d6a751f3b936243}, {0x95527a5202df0ccb, 0x0f37801e0c43ebc8} #endif }; #if !FMT_USE_FULL_CACHE_DRAGONBOX template <typename T> const uint64_t basic_data<T>::powers_of_5_64[] = { 0x0000000000000001, 0x0000000000000005, 0x0000000000000019, 0x000000000000007d, 0x0000000000000271, 0x0000000000000c35, 0x0000000000003d09, 0x000000000001312d, 0x000000000005f5e1, 0x00000000001dcd65, 0x00000000009502f9, 0x0000000002e90edd, 0x000000000e8d4a51, 0x0000000048c27395, 0x000000016bcc41e9, 0x000000071afd498d, 0x0000002386f26fc1, 0x000000b1a2bc2ec5, 0x000003782dace9d9, 0x00001158e460913d, 0x000056bc75e2d631, 0x0001b1ae4d6e2ef5, 0x000878678326eac9, 0x002a5a058fc295ed, 0x00d3c21bcecceda1, 0x0422ca8b0a00a425, 0x14adf4b7320334b9}; template <typename T> const uint32_t basic_data<T>::dragonbox_pow10_recovery_errors[] = { 0x50001400, 0x54044100, 0x54014555, 0x55954415, 0x54115555, 0x00000001, 0x50000000, 0x00104000, 0x54010004, 0x05004001, 0x55555544, 0x41545555, 0x54040551, 0x15445545, 0x51555514, 0x10000015, 0x00101100, 0x01100015, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x04450514, 0x45414110, 0x55555145, 0x50544050, 0x15040155, 0x11054140, 0x50111514, 0x11451454, 0x00400541, 0x00000000, 0x55555450, 0x10056551, 0x10054011, 0x55551014, 0x69514555, 0x05151109, 0x00155555}; #endif template <typename T> const char basic_data<T>::foreground_color[] = "\x1b[38;2;"; template <typename T> const char basic_data<T>::background_color[] = "\x1b[48;2;"; template <typename T> const char basic_data<T>::reset_color[] = "\x1b[0m"; template <typename T> const wchar_t basic_data<T>::wreset_color[] = L"\x1b[0m"; template <typename T> const char basic_data<T>::signs[] = {0, '-', '+', ' '}; #if __cplusplus < 201703L template <typename T> constexpr const char basic_data<T>::hex_digits[]; template <typename T> constexpr const char basic_data<T>::left_padding_shifts[]; template <typename T> constexpr const char basic_data<T>::right_padding_shifts[]; #endif template <typename T> struct bits { static FMT_CONSTEXPR_DECL const int value = static_cast<int>(sizeof(T) * std::numeric_limits<unsigned char>::digits); }; class fp; template <int SHIFT = 0> fp normalize(fp value); // Lower (upper) boundary is a value half way between a floating-point value // and its predecessor (successor). Boundaries have the same exponent as the // value so only significands are stored. struct boundaries { uint64_t lower; uint64_t upper; }; // A handmade floating-point number f * pow(2, e). class fp { private: using significand_type = uint64_t; template <typename Float> using is_supported_float = bool_constant<sizeof(Float) == sizeof(uint64_t) || sizeof(Float) == sizeof(uint32_t)>; public: significand_type f; int e; // All sizes are in bits. // Subtract 1 to account for an implicit most significant bit in the // normalized form. static FMT_CONSTEXPR_DECL const int double_significand_size = std::numeric_limits<double>::digits - 1; static FMT_CONSTEXPR_DECL const uint64_t implicit_bit = 1ULL << double_significand_size; static FMT_CONSTEXPR_DECL const int significand_size = bits<significand_type>::value; fp() : f(0), e(0) {} fp(uint64_t f_val, int e_val) : f(f_val), e(e_val) {} // Constructs fp from an IEEE754 double. It is a template to prevent compile // errors on platforms where double is not IEEE754. template <typename Double> explicit fp(Double d) { assign(d); } // Assigns d to this and return true iff predecessor is closer than successor. template <typename Float, FMT_ENABLE_IF(is_supported_float<Float>::value)> bool assign(Float d) { // Assume float is in the format [sign][exponent][significand]. using limits = std::numeric_limits<Float>; const int float_significand_size = limits::digits - 1; const int exponent_size = bits<Float>::value - float_significand_size - 1; // -1 for sign const uint64_t float_implicit_bit = 1ULL << float_significand_size; const uint64_t significand_mask = float_implicit_bit - 1; const uint64_t exponent_mask = (~0ULL >> 1) & ~significand_mask; const int exponent_bias = (1 << exponent_size) - limits::max_exponent - 1; constexpr bool is_double = sizeof(Float) == sizeof(uint64_t); auto u = bit_cast<conditional_t<is_double, uint64_t, uint32_t>>(d); f = u & significand_mask; int biased_e = static_cast<int>((u & exponent_mask) >> float_significand_size); // Predecessor is closer if d is a normalized power of 2 (f == 0) other than // the smallest normalized number (biased_e > 1). bool is_predecessor_closer = f == 0 && biased_e > 1; if (biased_e != 0) f += float_implicit_bit; else biased_e = 1; // Subnormals use biased exponent 1 (min exponent). e = biased_e - exponent_bias - float_significand_size; return is_predecessor_closer; } template <typename Float, FMT_ENABLE_IF(!is_supported_float<Float>::value)> bool assign(Float) { *this = fp(); return false; } }; // Normalizes the value converted from double and multiplied by (1 << SHIFT). template <int SHIFT> fp normalize(fp value) { // Handle subnormals. const auto shifted_implicit_bit = fp::implicit_bit << SHIFT; while ((value.f & shifted_implicit_bit) == 0) { value.f <<= 1; --value.e; } // Subtract 1 to account for hidden bit. const auto offset = fp::significand_size - fp::double_significand_size - SHIFT - 1; value.f <<= offset; value.e -= offset; return value; } inline bool operator==(fp x, fp y) { return x.f == y.f && x.e == y.e; } // Computes lhs * rhs / pow(2, 64) rounded to nearest with half-up tie breaking. inline uint64_t multiply(uint64_t lhs, uint64_t rhs) { #if FMT_USE_INT128 auto product = static_cast<__uint128_t>(lhs) * rhs; auto f = static_cast<uint64_t>(product >> 64); return (static_cast<uint64_t>(product) & (1ULL << 63)) != 0 ? f + 1 : f; #else // Multiply 32-bit parts of significands. uint64_t mask = (1ULL << 32) - 1; uint64_t a = lhs >> 32, b = lhs & mask; uint64_t c = rhs >> 32, d = rhs & mask; uint64_t ac = a * c, bc = b * c, ad = a * d, bd = b * d; // Compute mid 64-bit of result and round. uint64_t mid = (bd >> 32) + (ad & mask) + (bc & mask) + (1U << 31); return ac + (ad >> 32) + (bc >> 32) + (mid >> 32); #endif } inline fp operator*(fp x, fp y) { return {multiply(x.f, y.f), x.e + y.e + 64}; } // Returns a cached power of 10 `c_k = c_k.f * pow(2, c_k.e)` such that its // (binary) exponent satisfies `min_exponent <= c_k.e <= min_exponent + 28`. inline fp get_cached_power(int min_exponent, int& pow10_exponent) { const int shift = 32; const auto significand = static_cast<int64_t>(data::log10_2_significand); int index = static_cast<int>( ((min_exponent + fp::significand_size - 1) * (significand >> shift) + ((int64_t(1) << shift) - 1)) // ceil >> 32 // arithmetic shift ); // Decimal exponent of the first (smallest) cached power of 10. const int first_dec_exp = -348; // Difference between 2 consecutive decimal exponents in cached powers of 10. const int dec_exp_step = 8; index = (index - first_dec_exp - 1) / dec_exp_step + 1; pow10_exponent = first_dec_exp + index * dec_exp_step; return {data::grisu_pow10_significands[index], data::grisu_pow10_exponents[index]}; } // A simple accumulator to hold the sums of terms in bigint::square if uint128_t // is not available. struct accumulator { uint64_t lower; uint64_t upper; accumulator() : lower(0), upper(0) {} explicit operator uint32_t() const { return static_cast<uint32_t>(lower); } void operator+=(uint64_t n) { lower += n; if (lower < n) ++upper; } void operator>>=(int shift) { FMT_ASSERT(shift == 32, ""); (void)shift; lower = (upper << 32) | (lower >> 32); upper >>= 32; } }; class bigint { private: // A bigint is stored as an array of bigits (big digits), with bigit at index // 0 being the least significant one. using bigit = uint32_t; using double_bigit = uint64_t; enum { bigits_capacity = 32 }; basic_memory_buffer<bigit, bigits_capacity> bigits_; int exp_; bigit operator[](int index) const { return bigits_[to_unsigned(index)]; } bigit& operator[](int index) { return bigits_[to_unsigned(index)]; } static FMT_CONSTEXPR_DECL const int bigit_bits = bits<bigit>::value; friend struct formatter<bigint>; void subtract_bigits(int index, bigit other, bigit& borrow) { auto result = static_cast<double_bigit>((*this)[index]) - other - borrow; (*this)[index] = static_cast<bigit>(result); borrow = static_cast<bigit>(result >> (bigit_bits * 2 - 1)); } void remove_leading_zeros() { int num_bigits = static_cast<int>(bigits_.size()) - 1; while (num_bigits > 0 && (*this)[num_bigits] == 0) --num_bigits; bigits_.resize(to_unsigned(num_bigits + 1)); } // Computes *this -= other assuming aligned bigints and *this >= other. void subtract_aligned(const bigint& other) { FMT_ASSERT(other.exp_ >= exp_, "unaligned bigints"); FMT_ASSERT(compare(*this, other) >= 0, ""); bigit borrow = 0; int i = other.exp_ - exp_; for (size_t j = 0, n = other.bigits_.size(); j != n; ++i, ++j) subtract_bigits(i, other.bigits_[j], borrow); while (borrow > 0) subtract_bigits(i, 0, borrow); remove_leading_zeros(); } void multiply(uint32_t value) { const double_bigit wide_value = value; bigit carry = 0; for (size_t i = 0, n = bigits_.size(); i < n; ++i) { double_bigit result = bigits_[i] * wide_value + carry; bigits_[i] = static_cast<bigit>(result); carry = static_cast<bigit>(result >> bigit_bits); } if (carry != 0) bigits_.push_back(carry); } void multiply(uint64_t value) { const bigit mask = ~bigit(0); const double_bigit lower = value & mask; const double_bigit upper = value >> bigit_bits; double_bigit carry = 0; for (size_t i = 0, n = bigits_.size(); i < n; ++i) { double_bigit result = bigits_[i] * lower + (carry & mask); carry = bigits_[i] * upper + (result >> bigit_bits) + (carry >> bigit_bits); bigits_[i] = static_cast<bigit>(result); } while (carry != 0) { bigits_.push_back(carry & mask); carry >>= bigit_bits; } } public: bigint() : exp_(0) {} explicit bigint(uint64_t n) { assign(n); } ~bigint() { FMT_ASSERT(bigits_.capacity() <= bigits_capacity, ""); } bigint(const bigint&) = delete; void operator=(const bigint&) = delete; void assign(const bigint& other) { auto size = other.bigits_.size(); bigits_.resize(size); auto data = other.bigits_.data(); std::copy(data, data + size, make_checked(bigits_.data(), size)); exp_ = other.exp_; } void assign(uint64_t n) { size_t num_bigits = 0; do { bigits_[num_bigits++] = n & ~bigit(0); n >>= bigit_bits; } while (n != 0); bigits_.resize(num_bigits); exp_ = 0; } int num_bigits() const { return static_cast<int>(bigits_.size()) + exp_; } FMT_NOINLINE bigint& operator<<=(int shift) { FMT_ASSERT(shift >= 0, ""); exp_ += shift / bigit_bits; shift %= bigit_bits; if (shift == 0) return *this; bigit carry = 0; for (size_t i = 0, n = bigits_.size(); i < n; ++i) { bigit c = bigits_[i] >> (bigit_bits - shift); bigits_[i] = (bigits_[i] << shift) + carry; carry = c; } if (carry != 0) bigits_.push_back(carry); return *this; } template <typename Int> bigint& operator*=(Int value) { FMT_ASSERT(value > 0, ""); multiply(uint32_or_64_or_128_t<Int>(value)); return *this; } friend int compare(const bigint& lhs, const bigint& rhs) { int num_lhs_bigits = lhs.num_bigits(), num_rhs_bigits = rhs.num_bigits(); if (num_lhs_bigits != num_rhs_bigits) return num_lhs_bigits > num_rhs_bigits ? 1 : -1; int i = static_cast<int>(lhs.bigits_.size()) - 1; int j = static_cast<int>(rhs.bigits_.size()) - 1; int end = i - j; if (end < 0) end = 0; for (; i >= end; --i, --j) { bigit lhs_bigit = lhs[i], rhs_bigit = rhs[j]; if (lhs_bigit != rhs_bigit) return lhs_bigit > rhs_bigit ? 1 : -1; } if (i != j) return i > j ? 1 : -1; return 0; } // Returns compare(lhs1 + lhs2, rhs). friend int add_compare(const bigint& lhs1, const bigint& lhs2, const bigint& rhs) { int max_lhs_bigits = (std::max)(lhs1.num_bigits(), lhs2.num_bigits()); int num_rhs_bigits = rhs.num_bigits(); if (max_lhs_bigits + 1 < num_rhs_bigits) return -1; if (max_lhs_bigits > num_rhs_bigits) return 1; auto get_bigit = [](const bigint& n, int i) -> bigit { return i >= n.exp_ && i < n.num_bigits() ? n[i - n.exp_] : 0; }; double_bigit borrow = 0; int min_exp = (std::min)((std::min)(lhs1.exp_, lhs2.exp_), rhs.exp_); for (int i = num_rhs_bigits - 1; i >= min_exp; --i) { double_bigit sum = static_cast<double_bigit>(get_bigit(lhs1, i)) + get_bigit(lhs2, i); bigit rhs_bigit = get_bigit(rhs, i); if (sum > rhs_bigit + borrow) return 1; borrow = rhs_bigit + borrow - sum; if (borrow > 1) return -1; borrow <<= bigit_bits; } return borrow != 0 ? -1 : 0; } // Assigns pow(10, exp) to this bigint. void assign_pow10(int exp) { FMT_ASSERT(exp >= 0, ""); if (exp == 0) return assign(1); // Find the top bit. int bitmask = 1; while (exp >= bitmask) bitmask <<= 1; bitmask >>= 1; // pow(10, exp) = pow(5, exp) * pow(2, exp). First compute pow(5, exp) by // repeated squaring and multiplication. assign(5); bitmask >>= 1; while (bitmask != 0) { square(); if ((exp & bitmask) != 0) *this *= 5; bitmask >>= 1; } *this <<= exp; // Multiply by pow(2, exp) by shifting. } void square() { basic_memory_buffer<bigit, bigits_capacity> n(std::move(bigits_)); int num_bigits = static_cast<int>(bigits_.size()); int num_result_bigits = 2 * num_bigits; bigits_.resize(to_unsigned(num_result_bigits)); using accumulator_t = conditional_t<FMT_USE_INT128, uint128_t, accumulator>; auto sum = accumulator_t(); for (int bigit_index = 0; bigit_index < num_bigits; ++bigit_index) { // Compute bigit at position bigit_index of the result by adding // cross-product terms n[i] * n[j] such that i + j == bigit_index. for (int i = 0, j = bigit_index; j >= 0; ++i, --j) { // Most terms are multiplied twice which can be optimized in the future. sum += static_cast<double_bigit>(n[i]) * n[j]; } (*this)[bigit_index] = static_cast<bigit>(sum); sum >>= bits<bigit>::value; // Compute the carry. } // Do the same for the top half. for (int bigit_index = num_bigits; bigit_index < num_result_bigits; ++bigit_index) { for (int j = num_bigits - 1, i = bigit_index - j; i < num_bigits;) sum += static_cast<double_bigit>(n[i++]) * n[j--]; (*this)[bigit_index] = static_cast<bigit>(sum); sum >>= bits<bigit>::value; } --num_result_bigits; remove_leading_zeros(); exp_ *= 2; } // If this bigint has a bigger exponent than other, adds trailing zero to make // exponents equal. This simplifies some operations such as subtraction. void align(const bigint& other) { int exp_difference = exp_ - other.exp_; if (exp_difference <= 0) return; int num_bigits = static_cast<int>(bigits_.size()); bigits_.resize(to_unsigned(num_bigits + exp_difference)); for (int i = num_bigits - 1, j = i + exp_difference; i >= 0; --i, --j) bigits_[j] = bigits_[i]; std::uninitialized_fill_n(bigits_.data(), exp_difference, 0); exp_ -= exp_difference; } // Divides this bignum by divisor, assigning the remainder to this and // returning the quotient. int divmod_assign(const bigint& divisor) { FMT_ASSERT(this != &divisor, ""); if (compare(*this, divisor) < 0) return 0; FMT_ASSERT(divisor.bigits_[divisor.bigits_.size() - 1u] != 0, ""); align(divisor); int quotient = 0; do { subtract_aligned(divisor); ++quotient; } while (compare(*this, divisor) >= 0); return quotient; } }; enum class round_direction { unknown, up, down }; // Given the divisor (normally a power of 10), the remainder = v % divisor for // some number v and the error, returns whether v should be rounded up, down, or // whether the rounding direction can't be determined due to error. // error should be less than divisor / 2. inline round_direction get_round_direction(uint64_t divisor, uint64_t remainder, uint64_t error) { FMT_ASSERT(remainder < divisor, ""); // divisor - remainder won't overflow. FMT_ASSERT(error < divisor, ""); // divisor - error won't overflow. FMT_ASSERT(error < divisor - error, ""); // error * 2 won't overflow. // Round down if (remainder + error) * 2 <= divisor. if (remainder <= divisor - remainder && error * 2 <= divisor - remainder * 2) return round_direction::down; // Round up if (remainder - error) * 2 >= divisor. if (remainder >= error && remainder - error >= divisor - (remainder - error)) { return round_direction::up; } return round_direction::unknown; } namespace digits { enum result { more, // Generate more digits. done, // Done generating digits. error // Digit generation cancelled due to an error. }; } // Generates output using the Grisu digit-gen algorithm. // error: the size of the region (lower, upper) outside of which numbers // definitely do not round to value (Delta in Grisu3). template <typename Handler> FMT_ALWAYS_INLINE digits::result grisu_gen_digits(fp value, uint64_t error, int& exp, Handler& handler) { const fp one(1ULL << -value.e, value.e); // The integral part of scaled value (p1 in Grisu) = value / one. It cannot be // zero because it contains a product of two 64-bit numbers with MSB set (due // to normalization) - 1, shifted right by at most 60 bits. auto integral = static_cast<uint32_t>(value.f >> -one.e); FMT_ASSERT(integral != 0, ""); FMT_ASSERT(integral == value.f >> -one.e, ""); // The fractional part of scaled value (p2 in Grisu) c = value % one. uint64_t fractional = value.f & (one.f - 1); exp = count_digits(integral); // kappa in Grisu. // Divide by 10 to prevent overflow. auto result = handler.on_start(data::powers_of_10_64[exp - 1] << -one.e, value.f / 10, error * 10, exp); if (result != digits::more) return result; // Generate digits for the integral part. This can produce up to 10 digits. do { uint32_t digit = 0; auto divmod_integral = [&](uint32_t divisor) { digit = integral / divisor; integral %= divisor; }; // This optimization by Milo Yip reduces the number of integer divisions by // one per iteration. switch (exp) { case 10: divmod_integral(1000000000); break; case 9: divmod_integral(100000000); break; case 8: divmod_integral(10000000); break; case 7: divmod_integral(1000000); break; case 6: divmod_integral(100000); break; case 5: divmod_integral(10000); break; case 4: divmod_integral(1000); break; case 3: divmod_integral(100); break; case 2: divmod_integral(10); break; case 1: digit = integral; integral = 0; break; default: FMT_ASSERT(false, "invalid number of digits"); } --exp; auto remainder = (static_cast<uint64_t>(integral) << -one.e) + fractional; result = handler.on_digit(static_cast<char>('0' + digit), data::powers_of_10_64[exp] << -one.e, remainder, error, exp, true); if (result != digits::more) return result; } while (exp > 0); // Generate digits for the fractional part. for (;;) { fractional *= 10; error *= 10; char digit = static_cast<char>('0' + (fractional >> -one.e)); fractional &= one.f - 1; --exp; result = handler.on_digit(digit, one.f, fractional, error, exp, false); if (result != digits::more) return result; } } // The fixed precision digit handler. struct fixed_handler { char* buf; int size; int precision; int exp10; bool fixed; digits::result on_start(uint64_t divisor, uint64_t remainder, uint64_t error, int& exp) { // Non-fixed formats require at least one digit and no precision adjustment. if (!fixed) return digits::more; // Adjust fixed precision by exponent because it is relative to decimal // point. precision += exp + exp10; // Check if precision is satisfied just by leading zeros, e.g. // format("{:.2f}", 0.001) gives "0.00" without generating any digits. if (precision > 0) return digits::more; if (precision < 0) return digits::done; auto dir = get_round_direction(divisor, remainder, error); if (dir == round_direction::unknown) return digits::error; buf[size++] = dir == round_direction::up ? '1' : '0'; return digits::done; } digits::result on_digit(char digit, uint64_t divisor, uint64_t remainder, uint64_t error, int, bool integral) { FMT_ASSERT(remainder < divisor, ""); buf[size++] = digit; if (!integral && error >= remainder) return digits::error; if (size < precision) return digits::more; if (!integral) { // Check if error * 2 < divisor with overflow prevention. // The check is not needed for the integral part because error = 1 // and divisor > (1 << 32) there. if (error >= divisor || error >= divisor - error) return digits::error; } else { FMT_ASSERT(error == 1 && divisor > 2, ""); } auto dir = get_round_direction(divisor, remainder, error); if (dir != round_direction::up) return dir == round_direction::down ? digits::done : digits::error; ++buf[size - 1]; for (int i = size - 1; i > 0 && buf[i] > '9'; --i) { buf[i] = '0'; ++buf[i - 1]; } if (buf[0] > '9') { buf[0] = '1'; if (fixed) buf[size++] = '0'; else ++exp10; } return digits::done; } }; // Implementation of Dragonbox algorithm: https://github.com/jk-jeon/dragonbox. namespace dragonbox { // Computes 128-bit result of multiplication of two 64-bit unsigned integers. inline uint128_wrapper umul128(uint64_t x, uint64_t y) FMT_NOEXCEPT { #if FMT_USE_INT128 return static_cast<uint128_t>(x) * static_cast<uint128_t>(y); #elif defined(_MSC_VER) && defined(_M_X64) uint128_wrapper result; result.low_ = _umul128(x, y, &result.high_); return result; #else const uint64_t mask = (uint64_t(1) << 32) - uint64_t(1); uint64_t a = x >> 32; uint64_t b = x & mask; uint64_t c = y >> 32; uint64_t d = y & mask; uint64_t ac = a * c; uint64_t bc = b * c; uint64_t ad = a * d; uint64_t bd = b * d; uint64_t intermediate = (bd >> 32) + (ad & mask) + (bc & mask); return {ac + (intermediate >> 32) + (ad >> 32) + (bc >> 32), (intermediate << 32) + (bd & mask)}; #endif } // Computes upper 64 bits of multiplication of two 64-bit unsigned integers. inline uint64_t umul128_upper64(uint64_t x, uint64_t y) FMT_NOEXCEPT { #if FMT_USE_INT128 auto p = static_cast<uint128_t>(x) * static_cast<uint128_t>(y); return static_cast<uint64_t>(p >> 64); #elif defined(_MSC_VER) && defined(_M_X64) return __umulh(x, y); #else return umul128(x, y).high(); #endif } // Computes upper 64 bits of multiplication of a 64-bit unsigned integer and a // 128-bit unsigned integer. inline uint64_t umul192_upper64(uint64_t x, uint128_wrapper y) FMT_NOEXCEPT { uint128_wrapper g0 = umul128(x, y.high()); g0 += umul128_upper64(x, y.low()); return g0.high(); } // Computes upper 32 bits of multiplication of a 32-bit unsigned integer and a // 64-bit unsigned integer. inline uint32_t umul96_upper32(uint32_t x, uint64_t y) FMT_NOEXCEPT { return static_cast<uint32_t>(umul128_upper64(x, y)); } // Computes middle 64 bits of multiplication of a 64-bit unsigned integer and a // 128-bit unsigned integer. inline uint64_t umul192_middle64(uint64_t x, uint128_wrapper y) FMT_NOEXCEPT { uint64_t g01 = x * y.high(); uint64_t g10 = umul128_upper64(x, y.low()); return g01 + g10; } // Computes lower 64 bits of multiplication of a 32-bit unsigned integer and a // 64-bit unsigned integer. inline uint64_t umul96_lower64(uint32_t x, uint64_t y) FMT_NOEXCEPT { return x * y; } // Computes floor(log10(pow(2, e))) for e in [-1700, 1700] using the method from // https://fmt.dev/papers/Grisu-Exact.pdf#page=5, section 3.4. inline int floor_log10_pow2(int e) FMT_NOEXCEPT { FMT_ASSERT(e <= 1700 && e >= -1700, "too large exponent"); const int shift = 22; return (e * static_cast<int>(data::log10_2_significand >> (64 - shift))) >> shift; } // Various fast log computations. inline int floor_log2_pow10(int e) FMT_NOEXCEPT { FMT_ASSERT(e <= 1233 && e >= -1233, "too large exponent"); const uint64_t log2_10_integer_part = 3; const uint64_t log2_10_fractional_digits = 0x5269e12f346e2bf9; const int shift_amount = 19; return (e * static_cast<int>( (log2_10_integer_part << shift_amount) | (log2_10_fractional_digits >> (64 - shift_amount)))) >> shift_amount; } inline int floor_log10_pow2_minus_log10_4_over_3(int e) FMT_NOEXCEPT { FMT_ASSERT(e <= 1700 && e >= -1700, "too large exponent"); const uint64_t log10_4_over_3_fractional_digits = 0x1ffbfc2bbc780375; const int shift_amount = 22; return (e * static_cast<int>(data::log10_2_significand >> (64 - shift_amount)) - static_cast<int>(log10_4_over_3_fractional_digits >> (64 - shift_amount))) >> shift_amount; } // Returns true iff x is divisible by pow(2, exp). inline bool divisible_by_power_of_2(uint32_t x, int exp) FMT_NOEXCEPT { FMT_ASSERT(exp >= 1, ""); FMT_ASSERT(x != 0, ""); #ifdef FMT_BUILTIN_CTZ return FMT_BUILTIN_CTZ(x) >= exp; #else return exp < num_bits<uint32_t>() && x == ((x >> exp) << exp); #endif } inline bool divisible_by_power_of_2(uint64_t x, int exp) FMT_NOEXCEPT { FMT_ASSERT(exp >= 1, ""); FMT_ASSERT(x != 0, ""); #ifdef FMT_BUILTIN_CTZLL return FMT_BUILTIN_CTZLL(x) >= exp; #else return exp < num_bits<uint64_t>() && x == ((x >> exp) << exp); #endif } // Returns true iff x is divisible by pow(5, exp). inline bool divisible_by_power_of_5(uint32_t x, int exp) FMT_NOEXCEPT { FMT_ASSERT(exp <= 10, "too large exponent"); return x * data::divtest_table_for_pow5_32[exp].mod_inv <= data::divtest_table_for_pow5_32[exp].max_quotient; } inline bool divisible_by_power_of_5(uint64_t x, int exp) FMT_NOEXCEPT { FMT_ASSERT(exp <= 23, "too large exponent"); return x * data::divtest_table_for_pow5_64[exp].mod_inv <= data::divtest_table_for_pow5_64[exp].max_quotient; } // Replaces n by floor(n / pow(5, N)) returning true if and only if n is // divisible by pow(5, N). // Precondition: n <= 2 * pow(5, N + 1). template <int N> bool check_divisibility_and_divide_by_pow5(uint32_t& n) FMT_NOEXCEPT { static constexpr struct { uint32_t magic_number; int bits_for_comparison; uint32_t threshold; int shift_amount; } infos[] = {{0xcccd, 16, 0x3333, 18}, {0xa429, 8, 0x0a, 20}}; constexpr auto info = infos[N - 1]; n *= info.magic_number; const uint32_t comparison_mask = (1u << info.bits_for_comparison) - 1; bool result = (n & comparison_mask) <= info.threshold; n >>= info.shift_amount; return result; } // Computes floor(n / pow(10, N)) for small n and N. // Precondition: n <= pow(10, N + 1). template <int N> uint32_t small_division_by_pow10(uint32_t n) FMT_NOEXCEPT { static constexpr struct { uint32_t magic_number; int shift_amount; uint32_t divisor_times_10; } infos[] = {{0xcccd, 19, 100}, {0xa3d8, 22, 1000}}; constexpr auto info = infos[N - 1]; FMT_ASSERT(n <= info.divisor_times_10, "n is too large"); return n * info.magic_number >> info.shift_amount; } // Computes floor(n / 10^(kappa + 1)) (float) inline uint32_t divide_by_10_to_kappa_plus_1(uint32_t n) FMT_NOEXCEPT { return n / float_info<float>::big_divisor; } // Computes floor(n / 10^(kappa + 1)) (double) inline uint64_t divide_by_10_to_kappa_plus_1(uint64_t n) FMT_NOEXCEPT { return umul128_upper64(n, 0x83126e978d4fdf3c) >> 9; } // Various subroutines using pow10 cache template <class T> struct cache_accessor; template <> struct cache_accessor<float> { using carrier_uint = float_info<float>::carrier_uint; using cache_entry_type = uint64_t; static uint64_t get_cached_power(int k) FMT_NOEXCEPT { FMT_ASSERT(k >= float_info<float>::min_k && k <= float_info<float>::max_k, "k is out of range"); return data::dragonbox_pow10_significands_64[k - float_info<float>::min_k]; } static carrier_uint compute_mul(carrier_uint u, const cache_entry_type& cache) FMT_NOEXCEPT { return umul96_upper32(u, cache); } static uint32_t compute_delta(const cache_entry_type& cache, int beta_minus_1) FMT_NOEXCEPT { return static_cast<uint32_t>(cache >> (64 - 1 - beta_minus_1)); } static bool compute_mul_parity(carrier_uint two_f, const cache_entry_type& cache, int beta_minus_1) FMT_NOEXCEPT { FMT_ASSERT(beta_minus_1 >= 1, ""); FMT_ASSERT(beta_minus_1 < 64, ""); return ((umul96_lower64(two_f, cache) >> (64 - beta_minus_1)) & 1) != 0; } static carrier_uint compute_left_endpoint_for_shorter_interval_case( const cache_entry_type& cache, int beta_minus_1) FMT_NOEXCEPT { return static_cast<carrier_uint>( (cache - (cache >> (float_info<float>::significand_bits + 2))) >> (64 - float_info<float>::significand_bits - 1 - beta_minus_1)); } static carrier_uint compute_right_endpoint_for_shorter_interval_case( const cache_entry_type& cache, int beta_minus_1) FMT_NOEXCEPT { return static_cast<carrier_uint>( (cache + (cache >> (float_info<float>::significand_bits + 1))) >> (64 - float_info<float>::significand_bits - 1 - beta_minus_1)); } static carrier_uint compute_round_up_for_shorter_interval_case( const cache_entry_type& cache, int beta_minus_1) FMT_NOEXCEPT { return (static_cast<carrier_uint>( cache >> (64 - float_info<float>::significand_bits - 2 - beta_minus_1)) + 1) / 2; } }; template <> struct cache_accessor<double> { using carrier_uint = float_info<double>::carrier_uint; using cache_entry_type = uint128_wrapper; static uint128_wrapper get_cached_power(int k) FMT_NOEXCEPT { FMT_ASSERT(k >= float_info<double>::min_k && k <= float_info<double>::max_k, "k is out of range"); #if FMT_USE_FULL_CACHE_DRAGONBOX return data::dragonbox_pow10_significands_128[k - float_info<double>::min_k]; #else static const int compression_ratio = 27; // Compute base index. int cache_index = (k - float_info<double>::min_k) / compression_ratio; int kb = cache_index * compression_ratio + float_info<double>::min_k; int offset = k - kb; // Get base cache. uint128_wrapper base_cache = data::dragonbox_pow10_significands_128[cache_index]; if (offset == 0) return base_cache; // Compute the required amount of bit-shift. int alpha = floor_log2_pow10(kb + offset) - floor_log2_pow10(kb) - offset; FMT_ASSERT(alpha > 0 && alpha < 64, "shifting error detected"); // Try to recover the real cache. uint64_t pow5 = data::powers_of_5_64[offset]; uint128_wrapper recovered_cache = umul128(base_cache.high(), pow5); uint128_wrapper middle_low = umul128(base_cache.low() - (kb < 0 ? 1u : 0u), pow5); recovered_cache += middle_low.high(); uint64_t high_to_middle = recovered_cache.high() << (64 - alpha); uint64_t middle_to_low = recovered_cache.low() << (64 - alpha); recovered_cache = uint128_wrapper{(recovered_cache.low() >> alpha) | high_to_middle, ((middle_low.low() >> alpha) | middle_to_low)}; if (kb < 0) recovered_cache += 1; // Get error. int error_idx = (k - float_info<double>::min_k) / 16; uint32_t error = (data::dragonbox_pow10_recovery_errors[error_idx] >> ((k - float_info<double>::min_k) % 16) * 2) & 0x3; // Add the error back. FMT_ASSERT(recovered_cache.low() + error >= recovered_cache.low(), ""); return {recovered_cache.high(), recovered_cache.low() + error}; #endif } static carrier_uint compute_mul(carrier_uint u, const cache_entry_type& cache) FMT_NOEXCEPT { return umul192_upper64(u, cache); } static uint32_t compute_delta(cache_entry_type const& cache, int beta_minus_1) FMT_NOEXCEPT { return static_cast<uint32_t>(cache.high() >> (64 - 1 - beta_minus_1)); } static bool compute_mul_parity(carrier_uint two_f, const cache_entry_type& cache, int beta_minus_1) FMT_NOEXCEPT { FMT_ASSERT(beta_minus_1 >= 1, ""); FMT_ASSERT(beta_minus_1 < 64, ""); return ((umul192_middle64(two_f, cache) >> (64 - beta_minus_1)) & 1) != 0; } static carrier_uint compute_left_endpoint_for_shorter_interval_case( const cache_entry_type& cache, int beta_minus_1) FMT_NOEXCEPT { return (cache.high() - (cache.high() >> (float_info<double>::significand_bits + 2))) >> (64 - float_info<double>::significand_bits - 1 - beta_minus_1); } static carrier_uint compute_right_endpoint_for_shorter_interval_case( const cache_entry_type& cache, int beta_minus_1) FMT_NOEXCEPT { return (cache.high() + (cache.high() >> (float_info<double>::significand_bits + 1))) >> (64 - float_info<double>::significand_bits - 1 - beta_minus_1); } static carrier_uint compute_round_up_for_shorter_interval_case( const cache_entry_type& cache, int beta_minus_1) FMT_NOEXCEPT { return ((cache.high() >> (64 - float_info<double>::significand_bits - 2 - beta_minus_1)) + 1) / 2; } }; // Various integer checks template <class T> bool is_left_endpoint_integer_shorter_interval(int exponent) FMT_NOEXCEPT { return exponent >= float_info< T>::case_shorter_interval_left_endpoint_lower_threshold && exponent <= float_info<T>::case_shorter_interval_left_endpoint_upper_threshold; } template <class T> bool is_endpoint_integer(typename float_info<T>::carrier_uint two_f, int exponent, int minus_k) FMT_NOEXCEPT { if (exponent < float_info<T>::case_fc_pm_half_lower_threshold) return false; // For k >= 0. if (exponent <= float_info<T>::case_fc_pm_half_upper_threshold) return true; // For k < 0. if (exponent > float_info<T>::divisibility_check_by_5_threshold) return false; return divisible_by_power_of_5(two_f, minus_k); } template <class T> bool is_center_integer(typename float_info<T>::carrier_uint two_f, int exponent, int minus_k) FMT_NOEXCEPT { // Exponent for 5 is negative. if (exponent > float_info<T>::divisibility_check_by_5_threshold) return false; if (exponent > float_info<T>::case_fc_upper_threshold) return divisible_by_power_of_5(two_f, minus_k); // Both exponents are nonnegative. if (exponent >= float_info<T>::case_fc_lower_threshold) return true; // Exponent for 2 is negative. return divisible_by_power_of_2(two_f, minus_k - exponent + 1); } // Remove trailing zeros from n and return the number of zeros removed (float) FMT_ALWAYS_INLINE int remove_trailing_zeros(uint32_t& n) FMT_NOEXCEPT { #ifdef FMT_BUILTIN_CTZ int t = FMT_BUILTIN_CTZ(n); #else int t = ctz(n); #endif if (t > float_info<float>::max_trailing_zeros) t = float_info<float>::max_trailing_zeros; const uint32_t mod_inv1 = 0xcccccccd; const uint32_t max_quotient1 = 0x33333333; const uint32_t mod_inv2 = 0xc28f5c29; const uint32_t max_quotient2 = 0x0a3d70a3; int s = 0; for (; s < t - 1; s += 2) { if (n * mod_inv2 > max_quotient2) break; n *= mod_inv2; } if (s < t && n * mod_inv1 <= max_quotient1) { n *= mod_inv1; ++s; } n >>= s; return s; } // Removes trailing zeros and returns the number of zeros removed (double) FMT_ALWAYS_INLINE int remove_trailing_zeros(uint64_t& n) FMT_NOEXCEPT { #ifdef FMT_BUILTIN_CTZLL int t = FMT_BUILTIN_CTZLL(n); #else int t = ctzll(n); #endif if (t > float_info<double>::max_trailing_zeros) t = float_info<double>::max_trailing_zeros; // Divide by 10^8 and reduce to 32-bits // Since ret_value.significand <= (2^64 - 1) / 1000 < 10^17, // both of the quotient and the r should fit in 32-bits const uint32_t mod_inv1 = 0xcccccccd; const uint32_t max_quotient1 = 0x33333333; const uint64_t mod_inv8 = 0xc767074b22e90e21; const uint64_t max_quotient8 = 0x00002af31dc46118; // If the number is divisible by 1'0000'0000, work with the quotient if (t >= 8) { auto quotient_candidate = n * mod_inv8; if (quotient_candidate <= max_quotient8) { auto quotient = static_cast<uint32_t>(quotient_candidate >> 8); int s = 8; for (; s < t; ++s) { if (quotient * mod_inv1 > max_quotient1) break; quotient *= mod_inv1; } quotient >>= (s - 8); n = quotient; return s; } } // Otherwise, work with the remainder auto quotient = static_cast<uint32_t>(n / 100000000); auto remainder = static_cast<uint32_t>(n - 100000000 * quotient); if (t == 0 || remainder * mod_inv1 > max_quotient1) { return 0; } remainder *= mod_inv1; if (t == 1 || remainder * mod_inv1 > max_quotient1) { n = (remainder >> 1) + quotient * 10000000ull; return 1; } remainder *= mod_inv1; if (t == 2 || remainder * mod_inv1 > max_quotient1) { n = (remainder >> 2) + quotient * 1000000ull; return 2; } remainder *= mod_inv1; if (t == 3 || remainder * mod_inv1 > max_quotient1) { n = (remainder >> 3) + quotient * 100000ull; return 3; } remainder *= mod_inv1; if (t == 4 || remainder * mod_inv1 > max_quotient1) { n = (remainder >> 4) + quotient * 10000ull; return 4; } remainder *= mod_inv1; if (t == 5 || remainder * mod_inv1 > max_quotient1) { n = (remainder >> 5) + quotient * 1000ull; return 5; } remainder *= mod_inv1; if (t == 6 || remainder * mod_inv1 > max_quotient1) { n = (remainder >> 6) + quotient * 100ull; return 6; } remainder *= mod_inv1; n = (remainder >> 7) + quotient * 10ull; return 7; } // The main algorithm for shorter interval case template <class T> FMT_ALWAYS_INLINE decimal_fp<T> shorter_interval_case(int exponent) FMT_NOEXCEPT { decimal_fp<T> ret_value; // Compute k and beta const int minus_k = floor_log10_pow2_minus_log10_4_over_3(exponent); const int beta_minus_1 = exponent + floor_log2_pow10(-minus_k); // Compute xi and zi using cache_entry_type = typename cache_accessor<T>::cache_entry_type; const cache_entry_type cache = cache_accessor<T>::get_cached_power(-minus_k); auto xi = cache_accessor<T>::compute_left_endpoint_for_shorter_interval_case( cache, beta_minus_1); auto zi = cache_accessor<T>::compute_right_endpoint_for_shorter_interval_case( cache, beta_minus_1); // If the left endpoint is not an integer, increase it if (!is_left_endpoint_integer_shorter_interval<T>(exponent)) ++xi; // Try bigger divisor ret_value.significand = zi / 10; // If succeed, remove trailing zeros if necessary and return if (ret_value.significand * 10 >= xi) { ret_value.exponent = minus_k + 1; ret_value.exponent += remove_trailing_zeros(ret_value.significand); return ret_value; } // Otherwise, compute the round-up of y ret_value.significand = cache_accessor<T>::compute_round_up_for_shorter_interval_case( cache, beta_minus_1); ret_value.exponent = minus_k; // When tie occurs, choose one of them according to the rule if (exponent >= float_info<T>::shorter_interval_tie_lower_threshold && exponent <= float_info<T>::shorter_interval_tie_upper_threshold) { ret_value.significand = ret_value.significand % 2 == 0 ? ret_value.significand : ret_value.significand - 1; } else if (ret_value.significand < xi) { ++ret_value.significand; } return ret_value; } template <typename T> decimal_fp<T> to_decimal(T x) FMT_NOEXCEPT { // Step 1: integer promotion & Schubfach multiplier calculation. using carrier_uint = typename float_info<T>::carrier_uint; using cache_entry_type = typename cache_accessor<T>::cache_entry_type; auto br = bit_cast<carrier_uint>(x); // Extract significand bits and exponent bits. const carrier_uint significand_mask = (static_cast<carrier_uint>(1) << float_info<T>::significand_bits) - 1; carrier_uint significand = (br & significand_mask); int exponent = static_cast<int>((br & exponent_mask<T>()) >> float_info<T>::significand_bits); if (exponent != 0) { // Check if normal. exponent += float_info<T>::exponent_bias - float_info<T>::significand_bits; // Shorter interval case; proceed like Schubfach. if (significand == 0) return shorter_interval_case<T>(exponent); significand |= (static_cast<carrier_uint>(1) << float_info<T>::significand_bits); } else { // Subnormal case; the interval is always regular. if (significand == 0) return {0, 0}; exponent = float_info<T>::min_exponent - float_info<T>::significand_bits; } const bool include_left_endpoint = (significand % 2 == 0); const bool include_right_endpoint = include_left_endpoint; // Compute k and beta. const int minus_k = floor_log10_pow2(exponent) - float_info<T>::kappa; const cache_entry_type cache = cache_accessor<T>::get_cached_power(-minus_k); const int beta_minus_1 = exponent + floor_log2_pow10(-minus_k); // Compute zi and deltai // 10^kappa <= deltai < 10^(kappa + 1) const uint32_t deltai = cache_accessor<T>::compute_delta(cache, beta_minus_1); const carrier_uint two_fc = significand << 1; const carrier_uint two_fr = two_fc | 1; const carrier_uint zi = cache_accessor<T>::compute_mul(two_fr << beta_minus_1, cache); // Step 2: Try larger divisor; remove trailing zeros if necessary // Using an upper bound on zi, we might be able to optimize the division // better than the compiler; we are computing zi / big_divisor here decimal_fp<T> ret_value; ret_value.significand = divide_by_10_to_kappa_plus_1(zi); uint32_t r = static_cast<uint32_t>(zi - float_info<T>::big_divisor * ret_value.significand); if (r > deltai) { goto small_divisor_case_label; } else if (r < deltai) { // Exclude the right endpoint if necessary if (r == 0 && !include_right_endpoint && is_endpoint_integer<T>(two_fr, exponent, minus_k)) { --ret_value.significand; r = float_info<T>::big_divisor; goto small_divisor_case_label; } } else { // r == deltai; compare fractional parts // Check conditions in the order different from the paper // to take advantage of short-circuiting const carrier_uint two_fl = two_fc - 1; if ((!include_left_endpoint || !is_endpoint_integer<T>(two_fl, exponent, minus_k)) && !cache_accessor<T>::compute_mul_parity(two_fl, cache, beta_minus_1)) { goto small_divisor_case_label; } } ret_value.exponent = minus_k + float_info<T>::kappa + 1; // We may need to remove trailing zeros ret_value.exponent += remove_trailing_zeros(ret_value.significand); return ret_value; // Step 3: Find the significand with the smaller divisor small_divisor_case_label: ret_value.significand *= 10; ret_value.exponent = minus_k + float_info<T>::kappa; const uint32_t mask = (1u << float_info<T>::kappa) - 1; auto dist = r - (deltai / 2) + (float_info<T>::small_divisor / 2); // Is dist divisible by 2^kappa? if ((dist & mask) == 0) { const bool approx_y_parity = ((dist ^ (float_info<T>::small_divisor / 2)) & 1) != 0; dist >>= float_info<T>::kappa; // Is dist divisible by 5^kappa? if (check_divisibility_and_divide_by_pow5<float_info<T>::kappa>(dist)) { ret_value.significand += dist; // Check z^(f) >= epsilon^(f) // We have either yi == zi - epsiloni or yi == (zi - epsiloni) - 1, // where yi == zi - epsiloni if and only if z^(f) >= epsilon^(f) // Since there are only 2 possibilities, we only need to care about the // parity. Also, zi and r should have the same parity since the divisor // is an even number if (cache_accessor<T>::compute_mul_parity(two_fc, cache, beta_minus_1) != approx_y_parity) { --ret_value.significand; } else { // If z^(f) >= epsilon^(f), we might have a tie // when z^(f) == epsilon^(f), or equivalently, when y is an integer if (is_center_integer<T>(two_fc, exponent, minus_k)) { ret_value.significand = ret_value.significand % 2 == 0 ? ret_value.significand : ret_value.significand - 1; } } } // Is dist not divisible by 5^kappa? else { ret_value.significand += dist; } } // Is dist not divisible by 2^kappa? else { // Since we know dist is small, we might be able to optimize the division // better than the compiler; we are computing dist / small_divisor here ret_value.significand += small_division_by_pow10<float_info<T>::kappa>(dist); } return ret_value; } } // namespace dragonbox // Formats value using a variation of the Fixed-Precision Positive // Floating-Point Printout ((FPP)^2) algorithm by Steele & White: // https://fmt.dev/p372-steele.pdf. template <typename Double> void fallback_format(Double d, int num_digits, bool binary32, buffer<char>& buf, int& exp10) { bigint numerator; // 2 * R in (FPP)^2. bigint denominator; // 2 * S in (FPP)^2. // lower and upper are differences between value and corresponding boundaries. bigint lower; // (M^- in (FPP)^2). bigint upper_store; // upper's value if different from lower. bigint* upper = nullptr; // (M^+ in (FPP)^2). fp value; // Shift numerator and denominator by an extra bit or two (if lower boundary // is closer) to make lower and upper integers. This eliminates multiplication // by 2 during later computations. const bool is_predecessor_closer = binary32 ? value.assign(static_cast<float>(d)) : value.assign(d); int shift = is_predecessor_closer ? 2 : 1; uint64_t significand = value.f << shift; if (value.e >= 0) { numerator.assign(significand); numerator <<= value.e; lower.assign(1); lower <<= value.e; if (shift != 1) { upper_store.assign(1); upper_store <<= value.e + 1; upper = &upper_store; } denominator.assign_pow10(exp10); denominator <<= shift; } else if (exp10 < 0) { numerator.assign_pow10(-exp10); lower.assign(numerator); if (shift != 1) { upper_store.assign(numerator); upper_store <<= 1; upper = &upper_store; } numerator *= significand; denominator.assign(1); denominator <<= shift - value.e; } else { numerator.assign(significand); denominator.assign_pow10(exp10); denominator <<= shift - value.e; lower.assign(1); if (shift != 1) { upper_store.assign(1ULL << 1); upper = &upper_store; } } // Invariant: value == (numerator / denominator) * pow(10, exp10). if (num_digits < 0) { // Generate the shortest representation. if (!upper) upper = &lower; bool even = (value.f & 1) == 0; num_digits = 0; char* data = buf.data(); for (;;) { int digit = numerator.divmod_assign(denominator); bool low = compare(numerator, lower) - even < 0; // numerator <[=] lower. // numerator + upper >[=] pow10: bool high = add_compare(numerator, *upper, denominator) + even > 0; data[num_digits++] = static_cast<char>('0' + digit); if (low || high) { if (!low) { ++data[num_digits - 1]; } else if (high) { int result = add_compare(numerator, numerator, denominator); // Round half to even. if (result > 0 || (result == 0 && (digit % 2) != 0)) ++data[num_digits - 1]; } buf.try_resize(to_unsigned(num_digits)); exp10 -= num_digits - 1; return; } numerator *= 10; lower *= 10; if (upper != &lower) *upper *= 10; } } // Generate the given number of digits. exp10 -= num_digits - 1; if (num_digits == 0) { buf.try_resize(1); denominator *= 10; buf[0] = add_compare(numerator, numerator, denominator) > 0 ? '1' : '0'; return; } buf.try_resize(to_unsigned(num_digits)); for (int i = 0; i < num_digits - 1; ++i) { int digit = numerator.divmod_assign(denominator); buf[i] = static_cast<char>('0' + digit); numerator *= 10; } int digit = numerator.divmod_assign(denominator); auto result = add_compare(numerator, numerator, denominator); if (result > 0 || (result == 0 && (digit % 2) != 0)) { if (digit == 9) { const auto overflow = '0' + 10; buf[num_digits - 1] = overflow; // Propagate the carry. for (int i = num_digits - 1; i > 0 && buf[i] == overflow; --i) { buf[i] = '0'; ++buf[i - 1]; } if (buf[0] == overflow) { buf[0] = '1'; ++exp10; } return; } ++digit; } buf[num_digits - 1] = static_cast<char>('0' + digit); } template <typename T> int format_float(T value, int precision, float_specs specs, buffer<char>& buf) { static_assert(!std::is_same<T, float>::value, ""); FMT_ASSERT(value >= 0, "value is negative"); const bool fixed = specs.format == float_format::fixed; if (value <= 0) { // <= instead of == to silence a warning. if (precision <= 0 || !fixed) { buf.push_back('0'); return 0; } buf.try_resize(to_unsigned(precision)); std::uninitialized_fill_n(buf.data(), precision, '0'); return -precision; } if (!specs.use_grisu) return snprintf_float(value, precision, specs, buf); if (precision < 0) { // Use Dragonbox for the shortest format. if (specs.binary32) { auto dec = dragonbox::to_decimal(static_cast<float>(value)); write<char>(buffer_appender<char>(buf), dec.significand); return dec.exponent; } auto dec = dragonbox::to_decimal(static_cast<double>(value)); write<char>(buffer_appender<char>(buf), dec.significand); return dec.exponent; } // Use Grisu + Dragon4 for the given precision: // https://www.cs.tufts.edu/~nr/cs257/archive/florian-loitsch/printf.pdf. int exp = 0; const int min_exp = -60; // alpha in Grisu. int cached_exp10 = 0; // K in Grisu. fp normalized = normalize(fp(value)); const auto cached_pow = get_cached_power( min_exp - (normalized.e + fp::significand_size), cached_exp10); normalized = normalized * cached_pow; // Limit precision to the maximum possible number of significant digits in an // IEEE754 double because we don't need to generate zeros. const int max_double_digits = 767; if (precision > max_double_digits) precision = max_double_digits; fixed_handler handler{buf.data(), 0, precision, -cached_exp10, fixed}; if (grisu_gen_digits(normalized, 1, exp, handler) == digits::error) { exp += handler.size - cached_exp10 - 1; fallback_format(value, handler.precision, specs.binary32, buf, exp); } else { exp += handler.exp10; buf.try_resize(to_unsigned(handler.size)); } if (!fixed && !specs.showpoint) { // Remove trailing zeros. auto num_digits = buf.size(); while (num_digits > 0 && buf[num_digits - 1] == '0') { --num_digits; ++exp; } buf.try_resize(num_digits); } return exp; } // namespace detail template <typename T> int snprintf_float(T value, int precision, float_specs specs, buffer<char>& buf) { // Buffer capacity must be non-zero, otherwise MSVC's vsnprintf_s will fail. FMT_ASSERT(buf.capacity() > buf.size(), "empty buffer"); static_assert(!std::is_same<T, float>::value, ""); // Subtract 1 to account for the difference in precision since we use %e for // both general and exponent format. if (specs.format == float_format::general || specs.format == float_format::exp) precision = (precision >= 0 ? precision : 6) - 1; // Build the format string. enum { max_format_size = 7 }; // The longest format is "%#.*Le". char format[max_format_size]; char* format_ptr = format; *format_ptr++ = '%'; if (specs.showpoint && specs.format == float_format::hex) *format_ptr++ = '#'; if (precision >= 0) { *format_ptr++ = '.'; *format_ptr++ = '*'; } if (std::is_same<T, long double>()) *format_ptr++ = 'L'; *format_ptr++ = specs.format != float_format::hex ? (specs.format == float_format::fixed ? 'f' : 'e') : (specs.upper ? 'A' : 'a'); *format_ptr = '\0'; // Format using snprintf. auto offset = buf.size(); for (;;) { auto begin = buf.data() + offset; auto capacity = buf.capacity() - offset; #ifdef FMT_FUZZ if (precision > 100000) throw std::runtime_error( "fuzz mode - avoid large allocation inside snprintf"); #endif // Suppress the warning about a nonliteral format string. // Cannot use auto because of a bug in MinGW (#1532). int (*snprintf_ptr)(char*, size_t, const char*, ...) = FMT_SNPRINTF; int result = precision >= 0 ? snprintf_ptr(begin, capacity, format, precision, value) : snprintf_ptr(begin, capacity, format, value); if (result < 0) { // The buffer will grow exponentially. buf.try_reserve(buf.capacity() + 1); continue; } auto size = to_unsigned(result); // Size equal to capacity means that the last character was truncated. if (size >= capacity) { buf.try_reserve(size + offset + 1); // Add 1 for the terminating '\0'. continue; } auto is_digit = [](char c) { return c >= '0' && c <= '9'; }; if (specs.format == float_format::fixed) { if (precision == 0) { buf.try_resize(size); return 0; } // Find and remove the decimal point. auto end = begin + size, p = end; do { --p; } while (is_digit(*p)); int fraction_size = static_cast<int>(end - p - 1); std::memmove(p, p + 1, to_unsigned(fraction_size)); buf.try_resize(size - 1); return -fraction_size; } if (specs.format == float_format::hex) { buf.try_resize(size + offset); return 0; } // Find and parse the exponent. auto end = begin + size, exp_pos = end; do { --exp_pos; } while (*exp_pos != 'e'); char sign = exp_pos[1]; FMT_ASSERT(sign == '+' || sign == '-', ""); int exp = 0; auto p = exp_pos + 2; // Skip 'e' and sign. do { FMT_ASSERT(is_digit(*p), ""); exp = exp * 10 + (*p++ - '0'); } while (p != end); if (sign == '-') exp = -exp; int fraction_size = 0; if (exp_pos != begin + 1) { // Remove trailing zeros. auto fraction_end = exp_pos - 1; while (*fraction_end == '0') --fraction_end; // Move the fractional part left to get rid of the decimal point. fraction_size = static_cast<int>(fraction_end - begin - 1); std::memmove(begin + 1, begin + 2, to_unsigned(fraction_size)); } buf.try_resize(to_unsigned(fraction_size) + offset + 1); return exp - fraction_size; } } struct stringifier { template <typename T> FMT_INLINE std::string operator()(T value) const { return to_string(value); } std::string operator()(basic_format_arg<format_context>::handle h) const { memory_buffer buf; format_parse_context parse_ctx({}); format_context format_ctx(buffer_appender<char>(buf), {}, {}); h.format(parse_ctx, format_ctx); return to_string(buf); } }; } // namespace detail template <> struct formatter<detail::bigint> { FMT_CONSTEXPR format_parse_context::iterator parse( format_parse_context& ctx) { return ctx.begin(); } format_context::iterator format(const detail::bigint& n, format_context& ctx) { auto out = ctx.out(); bool first = true; for (auto i = n.bigits_.size(); i > 0; --i) { auto value = n.bigits_[i - 1u]; if (first) { out = format_to(out, FMT_STRING("{:x}"), value); first = false; continue; } out = format_to(out, FMT_STRING("{:08x}"), value); } if (n.exp_ > 0) out = format_to(out, FMT_STRING("p{}"), n.exp_ * detail::bigint::bigit_bits); return out; } }; FMT_FUNC detail::utf8_to_utf16::utf8_to_utf16(string_view s) { for_each_codepoint(s, [this](uint32_t cp, int error) { if (error != 0) FMT_THROW(std::runtime_error("invalid utf8")); if (cp <= 0xFFFF) { buffer_.push_back(static_cast<wchar_t>(cp)); } else { cp -= 0x10000; buffer_.push_back(static_cast<wchar_t>(0xD800 + (cp >> 10))); buffer_.push_back(static_cast<wchar_t>(0xDC00 + (cp & 0x3FF))); } }); buffer_.push_back(0); } FMT_FUNC void format_system_error(detail::buffer<char>& out, int error_code, string_view message) FMT_NOEXCEPT { FMT_TRY { memory_buffer buf; buf.resize(inline_buffer_size); for (;;) { char* system_message = &buf[0]; int result = detail::safe_strerror(error_code, system_message, buf.size()); if (result == 0) { format_to(detail::buffer_appender<char>(out), FMT_STRING("{}: {}"), message, system_message); return; } if (result != ERANGE) break; // Can't get error message, report error code instead. buf.resize(buf.size() * 2); } } FMT_CATCH(...) {} format_error_code(out, error_code, message); } FMT_FUNC void detail::error_handler::on_error(const char* message) { FMT_THROW(format_error(message)); } FMT_FUNC void report_system_error(int error_code, fmt::string_view message) FMT_NOEXCEPT { report_error(format_system_error, error_code, message); } FMT_FUNC std::string detail::vformat(string_view format_str, format_args args) { if (format_str.size() == 2 && equal2(format_str.data(), "{}")) { auto arg = args.get(0); if (!arg) error_handler().on_error("argument not found"); return visit_format_arg(stringifier(), arg); } memory_buffer buffer; detail::vformat_to(buffer, format_str, args); return to_string(buffer); } #ifdef _WIN32 namespace detail { using dword = conditional_t<sizeof(long) == 4, unsigned long, unsigned>; extern "C" __declspec(dllimport) int __stdcall WriteConsoleW( // void*, const void*, dword, dword*, void*); } // namespace detail #endif FMT_FUNC void vprint(std::FILE* f, string_view format_str, format_args args) { memory_buffer buffer; detail::vformat_to(buffer, format_str, basic_format_args<buffer_context<char>>(args)); #ifdef _WIN32 auto fd = _fileno(f); if (_isatty(fd)) { detail::utf8_to_utf16 u16(string_view(buffer.data(), buffer.size())); auto written = detail::dword(); if (detail::WriteConsoleW(reinterpret_cast<void*>(_get_osfhandle(fd)), u16.c_str(), static_cast<uint32_t>(u16.size()), &written, nullptr)) { return; } // Fallback to fwrite on failure. It can happen if the output has been // redirected to NUL. } #endif detail::fwrite_fully(buffer.data(), 1, buffer.size(), f); } #ifdef _WIN32 // Print assuming legacy (non-Unicode) encoding. FMT_FUNC void detail::vprint_mojibake(std::FILE* f, string_view format_str, format_args args) { memory_buffer buffer; detail::vformat_to(buffer, format_str, basic_format_args<buffer_context<char>>(args)); fwrite_fully(buffer.data(), 1, buffer.size(), f); } #endif FMT_FUNC void vprint(string_view format_str, format_args args) { vprint(stdout, format_str, args); } FMT_END_NAMESPACE #endif // FMT_FORMAT_INL_H_ #else # define FMT_FUNC #endif #endif // FMT_FORMAT_H_ // Formatting library for C++ - experimental format string compilation // // Copyright (c) 2012 - present, Victor Zverovich and fmt contributors // All rights reserved. // // For the license information refer to format.h. #ifndef FMT_COMPILE_H_ #define FMT_COMPILE_H_ #include <algorithm> #include <vector> #ifndef FMT_USE_NONTYPE_TEMPLATE_PARAMETERS # if defined(__cpp_nontype_template_parameter_class) && \ (!FMT_GCC_VERSION || FMT_GCC_VERSION >= 903) # define FMT_USE_NONTYPE_TEMPLATE_PARAMETERS 1 # else # define FMT_USE_NONTYPE_TEMPLATE_PARAMETERS 0 # endif #endif FMT_BEGIN_NAMESPACE namespace detail { template <typename OutputIt> class truncating_iterator_base { protected: OutputIt out_; size_t limit_; size_t count_ = 0; truncating_iterator_base() : out_(), limit_(0) {} truncating_iterator_base(OutputIt out, size_t limit) : out_(out), limit_(limit) {} public: using iterator_category = std::output_iterator_tag; using value_type = typename std::iterator_traits<OutputIt>::value_type; using difference_type = std::ptrdiff_t; using pointer = void; using reference = void; using _Unchecked_type = truncating_iterator_base; // Mark iterator as checked. OutputIt base() const { return out_; } size_t count() const { return count_; } }; // An output iterator that truncates the output and counts the number of objects // written to it. template <typename OutputIt, typename Enable = typename std::is_void< typename std::iterator_traits<OutputIt>::value_type>::type> class truncating_iterator; template <typename OutputIt> class truncating_iterator<OutputIt, std::false_type> : public truncating_iterator_base<OutputIt> { mutable typename truncating_iterator_base<OutputIt>::value_type blackhole_; public: using value_type = typename truncating_iterator_base<OutputIt>::value_type; truncating_iterator() = default; truncating_iterator(OutputIt out, size_t limit) : truncating_iterator_base<OutputIt>(out, limit) {} truncating_iterator& operator++() { if (this->count_++ < this->limit_) ++this->out_; return *this; } truncating_iterator operator++(int) { auto it = *this; ++*this; return it; } value_type& operator*() const { return this->count_ < this->limit_ ? *this->out_ : blackhole_; } }; template <typename OutputIt> class truncating_iterator<OutputIt, std::true_type> : public truncating_iterator_base<OutputIt> { public: truncating_iterator() = default; truncating_iterator(OutputIt out, size_t limit) : truncating_iterator_base<OutputIt>(out, limit) {} template <typename T> truncating_iterator& operator=(T val) { if (this->count_++ < this->limit_) *this->out_++ = val; return *this; } truncating_iterator& operator++() { return *this; } truncating_iterator& operator++(int) { return *this; } truncating_iterator& operator*() { return *this; } }; // A compile-time string which is compiled into fast formatting code. class compiled_string {}; template <typename S> struct is_compiled_string : std::is_base_of<compiled_string, S> {}; /** \rst Converts a string literal *s* into a format string that will be parsed at compile time and converted into efficient formatting code. Requires C++17 ``constexpr if`` compiler support. **Example**:: // Converts 42 into std::string using the most efficient method and no // runtime format string processing. std::string s = fmt::format(FMT_COMPILE("{}"), 42); \endrst */ #define FMT_COMPILE(s) FMT_STRING_IMPL(s, fmt::detail::compiled_string) #if FMT_USE_NONTYPE_TEMPLATE_PARAMETERS template <typename Char, size_t N> struct fixed_string { constexpr fixed_string(const Char (&str)[N]) { copy_str<Char, const Char*, Char*>(static_cast<const Char*>(str), str + N, data); } Char data[N]{}; }; template <typename Char, size_t N, fixed_string<Char, N> Str> struct udl_compiled_string : compiled_string { using char_type = Char; constexpr operator basic_string_view<char_type>() const { return {Str.data, N - 1}; } }; #endif template <typename T, typename... Tail> const T& first(const T& value, const Tail&...) { return value; } // Part of a compiled format string. It can be either literal text or a // replacement field. template <typename Char> struct format_part { enum class kind { arg_index, arg_name, text, replacement }; struct replacement { arg_ref<Char> arg_id; dynamic_format_specs<Char> specs; }; kind part_kind; union value { int arg_index; basic_string_view<Char> str; replacement repl; FMT_CONSTEXPR value(int index = 0) : arg_index(index) {} FMT_CONSTEXPR value(basic_string_view<Char> s) : str(s) {} FMT_CONSTEXPR value(replacement r) : repl(r) {} } val; // Position past the end of the argument id. const Char* arg_id_end = nullptr; FMT_CONSTEXPR format_part(kind k = kind::arg_index, value v = {}) : part_kind(k), val(v) {} static FMT_CONSTEXPR format_part make_arg_index(int index) { return format_part(kind::arg_index, index); } static FMT_CONSTEXPR format_part make_arg_name(basic_string_view<Char> name) { return format_part(kind::arg_name, name); } static FMT_CONSTEXPR format_part make_text(basic_string_view<Char> text) { return format_part(kind::text, text); } static FMT_CONSTEXPR format_part make_replacement(replacement repl) { return format_part(kind::replacement, repl); } }; template <typename Char> struct part_counter { unsigned num_parts = 0; FMT_CONSTEXPR void on_text(const Char* begin, const Char* end) { if (begin != end) ++num_parts; } FMT_CONSTEXPR int on_arg_id() { return ++num_parts, 0; } FMT_CONSTEXPR int on_arg_id(int) { return ++num_parts, 0; } FMT_CONSTEXPR int on_arg_id(basic_string_view<Char>) { return ++num_parts, 0; } FMT_CONSTEXPR void on_replacement_field(int, const Char*) {} FMT_CONSTEXPR const Char* on_format_specs(int, const Char* begin, const Char* end) { // Find the matching brace. unsigned brace_counter = 0; for (; begin != end; ++begin) { if (*begin == '{') { ++brace_counter; } else if (*begin == '}') { if (brace_counter == 0u) break; --brace_counter; } } return begin; } FMT_CONSTEXPR void on_error(const char*) {} }; // Counts the number of parts in a format string. template <typename Char> FMT_CONSTEXPR unsigned count_parts(basic_string_view<Char> format_str) { part_counter<Char> counter; parse_format_string<true>(format_str, counter); return counter.num_parts; } template <typename Char, typename PartHandler> class format_string_compiler : public error_handler { private: using part = format_part<Char>; PartHandler handler_; part part_; basic_string_view<Char> format_str_; basic_format_parse_context<Char> parse_context_; public: FMT_CONSTEXPR format_string_compiler(basic_string_view<Char> format_str, PartHandler handler) : handler_(handler), format_str_(format_str), parse_context_(format_str) {} FMT_CONSTEXPR void on_text(const Char* begin, const Char* end) { if (begin != end) handler_(part::make_text({begin, to_unsigned(end - begin)})); } FMT_CONSTEXPR int on_arg_id() { part_ = part::make_arg_index(parse_context_.next_arg_id()); return 0; } FMT_CONSTEXPR int on_arg_id(int id) { parse_context_.check_arg_id(id); part_ = part::make_arg_index(id); return 0; } FMT_CONSTEXPR int on_arg_id(basic_string_view<Char> id) { part_ = part::make_arg_name(id); return 0; } FMT_CONSTEXPR void on_replacement_field(int, const Char* ptr) { part_.arg_id_end = ptr; handler_(part_); } FMT_CONSTEXPR const Char* on_format_specs(int, const Char* begin, const Char* end) { auto repl = typename part::replacement(); dynamic_specs_handler<basic_format_parse_context<Char>> handler( repl.specs, parse_context_); auto it = parse_format_specs(begin, end, handler); if (*it != '}') on_error("missing '}' in format string"); repl.arg_id = part_.part_kind == part::kind::arg_index ? arg_ref<Char>(part_.val.arg_index) : arg_ref<Char>(part_.val.str); auto replacement_part = part::make_replacement(repl); replacement_part.arg_id_end = begin; handler_(replacement_part); return it; } }; // Compiles a format string and invokes handler(part) for each parsed part. template <bool IS_CONSTEXPR, typename Char, typename PartHandler> FMT_CONSTEXPR void compile_format_string(basic_string_view<Char> format_str, PartHandler handler) { parse_format_string<IS_CONSTEXPR>( format_str, format_string_compiler<Char, PartHandler>(format_str, handler)); } template <typename OutputIt, typename Context, typename Id> void format_arg( basic_format_parse_context<typename Context::char_type>& parse_ctx, Context& ctx, Id arg_id) { auto arg = ctx.arg(arg_id); if (arg.type() == type::custom_type) { visit_format_arg(custom_formatter<Context>(parse_ctx, ctx), arg); } else { ctx.advance_to(visit_format_arg( arg_formatter<OutputIt, typename Context::char_type>(ctx), arg)); } } // vformat_to is defined in a subnamespace to prevent ADL. namespace cf { template <typename Context, typename OutputIt, typename CompiledFormat> auto vformat_to(OutputIt out, CompiledFormat& cf, basic_format_args<Context> args) -> typename Context::iterator { using char_type = typename Context::char_type; basic_format_parse_context<char_type> parse_ctx( to_string_view(cf.format_str_)); Context ctx(out, args); const auto& parts = cf.parts(); for (auto part_it = std::begin(parts); part_it != std::end(parts); ++part_it) { const auto& part = *part_it; const auto& value = part.val; using format_part_t = format_part<char_type>; switch (part.part_kind) { case format_part_t::kind::text: { const auto text = value.str; auto output = ctx.out(); auto&& it = reserve(output, text.size()); it = std::copy_n(text.begin(), text.size(), it); ctx.advance_to(output); break; } case format_part_t::kind::arg_index: advance_to(parse_ctx, part.arg_id_end); detail::format_arg<OutputIt>(parse_ctx, ctx, value.arg_index); break; case format_part_t::kind::arg_name: advance_to(parse_ctx, part.arg_id_end); detail::format_arg<OutputIt>(parse_ctx, ctx, value.str); break; case format_part_t::kind::replacement: { const auto& arg_id_value = value.repl.arg_id.val; const auto arg = value.repl.arg_id.kind == arg_id_kind::index ? ctx.arg(arg_id_value.index) : ctx.arg(arg_id_value.name); auto specs = value.repl.specs; handle_dynamic_spec<width_checker>(specs.width, specs.width_ref, ctx); handle_dynamic_spec<precision_checker>(specs.precision, specs.precision_ref, ctx); error_handler h; numeric_specs_checker<error_handler> checker(h, arg.type()); if (specs.align == align::numeric) checker.require_numeric_argument(); if (specs.sign != sign::none) checker.check_sign(); if (specs.alt) checker.require_numeric_argument(); if (specs.precision >= 0) checker.check_precision(); advance_to(parse_ctx, part.arg_id_end); ctx.advance_to( visit_format_arg(arg_formatter<OutputIt, typename Context::char_type>( ctx, &specs), arg)); break; } } } return ctx.out(); } } // namespace cf struct basic_compiled_format {}; template <typename S, typename = void> struct compiled_format_base : basic_compiled_format { using char_type = char_t<S>; using parts_container = std::vector<detail::format_part<char_type>>; parts_container compiled_parts; explicit compiled_format_base(basic_string_view<char_type> format_str) { compile_format_string<false>(format_str, [this](const format_part<char_type>& part) { compiled_parts.push_back(part); }); } const parts_container& parts() const { return compiled_parts; } }; template <typename Char, unsigned N> struct format_part_array { format_part<Char> data[N] = {}; FMT_CONSTEXPR format_part_array() = default; }; template <typename Char, unsigned N> FMT_CONSTEXPR format_part_array<Char, N> compile_to_parts( basic_string_view<Char> format_str) { format_part_array<Char, N> parts; unsigned counter = 0; // This is not a lambda for compatibility with older compilers. struct { format_part<Char>* parts; unsigned* counter; FMT_CONSTEXPR void operator()(const format_part<Char>& part) { parts[(*counter)++] = part; } } collector{parts.data, &counter}; compile_format_string<true>(format_str, collector); if (counter < N) { parts.data[counter] = format_part<Char>::make_text(basic_string_view<Char>()); } return parts; } template <typename T> constexpr const T& constexpr_max(const T& a, const T& b) { return (a < b) ? b : a; } template <typename S> struct compiled_format_base<S, enable_if_t<is_compile_string<S>::value>> : basic_compiled_format { using char_type = char_t<S>; FMT_CONSTEXPR explicit compiled_format_base(basic_string_view<char_type>) {} // Workaround for old compilers. Format string compilation will not be // performed there anyway. #if FMT_USE_CONSTEXPR static FMT_CONSTEXPR_DECL const unsigned num_format_parts = constexpr_max(count_parts(to_string_view(S())), 1u); #else static const unsigned num_format_parts = 1; #endif using parts_container = format_part<char_type>[num_format_parts]; const parts_container& parts() const { static FMT_CONSTEXPR_DECL const auto compiled_parts = compile_to_parts<char_type, num_format_parts>( detail::to_string_view(S())); return compiled_parts.data; } }; template <typename S, typename... Args> class compiled_format : private compiled_format_base<S> { public: using typename compiled_format_base<S>::char_type; private: basic_string_view<char_type> format_str_; template <typename Context, typename OutputIt, typename CompiledFormat> friend auto cf::vformat_to(OutputIt out, CompiledFormat& cf, basic_format_args<Context> args) -> typename Context::iterator; public: compiled_format() = delete; explicit constexpr compiled_format(basic_string_view<char_type> format_str) : compiled_format_base<S>(format_str), format_str_(format_str) {} }; #ifdef __cpp_if_constexpr template <typename... Args> struct type_list {}; // Returns a reference to the argument at index N from [first, rest...]. template <int N, typename T, typename... Args> constexpr const auto& get([[maybe_unused]] const T& first, [[maybe_unused]] const Args&... rest) { static_assert(N < 1 + sizeof...(Args), "index is out of bounds"); if constexpr (N == 0) return first; else return get<N - 1>(rest...); } template <int N, typename> struct get_type_impl; template <int N, typename... Args> struct get_type_impl<N, type_list<Args...>> { using type = remove_cvref_t<decltype(get<N>(std::declval<Args>()...))>; }; template <int N, typename T> using get_type = typename get_type_impl<N, T>::type; template <typename T> struct is_compiled_format : std::false_type {}; template <typename Char> struct text { basic_string_view<Char> data; using char_type = Char; template <typename OutputIt, typename... Args> constexpr OutputIt format(OutputIt out, const Args&...) const { return write<Char>(out, data); } }; template <typename Char> struct is_compiled_format<text<Char>> : std::true_type {}; template <typename Char> constexpr text<Char> make_text(basic_string_view<Char> s, size_t pos, size_t size) { return {{&s[pos], size}}; } template <typename Char> struct code_unit { Char value; using char_type = Char; template <typename OutputIt, typename... Args> constexpr OutputIt format(OutputIt out, const Args&...) const { return write<Char>(out, value); } }; template <typename Char> struct is_compiled_format<code_unit<Char>> : std::true_type {}; // A replacement field that refers to argument N. template <typename Char, typename T, int N> struct field { using char_type = Char; template <typename OutputIt, typename... Args> constexpr OutputIt format(OutputIt out, const Args&... args) const { if constexpr (is_named_arg<typename std::remove_cv<T>::type>::value) { const auto& arg = get<N>(args...).value; return write<Char>(out, arg); } else { // This ensures that the argument type is convertile to `const T&`. const T& arg = get<N>(args...); return write<Char>(out, arg); } } }; template <typename Char, typename T, int N> struct is_compiled_format<field<Char, T, N>> : std::true_type {}; // A replacement field that refers to argument with name. template <typename Char> struct runtime_named_field { using char_type = Char; basic_string_view<Char> name; template <typename OutputIt, typename T> constexpr static bool try_format_argument(OutputIt& out, basic_string_view<Char> arg_name, const T& arg) { if constexpr (is_named_arg<typename std::remove_cv<T>::type>::value) { if (arg_name == arg.name) { out = write<Char>(out, arg.value); return true; } } return false; } template <typename OutputIt, typename... Args> constexpr OutputIt format(OutputIt out, const Args&... args) const { bool found = (try_format_argument(out, name, args) || ...); if (!found) { throw format_error("argument with specified name is not found"); } return out; } }; template <typename Char> struct is_compiled_format<runtime_named_field<Char>> : std::true_type {}; // A replacement field that refers to argument N and has format specifiers. template <typename Char, typename T, int N> struct spec_field { using char_type = Char; formatter<T, Char> fmt; template <typename OutputIt, typename... Args> constexpr OutputIt format(OutputIt out, const Args&... args) const { // This ensures that the argument type is convertile to `const T&`. const T& arg = get<N>(args...); const auto& vargs = make_format_args<basic_format_context<OutputIt, Char>>(args...); basic_format_context<OutputIt, Char> ctx(out, vargs); return fmt.format(arg, ctx); } }; template <typename Char, typename T, int N> struct is_compiled_format<spec_field<Char, T, N>> : std::true_type {}; template <typename L, typename R> struct concat { L lhs; R rhs; using char_type = typename L::char_type; template <typename OutputIt, typename... Args> constexpr OutputIt format(OutputIt out, const Args&... args) const { out = lhs.format(out, args...); return rhs.format(out, args...); } }; template <typename L, typename R> struct is_compiled_format<concat<L, R>> : std::true_type {}; template <typename L, typename R> constexpr concat<L, R> make_concat(L lhs, R rhs) { return {lhs, rhs}; } struct unknown_format {}; template <typename Char> constexpr size_t parse_text(basic_string_view<Char> str, size_t pos) { for (size_t size = str.size(); pos != size; ++pos) { if (str[pos] == '{' || str[pos] == '}') break; } return pos; } template <typename Args, size_t POS, int ID, typename S> constexpr auto compile_format_string(S format_str); template <typename Args, size_t POS, int ID, typename T, typename S> constexpr auto parse_tail(T head, S format_str) { if constexpr (POS != basic_string_view<typename S::char_type>(format_str).size()) { constexpr auto tail = compile_format_string<Args, POS, ID>(format_str); if constexpr (std::is_same<remove_cvref_t<decltype(tail)>, unknown_format>()) return tail; else return make_concat(head, tail); } else { return head; } } template <typename T, typename Char> struct parse_specs_result { formatter<T, Char> fmt; size_t end; int next_arg_id; }; constexpr int manual_indexing_id = -1; template <typename T, typename Char> constexpr parse_specs_result<T, Char> parse_specs(basic_string_view<Char> str, size_t pos, int next_arg_id) { str.remove_prefix(pos); auto ctx = basic_format_parse_context<Char>(str, {}, next_arg_id); auto f = formatter<T, Char>(); auto end = f.parse(ctx); return {f, pos + fmt::detail::to_unsigned(end - str.data()) + 1, next_arg_id == 0 ? manual_indexing_id : ctx.next_arg_id()}; } template <typename Char> struct arg_id_handler { constexpr void on_error(const char* message) { throw format_error(message); } constexpr int on_arg_id() { FMT_ASSERT(false, "handler cannot be used with automatic indexing"); return 0; } constexpr int on_arg_id(int id) { arg_id = arg_ref<Char>(id); return 0; } constexpr int on_arg_id(basic_string_view<Char> id) { arg_id = arg_ref<Char>(id); return 0; } arg_ref<Char> arg_id; }; template <typename Char> struct parse_arg_id_result { arg_ref<Char> arg_id; const Char* arg_id_end; }; template <int ID, typename Char> constexpr auto parse_arg_id(const Char* begin, const Char* end) { auto handler = arg_id_handler<Char>{arg_ref<Char>{}}; auto adapter = id_adapter<arg_id_handler<Char>, Char>{handler, 0}; auto arg_id_end = parse_arg_id(begin, end, adapter); return parse_arg_id_result<Char>{handler.arg_id, arg_id_end}; } // Compiles a non-empty format string and returns the compiled representation // or unknown_format() on unrecognized input. template <typename Args, size_t POS, int ID, typename S> constexpr auto compile_format_string(S format_str) { using char_type = typename S::char_type; constexpr basic_string_view<char_type> str = format_str; if constexpr (str[POS] == '{') { if constexpr (POS + 1 == str.size()) throw format_error("unmatched '{' in format string"); if constexpr (str[POS + 1] == '{') { return parse_tail<Args, POS + 2, ID>(make_text(str, POS, 1), format_str); } else if constexpr (str[POS + 1] == '}' || str[POS + 1] == ':') { static_assert(ID != manual_indexing_id, "cannot switch from manual to automatic argument indexing"); using id_type = get_type<ID, Args>; if constexpr (str[POS + 1] == '}') { constexpr auto next_id = ID != manual_indexing_id ? ID + 1 : manual_indexing_id; return parse_tail<Args, POS + 2, next_id>( field<char_type, id_type, ID>(), format_str); } else { constexpr auto result = parse_specs<id_type>(str, POS + 2, ID + 1); return parse_tail<Args, result.end, result.next_arg_id>( spec_field<char_type, id_type, ID>{result.fmt}, format_str); } } else { constexpr auto arg_id_result = parse_arg_id<ID>(str.data() + POS + 1, str.data() + str.size()); constexpr auto arg_id_end_pos = arg_id_result.arg_id_end - str.data(); constexpr char_type c = arg_id_end_pos != str.size() ? str[arg_id_end_pos] : char_type(); static_assert(c == '}' || c == ':', "missing '}' in format string"); if constexpr (arg_id_result.arg_id.kind == arg_id_kind::index) { static_assert( ID == manual_indexing_id || ID == 0, "cannot switch from automatic to manual argument indexing"); constexpr auto arg_index = arg_id_result.arg_id.val.index; using id_type = get_type<arg_index, Args>; if constexpr (c == '}') { return parse_tail<Args, arg_id_end_pos + 1, manual_indexing_id>( field<char_type, id_type, arg_index>(), format_str); } else if constexpr (c == ':') { constexpr auto result = parse_specs<id_type>(str, arg_id_end_pos + 1, 0); return parse_tail<Args, result.end, result.next_arg_id>( spec_field<char_type, id_type, arg_index>{result.fmt}, format_str); } } else if constexpr (arg_id_result.arg_id.kind == arg_id_kind::name) { if constexpr (c == '}') { return parse_tail<Args, arg_id_end_pos + 1, ID>( runtime_named_field<char_type>{arg_id_result.arg_id.val.name}, format_str); } else if constexpr (c == ':') { return unknown_format(); // no type info for specs parsing } } } } else if constexpr (str[POS] == '}') { if constexpr (POS + 1 == str.size()) throw format_error("unmatched '}' in format string"); return parse_tail<Args, POS + 2, ID>(make_text(str, POS, 1), format_str); } else { constexpr auto end = parse_text(str, POS + 1); if constexpr (end - POS > 1) { return parse_tail<Args, end, ID>(make_text(str, POS, end - POS), format_str); } else { return parse_tail<Args, end, ID>(code_unit<char_type>{str[POS]}, format_str); } } } template <typename... Args, typename S, FMT_ENABLE_IF(is_compile_string<S>::value || detail::is_compiled_string<S>::value)> constexpr auto compile(S format_str) { constexpr basic_string_view<typename S::char_type> str = format_str; if constexpr (str.size() == 0) { return detail::make_text(str, 0, 0); } else { constexpr auto result = detail::compile_format_string<detail::type_list<Args...>, 0, 0>( format_str); return result; } } #else template <typename... Args, typename S, FMT_ENABLE_IF(is_compile_string<S>::value)> constexpr auto compile(S format_str) -> detail::compiled_format<S, Args...> { return detail::compiled_format<S, Args...>(to_string_view(format_str)); } #endif // __cpp_if_constexpr // Compiles the format string which must be a string literal. template <typename... Args, typename Char, size_t N> auto compile(const Char (&format_str)[N]) -> detail::compiled_format<const Char*, Args...> { return detail::compiled_format<const Char*, Args...>( basic_string_view<Char>(format_str, N - 1)); } } // namespace detail // DEPRECATED! use FMT_COMPILE instead. template <typename... Args> FMT_DEPRECATED auto compile(const Args&... args) -> decltype(detail::compile(args...)) { return detail::compile(args...); } #if FMT_USE_CONSTEXPR # ifdef __cpp_if_constexpr template <typename CompiledFormat, typename... Args, typename Char = typename CompiledFormat::char_type, FMT_ENABLE_IF(detail::is_compiled_format<CompiledFormat>::value)> FMT_INLINE std::basic_string<Char> format(const CompiledFormat& cf, const Args&... args) { basic_memory_buffer<Char> buffer; cf.format(detail::buffer_appender<Char>(buffer), args...); return to_string(buffer); } template <typename OutputIt, typename CompiledFormat, typename... Args, FMT_ENABLE_IF(detail::is_compiled_format<CompiledFormat>::value)> constexpr OutputIt format_to(OutputIt out, const CompiledFormat& cf, const Args&... args) { return cf.format(out, args...); } # endif // __cpp_if_constexpr #endif // FMT_USE_CONSTEXPR template <typename CompiledFormat, typename... Args, typename Char = typename CompiledFormat::char_type, FMT_ENABLE_IF(std::is_base_of<detail::basic_compiled_format, CompiledFormat>::value)> std::basic_string<Char> format(const CompiledFormat& cf, const Args&... args) { basic_memory_buffer<Char> buffer; using context = buffer_context<Char>; detail::cf::vformat_to<context>(detail::buffer_appender<Char>(buffer), cf, make_format_args<context>(args...)); return to_string(buffer); } template <typename S, typename... Args, FMT_ENABLE_IF(detail::is_compiled_string<S>::value)> FMT_INLINE std::basic_string<typename S::char_type> format(const S&, Args&&... args) { #ifdef __cpp_if_constexpr if constexpr (std::is_same<typename S::char_type, char>::value) { constexpr basic_string_view<typename S::char_type> str = S(); if constexpr (str.size() == 2 && str[0] == '{' && str[1] == '}') { const auto& first = detail::first(args...); if constexpr (detail::is_named_arg< remove_cvref_t<decltype(first)>>::value) { return fmt::to_string(first.value); } else { return fmt::to_string(first); } } } #endif constexpr auto compiled = detail::compile<Args...>(S()); #ifdef __cpp_if_constexpr if constexpr (std::is_same<remove_cvref_t<decltype(compiled)>, detail::unknown_format>()) { return format(static_cast<basic_string_view<typename S::char_type>>(S()), std::forward<Args>(args)...); } else { return format(compiled, std::forward<Args>(args)...); } #else return format(compiled, std::forward<Args>(args)...); #endif } template <typename OutputIt, typename CompiledFormat, typename... Args, FMT_ENABLE_IF(std::is_base_of<detail::basic_compiled_format, CompiledFormat>::value)> constexpr OutputIt format_to(OutputIt out, const CompiledFormat& cf, const Args&... args) { using char_type = typename CompiledFormat::char_type; using context = format_context_t<OutputIt, char_type>; return detail::cf::vformat_to<context>(out, cf, make_format_args<context>(args...)); } template <typename OutputIt, typename S, typename... Args, FMT_ENABLE_IF(detail::is_compiled_string<S>::value)> FMT_CONSTEXPR OutputIt format_to(OutputIt out, const S&, Args&&... args) { constexpr auto compiled = detail::compile<Args...>(S()); #ifdef __cpp_if_constexpr if constexpr (std::is_same<remove_cvref_t<decltype(compiled)>, detail::unknown_format>()) { return format_to(out, static_cast<basic_string_view<typename S::char_type>>(S()), std::forward<Args>(args)...); } else { return format_to(out, compiled, std::forward<Args>(args)...); } #else return format_to(out, compiled, std::forward<Args>(args)...); #endif } template <typename OutputIt, typename CompiledFormat, typename... Args> auto format_to_n(OutputIt out, size_t n, const CompiledFormat& cf, const Args&... args) -> typename std::enable_if< detail::is_output_iterator<OutputIt, typename CompiledFormat::char_type>::value && std::is_base_of<detail::basic_compiled_format, CompiledFormat>::value, format_to_n_result<OutputIt>>::type { auto it = format_to(detail::truncating_iterator<OutputIt>(out, n), cf, args...); return {it.base(), it.count()}; } template <typename OutputIt, typename S, typename... Args, FMT_ENABLE_IF(detail::is_compiled_string<S>::value)> format_to_n_result<OutputIt> format_to_n(OutputIt out, size_t n, const S&, Args&&... args) { auto it = format_to(detail::truncating_iterator<OutputIt>(out, n), S(), std::forward<Args>(args)...); return {it.base(), it.count()}; } template <typename CompiledFormat, typename... Args, FMT_ENABLE_IF(std::is_base_of<detail::basic_compiled_format, CompiledFormat>::value || detail::is_compiled_string<CompiledFormat>::value)> size_t formatted_size(const CompiledFormat& cf, const Args&... args) { return format_to(detail::counting_iterator(), cf, args...).count(); } #if FMT_USE_NONTYPE_TEMPLATE_PARAMETERS inline namespace literals { template <detail::fixed_string Str> constexpr detail::udl_compiled_string<remove_cvref_t<decltype(Str.data[0])>, sizeof(Str.data), Str> operator""_cf() { return {}; } } // namespace literals #endif FMT_END_NAMESPACE #endif // FMT_COMPILE_H_ char* test_fmt_compile_master(char* buffer, unsigned value) { return fmt::format_to(buffer, FMT_COMPILE("{:x}"), value); }
c++ source #2
Output
Compile to binary object
Link to binary
Execute the code
Intel asm syntax
Demangle identifiers
Verbose demangling
Filters
Unused labels
Library functions
Directives
Comments
Horizontal whitespace
Debug intrinsics
Compiler
6502-c++ 11.1.0
ARM GCC 10.2.0
ARM GCC 10.3.0
ARM GCC 10.4.0
ARM GCC 10.5.0
ARM GCC 11.1.0
ARM GCC 11.2.0
ARM GCC 11.3.0
ARM GCC 11.4.0
ARM GCC 12.1.0
ARM GCC 12.2.0
ARM GCC 12.3.0
ARM GCC 12.4.0
ARM GCC 13.1.0
ARM GCC 13.2.0
ARM GCC 13.2.0 (unknown-eabi)
ARM GCC 13.3.0
ARM GCC 13.3.0 (unknown-eabi)
ARM GCC 14.1.0
ARM GCC 14.1.0 (unknown-eabi)
ARM GCC 14.2.0
ARM GCC 14.2.0 (unknown-eabi)
ARM GCC 4.5.4
ARM GCC 4.6.4
ARM GCC 5.4
ARM GCC 6.3.0
ARM GCC 6.4.0
ARM GCC 7.3.0
ARM GCC 7.5.0
ARM GCC 8.2.0
ARM GCC 8.5.0
ARM GCC 9.3.0
ARM GCC 9.4.0
ARM GCC 9.5.0
ARM GCC trunk
ARM gcc 10.2.1 (none)
ARM gcc 10.3.1 (2021.07 none)
ARM gcc 10.3.1 (2021.10 none)
ARM gcc 11.2.1 (none)
ARM gcc 5.4.1 (none)
ARM gcc 7.2.1 (none)
ARM gcc 8.2 (WinCE)
ARM gcc 8.3.1 (none)
ARM gcc 9.2.1 (none)
ARM msvc v19.0 (WINE)
ARM msvc v19.10 (WINE)
ARM msvc v19.14 (WINE)
ARM64 Morello gcc 10.1 Alpha 2
ARM64 gcc 10.2
ARM64 gcc 10.3
ARM64 gcc 10.4
ARM64 gcc 10.5.0
ARM64 gcc 11.1
ARM64 gcc 11.2
ARM64 gcc 11.3
ARM64 gcc 11.4.0
ARM64 gcc 12.1
ARM64 gcc 12.2.0
ARM64 gcc 12.3.0
ARM64 gcc 12.4.0
ARM64 gcc 13.1.0
ARM64 gcc 13.2.0
ARM64 gcc 13.3.0
ARM64 gcc 14.1.0
ARM64 gcc 14.2.0
ARM64 gcc 4.9.4
ARM64 gcc 5.4
ARM64 gcc 5.5.0
ARM64 gcc 6.3
ARM64 gcc 6.4
ARM64 gcc 7.3
ARM64 gcc 7.5
ARM64 gcc 8.2
ARM64 gcc 8.5
ARM64 gcc 9.3
ARM64 gcc 9.4
ARM64 gcc 9.5
ARM64 gcc trunk
ARM64 msvc v19.14 (WINE)
AVR gcc 10.3.0
AVR gcc 11.1.0
AVR gcc 12.1.0
AVR gcc 12.2.0
AVR gcc 12.3.0
AVR gcc 12.4.0
AVR gcc 13.1.0
AVR gcc 13.2.0
AVR gcc 13.3.0
AVR gcc 14.1.0
AVR gcc 14.2.0
AVR gcc 4.5.4
AVR gcc 4.6.4
AVR gcc 5.4.0
AVR gcc 9.2.0
AVR gcc 9.3.0
Arduino Mega (1.8.9)
Arduino Uno (1.8.9)
BPF clang (trunk)
BPF clang 13.0.0
BPF clang 14.0.0
BPF clang 15.0.0
BPF clang 16.0.0
BPF clang 17.0.1
BPF clang 18.1.0
BPF clang 19.1.0
BPF gcc 13.1.0
BPF gcc 13.2.0
BPF gcc 13.3.0
BPF gcc trunk
EDG (experimental reflection)
EDG 6.5
EDG 6.5 (GNU mode gcc 13)
EDG 6.6
EDG 6.6 (GNU mode gcc 13)
FRC 2019
FRC 2020
FRC 2023
HPPA gcc 14.2.0
KVX ACB 4.1.0 (GCC 7.5.0)
KVX ACB 4.1.0-cd1 (GCC 7.5.0)
KVX ACB 4.10.0 (GCC 10.3.1)
KVX ACB 4.11.1 (GCC 10.3.1)
KVX ACB 4.12.0 (GCC 11.3.0)
KVX ACB 4.2.0 (GCC 7.5.0)
KVX ACB 4.3.0 (GCC 7.5.0)
KVX ACB 4.4.0 (GCC 7.5.0)
KVX ACB 4.6.0 (GCC 9.4.1)
KVX ACB 4.8.0 (GCC 9.4.1)
KVX ACB 4.9.0 (GCC 9.4.1)
KVX ACB 5.0.0 (GCC 12.2.1)
KVX ACB 5.2.0 (GCC 13.2.1)
LoongArch64 clang (trunk)
LoongArch64 clang 17.0.1
LoongArch64 clang 18.1.0
LoongArch64 clang 19.1.0
M68K gcc 13.1.0
M68K gcc 13.2.0
M68K gcc 13.3.0
M68K gcc 14.1.0
M68K gcc 14.2.0
M68k clang (trunk)
MRISC32 gcc (trunk)
MSP430 gcc 4.5.3
MSP430 gcc 5.3.0
MSP430 gcc 6.2.1
MinGW clang 14.0.3
MinGW clang 14.0.6
MinGW clang 15.0.7
MinGW clang 16.0.0
MinGW clang 16.0.2
MinGW gcc 11.3.0
MinGW gcc 12.1.0
MinGW gcc 12.2.0
MinGW gcc 13.1.0
RISC-V (32-bits) gcc (trunk)
RISC-V (32-bits) gcc 10.2.0
RISC-V (32-bits) gcc 10.3.0
RISC-V (32-bits) gcc 11.2.0
RISC-V (32-bits) gcc 11.3.0
RISC-V (32-bits) gcc 11.4.0
RISC-V (32-bits) gcc 12.1.0
RISC-V (32-bits) gcc 12.2.0
RISC-V (32-bits) gcc 12.3.0
RISC-V (32-bits) gcc 12.4.0
RISC-V (32-bits) gcc 13.1.0
RISC-V (32-bits) gcc 13.2.0
RISC-V (32-bits) gcc 13.3.0
RISC-V (32-bits) gcc 14.1.0
RISC-V (32-bits) gcc 14.2.0
RISC-V (32-bits) gcc 8.2.0
RISC-V (32-bits) gcc 8.5.0
RISC-V (32-bits) gcc 9.4.0
RISC-V (64-bits) gcc (trunk)
RISC-V (64-bits) gcc 10.2.0
RISC-V (64-bits) gcc 10.3.0
RISC-V (64-bits) gcc 11.2.0
RISC-V (64-bits) gcc 11.3.0
RISC-V (64-bits) gcc 11.4.0
RISC-V (64-bits) gcc 12.1.0
RISC-V (64-bits) gcc 12.2.0
RISC-V (64-bits) gcc 12.3.0
RISC-V (64-bits) gcc 12.4.0
RISC-V (64-bits) gcc 13.1.0
RISC-V (64-bits) gcc 13.2.0
RISC-V (64-bits) gcc 13.3.0
RISC-V (64-bits) gcc 14.1.0
RISC-V (64-bits) gcc 14.2.0
RISC-V (64-bits) gcc 8.2.0
RISC-V (64-bits) gcc 8.5.0
RISC-V (64-bits) gcc 9.4.0
RISC-V rv32gc clang (trunk)
RISC-V rv32gc clang 10.0.0
RISC-V rv32gc clang 10.0.1
RISC-V rv32gc clang 11.0.0
RISC-V rv32gc clang 11.0.1
RISC-V rv32gc clang 12.0.0
RISC-V rv32gc clang 12.0.1
RISC-V rv32gc clang 13.0.0
RISC-V rv32gc clang 13.0.1
RISC-V rv32gc clang 14.0.0
RISC-V rv32gc clang 15.0.0
RISC-V rv32gc clang 16.0.0
RISC-V rv32gc clang 17.0.1
RISC-V rv32gc clang 18.1.0
RISC-V rv32gc clang 19.1.0
RISC-V rv32gc clang 9.0.0
RISC-V rv32gc clang 9.0.1
RISC-V rv64gc clang (trunk)
RISC-V rv64gc clang 10.0.0
RISC-V rv64gc clang 10.0.1
RISC-V rv64gc clang 11.0.0
RISC-V rv64gc clang 11.0.1
RISC-V rv64gc clang 12.0.0
RISC-V rv64gc clang 12.0.1
RISC-V rv64gc clang 13.0.0
RISC-V rv64gc clang 13.0.1
RISC-V rv64gc clang 14.0.0
RISC-V rv64gc clang 15.0.0
RISC-V rv64gc clang 16.0.0
RISC-V rv64gc clang 17.0.1
RISC-V rv64gc clang 18.1.0
RISC-V rv64gc clang 19.1.0
RISC-V rv64gc clang 9.0.0
RISC-V rv64gc clang 9.0.1
Raspbian Buster
Raspbian Stretch
SPARC LEON gcc 12.2.0
SPARC LEON gcc 12.3.0
SPARC LEON gcc 12.4.0
SPARC LEON gcc 13.1.0
SPARC LEON gcc 13.2.0
SPARC LEON gcc 13.3.0
SPARC LEON gcc 14.1.0
SPARC LEON gcc 14.2.0
SPARC gcc 12.2.0
SPARC gcc 12.3.0
SPARC gcc 12.4.0
SPARC gcc 13.1.0
SPARC gcc 13.2.0
SPARC gcc 13.3.0
SPARC gcc 14.1.0
SPARC gcc 14.2.0
SPARC64 gcc 12.2.0
SPARC64 gcc 12.3.0
SPARC64 gcc 12.4.0
SPARC64 gcc 13.1.0
SPARC64 gcc 13.2.0
SPARC64 gcc 13.3.0
SPARC64 gcc 14.1.0
SPARC64 gcc 14.2.0
TI C6x gcc 12.2.0
TI C6x gcc 12.3.0
TI C6x gcc 12.4.0
TI C6x gcc 13.1.0
TI C6x gcc 13.2.0
TI C6x gcc 13.3.0
TI C6x gcc 14.1.0
TI C6x gcc 14.2.0
TI CL430 21.6.1
VAX gcc NetBSDELF 10.4.0
VAX gcc NetBSDELF 10.5.0 (Nov 15 03:50:22 2023)
WebAssembly clang (trunk)
Xtensa ESP32 gcc 11.2.0 (2022r1)
Xtensa ESP32 gcc 12.2.0 (20230208)
Xtensa ESP32 gcc 8.2.0 (2019r2)
Xtensa ESP32 gcc 8.2.0 (2020r1)
Xtensa ESP32 gcc 8.2.0 (2020r2)
Xtensa ESP32 gcc 8.4.0 (2020r3)
Xtensa ESP32 gcc 8.4.0 (2021r1)
Xtensa ESP32 gcc 8.4.0 (2021r2)
Xtensa ESP32-S2 gcc 11.2.0 (2022r1)
Xtensa ESP32-S2 gcc 12.2.0 (20230208)
Xtensa ESP32-S2 gcc 8.2.0 (2019r2)
Xtensa ESP32-S2 gcc 8.2.0 (2020r1)
Xtensa ESP32-S2 gcc 8.2.0 (2020r2)
Xtensa ESP32-S2 gcc 8.4.0 (2020r3)
Xtensa ESP32-S2 gcc 8.4.0 (2021r1)
Xtensa ESP32-S2 gcc 8.4.0 (2021r2)
Xtensa ESP32-S3 gcc 11.2.0 (2022r1)
Xtensa ESP32-S3 gcc 12.2.0 (20230208)
Xtensa ESP32-S3 gcc 8.4.0 (2020r3)
Xtensa ESP32-S3 gcc 8.4.0 (2021r1)
Xtensa ESP32-S3 gcc 8.4.0 (2021r2)
arm64 msvc v19.20 VS16.0
arm64 msvc v19.21 VS16.1
arm64 msvc v19.22 VS16.2
arm64 msvc v19.23 VS16.3
arm64 msvc v19.24 VS16.4
arm64 msvc v19.25 VS16.5
arm64 msvc v19.27 VS16.7
arm64 msvc v19.28 VS16.8
arm64 msvc v19.28 VS16.9
arm64 msvc v19.29 VS16.10
arm64 msvc v19.29 VS16.11
arm64 msvc v19.30 VS17.0
arm64 msvc v19.31 VS17.1
arm64 msvc v19.32 VS17.2
arm64 msvc v19.33 VS17.3
arm64 msvc v19.34 VS17.4
arm64 msvc v19.35 VS17.5
arm64 msvc v19.36 VS17.6
arm64 msvc v19.37 VS17.7
arm64 msvc v19.38 VS17.8
arm64 msvc v19.39 VS17.9
arm64 msvc v19.40 VS17.10
arm64 msvc v19.latest
armv7-a clang (trunk)
armv7-a clang 10.0.0
armv7-a clang 10.0.1
armv7-a clang 11.0.0
armv7-a clang 11.0.1
armv7-a clang 12.0.0
armv7-a clang 12.0.1
armv7-a clang 13.0.0
armv7-a clang 13.0.1
armv7-a clang 14.0.0
armv7-a clang 15.0.0
armv7-a clang 16.0.0
armv7-a clang 17.0.1
armv7-a clang 18.1.0
armv7-a clang 19.1.0
armv7-a clang 9.0.0
armv7-a clang 9.0.1
armv8-a clang (all architectural features, trunk)
armv8-a clang (trunk)
armv8-a clang 10.0.0
armv8-a clang 10.0.1
armv8-a clang 11.0.0
armv8-a clang 11.0.1
armv8-a clang 12.0.0
armv8-a clang 13.0.0
armv8-a clang 14.0.0
armv8-a clang 15.0.0
armv8-a clang 16.0.0
armv8-a clang 17.0.1
armv8-a clang 18.1.0
armv8-a clang 19.1.0
armv8-a clang 9.0.0
armv8-a clang 9.0.1
clang-cl 18.1.0
ellcc 0.1.33
ellcc 0.1.34
ellcc 2017-07-16
hexagon-clang 16.0.5
llvm-mos atari2600-3e
llvm-mos atari2600-4k
llvm-mos atari2600-common
llvm-mos atari5200-supercart
llvm-mos atari8-cart-megacart
llvm-mos atari8-cart-std
llvm-mos atari8-cart-xegs
llvm-mos atari8-common
llvm-mos atari8-dos
llvm-mos c128
llvm-mos c64
llvm-mos commodore
llvm-mos cpm65
llvm-mos cx16
llvm-mos dodo
llvm-mos eater
llvm-mos mega65
llvm-mos nes
llvm-mos nes-action53
llvm-mos nes-cnrom
llvm-mos nes-gtrom
llvm-mos nes-mmc1
llvm-mos nes-mmc3
llvm-mos nes-nrom
llvm-mos nes-unrom
llvm-mos nes-unrom-512
llvm-mos osi-c1p
llvm-mos pce
llvm-mos pce-cd
llvm-mos pce-common
llvm-mos pet
llvm-mos rp6502
llvm-mos rpc8e
llvm-mos supervision
llvm-mos vic20
loongarch64 gcc 12.2.0
loongarch64 gcc 12.3.0
loongarch64 gcc 12.4.0
loongarch64 gcc 13.1.0
loongarch64 gcc 13.2.0
loongarch64 gcc 13.3.0
loongarch64 gcc 14.1.0
loongarch64 gcc 14.2.0
mips clang 13.0.0
mips clang 14.0.0
mips clang 15.0.0
mips clang 16.0.0
mips clang 17.0.1
mips clang 18.1.0
mips clang 19.1.0
mips gcc 11.2.0
mips gcc 12.1.0
mips gcc 12.2.0
mips gcc 12.3.0
mips gcc 12.4.0
mips gcc 13.1.0
mips gcc 13.2.0
mips gcc 13.3.0
mips gcc 14.1.0
mips gcc 14.2.0
mips gcc 4.9.4
mips gcc 5.4
mips gcc 5.5.0
mips gcc 9.3.0 (codescape)
mips gcc 9.5.0
mips64 (el) gcc 12.1.0
mips64 (el) gcc 12.2.0
mips64 (el) gcc 12.3.0
mips64 (el) gcc 12.4.0
mips64 (el) gcc 13.1.0
mips64 (el) gcc 13.2.0
mips64 (el) gcc 13.3.0
mips64 (el) gcc 14.1.0
mips64 (el) gcc 14.2.0
mips64 (el) gcc 4.9.4
mips64 (el) gcc 5.4.0
mips64 (el) gcc 5.5.0
mips64 (el) gcc 9.5.0
mips64 clang 13.0.0
mips64 clang 14.0.0
mips64 clang 15.0.0
mips64 clang 16.0.0
mips64 clang 17.0.1
mips64 clang 18.1.0
mips64 clang 19.1.0
mips64 gcc 11.2.0
mips64 gcc 12.1.0
mips64 gcc 12.2.0
mips64 gcc 12.3.0
mips64 gcc 12.4.0
mips64 gcc 13.1.0
mips64 gcc 13.2.0
mips64 gcc 13.3.0
mips64 gcc 14.1.0
mips64 gcc 14.2.0
mips64 gcc 4.9.4
mips64 gcc 5.4.0
mips64 gcc 5.5.0
mips64 gcc 9.5.0
mips64el clang 13.0.0
mips64el clang 14.0.0
mips64el clang 15.0.0
mips64el clang 16.0.0
mips64el clang 17.0.1
mips64el clang 18.1.0
mips64el clang 19.1.0
mipsel clang 13.0.0
mipsel clang 14.0.0
mipsel clang 15.0.0
mipsel clang 16.0.0
mipsel clang 17.0.1
mipsel clang 18.1.0
mipsel clang 19.1.0
mipsel gcc 12.1.0
mipsel gcc 12.2.0
mipsel gcc 12.3.0
mipsel gcc 12.4.0
mipsel gcc 13.1.0
mipsel gcc 13.2.0
mipsel gcc 13.3.0
mipsel gcc 14.1.0
mipsel gcc 14.2.0
mipsel gcc 4.9.4
mipsel gcc 5.4.0
mipsel gcc 5.5.0
mipsel gcc 9.5.0
nanoMIPS gcc 6.3.0 (mtk)
power gcc 11.2.0
power gcc 12.1.0
power gcc 12.2.0
power gcc 12.3.0
power gcc 12.4.0
power gcc 13.1.0
power gcc 13.2.0
power gcc 13.3.0
power gcc 14.1.0
power gcc 14.2.0
power gcc 4.8.5
power64 AT12.0 (gcc8)
power64 AT13.0 (gcc9)
power64 gcc 11.2.0
power64 gcc 12.1.0
power64 gcc 12.2.0
power64 gcc 12.3.0
power64 gcc 12.4.0
power64 gcc 13.1.0
power64 gcc 13.2.0
power64 gcc 13.3.0
power64 gcc 14.1.0
power64 gcc 14.2.0
power64 gcc trunk
power64le AT12.0 (gcc8)
power64le AT13.0 (gcc9)
power64le clang (trunk)
power64le gcc 11.2.0
power64le gcc 12.1.0
power64le gcc 12.2.0
power64le gcc 12.3.0
power64le gcc 12.4.0
power64le gcc 13.1.0
power64le gcc 13.2.0
power64le gcc 13.3.0
power64le gcc 14.1.0
power64le gcc 14.2.0
power64le gcc 6.3.0
power64le gcc trunk
powerpc64 clang (trunk)
s390x gcc 11.2.0
s390x gcc 12.1.0
s390x gcc 12.2.0
s390x gcc 12.3.0
s390x gcc 12.4.0
s390x gcc 13.1.0
s390x gcc 13.2.0
s390x gcc 13.3.0
s390x gcc 14.1.0
s390x gcc 14.2.0
sh gcc 12.2.0
sh gcc 12.3.0
sh gcc 12.4.0
sh gcc 13.1.0
sh gcc 13.2.0
sh gcc 13.3.0
sh gcc 14.1.0
sh gcc 14.2.0
sh gcc 4.9.4
sh gcc 9.5.0
vast (trunk)
x64 msvc v19.0 (WINE)
x64 msvc v19.10 (WINE)
x64 msvc v19.14 (WINE)
x64 msvc v19.20 VS16.0
x64 msvc v19.21 VS16.1
x64 msvc v19.22 VS16.2
x64 msvc v19.23 VS16.3
x64 msvc v19.24 VS16.4
x64 msvc v19.25 VS16.5
x64 msvc v19.27 VS16.7
x64 msvc v19.28 VS16.8
x64 msvc v19.28 VS16.9
x64 msvc v19.29 VS16.10
x64 msvc v19.29 VS16.11
x64 msvc v19.30 VS17.0
x64 msvc v19.31 VS17.1
x64 msvc v19.32 VS17.2
x64 msvc v19.33 VS17.3
x64 msvc v19.34 VS17.4
x64 msvc v19.35 VS17.5
x64 msvc v19.36 VS17.6
x64 msvc v19.37 VS17.7
x64 msvc v19.38 VS17.8
x64 msvc v19.39 VS17.9
x64 msvc v19.40 VS17.10
x64 msvc v19.latest
x86 djgpp 4.9.4
x86 djgpp 5.5.0
x86 djgpp 6.4.0
x86 djgpp 7.2.0
x86 msvc v19.0 (WINE)
x86 msvc v19.10 (WINE)
x86 msvc v19.14 (WINE)
x86 msvc v19.20 VS16.0
x86 msvc v19.21 VS16.1
x86 msvc v19.22 VS16.2
x86 msvc v19.23 VS16.3
x86 msvc v19.24 VS16.4
x86 msvc v19.25 VS16.5
x86 msvc v19.27 VS16.7
x86 msvc v19.28 VS16.8
x86 msvc v19.28 VS16.9
x86 msvc v19.29 VS16.10
x86 msvc v19.29 VS16.11
x86 msvc v19.30 VS17.0
x86 msvc v19.31 VS17.1
x86 msvc v19.32 VS17.2
x86 msvc v19.33 VS17.3
x86 msvc v19.34 VS17.4
x86 msvc v19.35 VS17.5
x86 msvc v19.36 VS17.6
x86 msvc v19.37 VS17.7
x86 msvc v19.38 VS17.8
x86 msvc v19.39 VS17.9
x86 msvc v19.40 VS17.10
x86 msvc v19.latest
x86 nvc++ 22.11
x86 nvc++ 22.7
x86 nvc++ 22.9
x86 nvc++ 23.1
x86 nvc++ 23.11
x86 nvc++ 23.3
x86 nvc++ 23.5
x86 nvc++ 23.7
x86 nvc++ 23.9
x86 nvc++ 24.1
x86 nvc++ 24.3
x86 nvc++ 24.5
x86 nvc++ 24.7
x86 nvc++ 24.9
x86-64 Zapcc 190308
x86-64 clang (EricWF contracts)
x86-64 clang (amd-staging)
x86-64 clang (assertions trunk)
x86-64 clang (clangir)
x86-64 clang (dascandy contracts)
x86-64 clang (experimental -Wlifetime)
x86-64 clang (experimental P1061)
x86-64 clang (experimental P1144)
x86-64 clang (experimental P1221)
x86-64 clang (experimental P2996)
x86-64 clang (experimental P3068)
x86-64 clang (experimental P3309)
x86-64 clang (experimental P3367)
x86-64 clang (experimental P3372)
x86-64 clang (experimental metaprogramming - P2632)
x86-64 clang (old concepts branch)
x86-64 clang (p1974)
x86-64 clang (pattern matching - P2688)
x86-64 clang (reflection)
x86-64 clang (resugar)
x86-64 clang (string interpolation - P3412)
x86-64 clang (thephd.dev)
x86-64 clang (trunk)
x86-64 clang (variadic friends - P2893)
x86-64 clang (widberg)
x86-64 clang 10.0.0
x86-64 clang 10.0.0 (assertions)
x86-64 clang 10.0.1
x86-64 clang 11.0.0
x86-64 clang 11.0.0 (assertions)
x86-64 clang 11.0.1
x86-64 clang 12.0.0
x86-64 clang 12.0.0 (assertions)
x86-64 clang 12.0.1
x86-64 clang 13.0.0
x86-64 clang 13.0.0 (assertions)
x86-64 clang 13.0.1
x86-64 clang 14.0.0
x86-64 clang 14.0.0 (assertions)
x86-64 clang 15.0.0
x86-64 clang 15.0.0 (assertions)
x86-64 clang 16.0.0
x86-64 clang 16.0.0 (assertions)
x86-64 clang 17.0.1
x86-64 clang 17.0.1 (assertions)
x86-64 clang 18.1.0
x86-64 clang 18.1.0 (assertions)
x86-64 clang 19.1.0
x86-64 clang 19.1.0 (assertions)
x86-64 clang 2.6.0 (assertions)
x86-64 clang 2.7.0 (assertions)
x86-64 clang 2.8.0 (assertions)
x86-64 clang 2.9.0 (assertions)
x86-64 clang 3.0.0
x86-64 clang 3.0.0 (assertions)
x86-64 clang 3.1
x86-64 clang 3.1 (assertions)
x86-64 clang 3.2
x86-64 clang 3.2 (assertions)
x86-64 clang 3.3
x86-64 clang 3.3 (assertions)
x86-64 clang 3.4 (assertions)
x86-64 clang 3.4.1
x86-64 clang 3.5
x86-64 clang 3.5 (assertions)
x86-64 clang 3.5.1
x86-64 clang 3.5.2
x86-64 clang 3.6
x86-64 clang 3.6 (assertions)
x86-64 clang 3.7
x86-64 clang 3.7 (assertions)
x86-64 clang 3.7.1
x86-64 clang 3.8
x86-64 clang 3.8 (assertions)
x86-64 clang 3.8.1
x86-64 clang 3.9.0
x86-64 clang 3.9.0 (assertions)
x86-64 clang 3.9.1
x86-64 clang 4.0.0
x86-64 clang 4.0.0 (assertions)
x86-64 clang 4.0.1
x86-64 clang 5.0.0
x86-64 clang 5.0.0 (assertions)
x86-64 clang 5.0.1
x86-64 clang 5.0.2
x86-64 clang 6.0.0
x86-64 clang 6.0.0 (assertions)
x86-64 clang 6.0.1
x86-64 clang 7.0.0
x86-64 clang 7.0.0 (assertions)
x86-64 clang 7.0.1
x86-64 clang 7.1.0
x86-64 clang 8.0.0
x86-64 clang 8.0.0 (assertions)
x86-64 clang 8.0.1
x86-64 clang 9.0.0
x86-64 clang 9.0.0 (assertions)
x86-64 clang 9.0.1
x86-64 clang rocm-4.5.2
x86-64 clang rocm-5.0.2
x86-64 clang rocm-5.1.3
x86-64 clang rocm-5.2.3
x86-64 clang rocm-5.3.3
x86-64 clang rocm-5.7.0
x86-64 clang rocm-6.0.2
x86-64 clang rocm-6.1.2
x86-64 gcc (contract labels)
x86-64 gcc (contracts natural syntax)
x86-64 gcc (contracts)
x86-64 gcc (coroutines)
x86-64 gcc (modules)
x86-64 gcc (trunk)
x86-64 gcc 10.1
x86-64 gcc 10.2
x86-64 gcc 10.3
x86-64 gcc 10.4
x86-64 gcc 10.5
x86-64 gcc 11.1
x86-64 gcc 11.2
x86-64 gcc 11.3
x86-64 gcc 11.4
x86-64 gcc 12.1
x86-64 gcc 12.2
x86-64 gcc 12.3
x86-64 gcc 12.4
x86-64 gcc 13.1
x86-64 gcc 13.2
x86-64 gcc 13.3
x86-64 gcc 14.1
x86-64 gcc 14.2
x86-64 gcc 3.4.6
x86-64 gcc 4.0.4
x86-64 gcc 4.1.2
x86-64 gcc 4.4.7
x86-64 gcc 4.5.3
x86-64 gcc 4.6.4
x86-64 gcc 4.7.1
x86-64 gcc 4.7.2
x86-64 gcc 4.7.3
x86-64 gcc 4.7.4
x86-64 gcc 4.8.1
x86-64 gcc 4.8.2
x86-64 gcc 4.8.3
x86-64 gcc 4.8.4
x86-64 gcc 4.8.5
x86-64 gcc 4.9.0
x86-64 gcc 4.9.1
x86-64 gcc 4.9.2
x86-64 gcc 4.9.3
x86-64 gcc 4.9.4
x86-64 gcc 5.1
x86-64 gcc 5.2
x86-64 gcc 5.3
x86-64 gcc 5.4
x86-64 gcc 5.5
x86-64 gcc 6.1
x86-64 gcc 6.2
x86-64 gcc 6.3
x86-64 gcc 6.4
x86-64 gcc 6.5
x86-64 gcc 7.1
x86-64 gcc 7.2
x86-64 gcc 7.3
x86-64 gcc 7.4
x86-64 gcc 7.5
x86-64 gcc 8.1
x86-64 gcc 8.2
x86-64 gcc 8.3
x86-64 gcc 8.4
x86-64 gcc 8.5
x86-64 gcc 9.1
x86-64 gcc 9.2
x86-64 gcc 9.3
x86-64 gcc 9.4
x86-64 gcc 9.5
x86-64 icc 13.0.1
x86-64 icc 16.0.3
x86-64 icc 17.0.0
x86-64 icc 18.0.0
x86-64 icc 19.0.0
x86-64 icc 19.0.1
x86-64 icc 2021.1.2
x86-64 icc 2021.10.0
x86-64 icc 2021.2.0
x86-64 icc 2021.3.0
x86-64 icc 2021.4.0
x86-64 icc 2021.5.0
x86-64 icc 2021.6.0
x86-64 icc 2021.7.0
x86-64 icc 2021.7.1
x86-64 icc 2021.8.0
x86-64 icc 2021.9.0
x86-64 icx 2021.1.2
x86-64 icx 2021.2.0
x86-64 icx 2021.3.0
x86-64 icx 2021.4.0
x86-64 icx 2022.0.0
x86-64 icx 2022.1.0
x86-64 icx 2022.2.0
x86-64 icx 2022.2.1
x86-64 icx 2023.0.0
x86-64 icx 2023.1.0
x86-64 icx 2023.2.1
x86-64 icx 2024.0.0
x86-64 icx 2024.1.0
x86-64 icx 2024.2.0
x86-64 icx 2025.0.0
x86-64 icx 2025.0.0
zig c++ 0.10.0
zig c++ 0.11.0
zig c++ 0.12.0
zig c++ 0.12.1
zig c++ 0.13.0
zig c++ 0.6.0
zig c++ 0.7.0
zig c++ 0.7.1
zig c++ 0.8.0
zig c++ 0.9.0
zig c++ trunk
Options
Source code
// Formatting library for C++ - the core API // // Copyright (c) 2012 - present, Victor Zverovich // All rights reserved. // // For the license information refer to format.h. #ifndef FMT_CORE_H_ #define FMT_CORE_H_ #include <cstdio> // std::FILE #include <cstring> #include <iterator> #include <string> #include <type_traits> // The fmt library version in the form major * 10000 + minor * 100 + patch. #define FMT_VERSION 70103 #ifdef __clang__ # define FMT_CLANG_VERSION (__clang_major__ * 100 + __clang_minor__) #else # define FMT_CLANG_VERSION 0 #endif #if defined(__GNUC__) && !defined(__clang__) # define FMT_GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__) #else # define FMT_GCC_VERSION 0 #endif #if defined(__INTEL_COMPILER) # define FMT_ICC_VERSION __INTEL_COMPILER #else # define FMT_ICC_VERSION 0 #endif #if __cplusplus >= 201103L || defined(__GXX_EXPERIMENTAL_CXX0X__) # define FMT_HAS_GXX_CXX11 FMT_GCC_VERSION #else # define FMT_HAS_GXX_CXX11 0 #endif #ifdef __NVCC__ # define FMT_NVCC __NVCC__ #else # define FMT_NVCC 0 #endif #ifdef _MSC_VER # define FMT_MSC_VER _MSC_VER # define FMT_MSC_WARNING(...) __pragma(warning(__VA_ARGS__)) #else # define FMT_MSC_VER 0 # define FMT_MSC_WARNING(...) #endif #ifdef __has_feature # define FMT_HAS_FEATURE(x) __has_feature(x) #else # define FMT_HAS_FEATURE(x) 0 #endif #if defined(__has_include) && !defined(__INTELLISENSE__) && \ (!FMT_ICC_VERSION || FMT_ICC_VERSION >= 1600) # define FMT_HAS_INCLUDE(x) __has_include(x) #else # define FMT_HAS_INCLUDE(x) 0 #endif #ifdef __has_cpp_attribute # define FMT_HAS_CPP_ATTRIBUTE(x) __has_cpp_attribute(x) #else # define FMT_HAS_CPP_ATTRIBUTE(x) 0 #endif #define FMT_HAS_CPP14_ATTRIBUTE(attribute) \ (__cplusplus >= 201402L && FMT_HAS_CPP_ATTRIBUTE(attribute)) #define FMT_HAS_CPP17_ATTRIBUTE(attribute) \ (__cplusplus >= 201703L && FMT_HAS_CPP_ATTRIBUTE(attribute)) // Check if relaxed C++14 constexpr is supported. // GCC doesn't allow throw in constexpr until version 6 (bug 67371). #ifndef FMT_USE_CONSTEXPR # define FMT_USE_CONSTEXPR \ (FMT_HAS_FEATURE(cxx_relaxed_constexpr) || FMT_MSC_VER >= 1910 || \ (FMT_GCC_VERSION >= 600 && __cplusplus >= 201402L)) && \ !FMT_NVCC && !FMT_ICC_VERSION #endif #if FMT_USE_CONSTEXPR # define FMT_CONSTEXPR constexpr # define FMT_CONSTEXPR_DECL constexpr #else # define FMT_CONSTEXPR # define FMT_CONSTEXPR_DECL #endif #ifndef FMT_OVERRIDE # if FMT_HAS_FEATURE(cxx_override_control) || \ (FMT_GCC_VERSION >= 408 && FMT_HAS_GXX_CXX11) || FMT_MSC_VER >= 1900 # define FMT_OVERRIDE override # else # define FMT_OVERRIDE # endif #endif // Check if exceptions are disabled. #ifndef FMT_EXCEPTIONS # if (defined(__GNUC__) && !defined(__EXCEPTIONS)) || \ FMT_MSC_VER && !_HAS_EXCEPTIONS # define FMT_EXCEPTIONS 0 # else # define FMT_EXCEPTIONS 1 # endif #endif // Define FMT_USE_NOEXCEPT to make fmt use noexcept (C++11 feature). #ifndef FMT_USE_NOEXCEPT # define FMT_USE_NOEXCEPT 0 #endif #if FMT_USE_NOEXCEPT || FMT_HAS_FEATURE(cxx_noexcept) || \ (FMT_GCC_VERSION >= 408 && FMT_HAS_GXX_CXX11) || FMT_MSC_VER >= 1900 # define FMT_DETECTED_NOEXCEPT noexcept # define FMT_HAS_CXX11_NOEXCEPT 1 #else # define FMT_DETECTED_NOEXCEPT throw() # define FMT_HAS_CXX11_NOEXCEPT 0 #endif #ifndef FMT_NOEXCEPT # if FMT_EXCEPTIONS || FMT_HAS_CXX11_NOEXCEPT # define FMT_NOEXCEPT FMT_DETECTED_NOEXCEPT # else # define FMT_NOEXCEPT # endif #endif // [[noreturn]] is disabled on MSVC and NVCC because of bogus unreachable code // warnings. #if FMT_EXCEPTIONS && FMT_HAS_CPP_ATTRIBUTE(noreturn) && !FMT_MSC_VER && \ !FMT_NVCC # define FMT_NORETURN [[noreturn]] #else # define FMT_NORETURN #endif #ifndef FMT_DEPRECATED # if FMT_HAS_CPP14_ATTRIBUTE(deprecated) || FMT_MSC_VER >= 1900 # define FMT_DEPRECATED [[deprecated]] # else # if (defined(__GNUC__) && !defined(__LCC__)) || defined(__clang__) # define FMT_DEPRECATED __attribute__((deprecated)) # elif FMT_MSC_VER # define FMT_DEPRECATED __declspec(deprecated) # else # define FMT_DEPRECATED /* deprecated */ # endif # endif #endif // Workaround broken [[deprecated]] in the Intel, PGI and NVCC compilers. #if FMT_ICC_VERSION || defined(__PGI) || FMT_NVCC # define FMT_DEPRECATED_ALIAS #else # define FMT_DEPRECATED_ALIAS FMT_DEPRECATED #endif #ifndef FMT_INLINE # if FMT_GCC_VERSION || FMT_CLANG_VERSION # define FMT_INLINE inline __attribute__((always_inline)) # else # define FMT_INLINE inline # endif #endif #ifndef FMT_USE_INLINE_NAMESPACES # if FMT_HAS_FEATURE(cxx_inline_namespaces) || FMT_GCC_VERSION >= 404 || \ (FMT_MSC_VER >= 1900 && !_MANAGED) # define FMT_USE_INLINE_NAMESPACES 1 # else # define FMT_USE_INLINE_NAMESPACES 0 # endif #endif #ifndef FMT_BEGIN_NAMESPACE # if FMT_USE_INLINE_NAMESPACES # define FMT_INLINE_NAMESPACE inline namespace # define FMT_END_NAMESPACE \ } \ } # else # define FMT_INLINE_NAMESPACE namespace # define FMT_END_NAMESPACE \ } \ using namespace v7; \ } # endif # define FMT_BEGIN_NAMESPACE \ namespace fmt { \ FMT_INLINE_NAMESPACE v7 { #endif #if !defined(FMT_HEADER_ONLY) && defined(_WIN32) # define FMT_CLASS_API FMT_MSC_WARNING(suppress : 4275) # ifdef FMT_EXPORT # define FMT_API __declspec(dllexport) # define FMT_EXTERN_TEMPLATE_API FMT_API # define FMT_EXPORTED # elif defined(FMT_SHARED) # define FMT_API __declspec(dllimport) # define FMT_EXTERN_TEMPLATE_API FMT_API # endif #else # define FMT_CLASS_API #endif #ifndef FMT_API # define FMT_API #endif #ifndef FMT_EXTERN_TEMPLATE_API # define FMT_EXTERN_TEMPLATE_API #endif #ifndef FMT_INSTANTIATION_DEF_API # define FMT_INSTANTIATION_DEF_API FMT_API #endif #ifndef FMT_HEADER_ONLY # define FMT_EXTERN extern #else # define FMT_EXTERN #endif // libc++ supports string_view in pre-c++17. #if (FMT_HAS_INCLUDE(<string_view>) && \ (__cplusplus > 201402L || defined(_LIBCPP_VERSION))) || \ (defined(_MSVC_LANG) && _MSVC_LANG > 201402L && _MSC_VER >= 1910) # include <string_view> # define FMT_USE_STRING_VIEW #elif FMT_HAS_INCLUDE("experimental/string_view") && __cplusplus >= 201402L # include <experimental/string_view> # define FMT_USE_EXPERIMENTAL_STRING_VIEW #endif #ifndef FMT_UNICODE # define FMT_UNICODE !FMT_MSC_VER #endif #ifndef FMT_COMPILE_TIME_CHECKS # define FMT_COMPILE_TIME_CHECKS 0 #endif FMT_BEGIN_NAMESPACE // Implementations of enable_if_t and other metafunctions for older systems. template <bool B, class T = void> using enable_if_t = typename std::enable_if<B, T>::type; template <bool B, class T, class F> using conditional_t = typename std::conditional<B, T, F>::type; template <bool B> using bool_constant = std::integral_constant<bool, B>; template <typename T> using remove_reference_t = typename std::remove_reference<T>::type; template <typename T> using remove_const_t = typename std::remove_const<T>::type; template <typename T> using remove_cvref_t = typename std::remove_cv<remove_reference_t<T>>::type; template <typename T> struct type_identity { using type = T; }; template <typename T> using type_identity_t = typename type_identity<T>::type; struct monostate {}; // An enable_if helper to be used in template parameters which results in much // shorter symbols: https://godbolt.org/z/sWw4vP. Extra parentheses are needed // to workaround a bug in MSVC 2019 (see #1140 and #1186). #ifdef FMT_DOC # define FMT_ENABLE_IF(...) #else # define FMT_ENABLE_IF(...) enable_if_t<(__VA_ARGS__), int> = 0 #endif namespace detail { constexpr bool is_constant_evaluated() FMT_NOEXCEPT { #ifdef __cpp_lib_is_constant_evaluated return std::is_constant_evaluated(); #else return false; #endif } // A helper function to suppress "conditional expression is constant" warnings. template <typename T> constexpr T const_check(T value) { return value; } FMT_NORETURN FMT_API void assert_fail(const char* file, int line, const char* message); #ifndef FMT_ASSERT # ifdef NDEBUG // FMT_ASSERT is not empty to avoid -Werror=empty-body. # define FMT_ASSERT(condition, message) ((void)0) # else # define FMT_ASSERT(condition, message) \ ((condition) /* void() fails with -Winvalid-constexpr on clang 4.0.1 */ \ ? (void)0 \ : ::fmt::detail::assert_fail(__FILE__, __LINE__, (message))) # endif #endif #if defined(FMT_USE_STRING_VIEW) template <typename Char> using std_string_view = std::basic_string_view<Char>; #elif defined(FMT_USE_EXPERIMENTAL_STRING_VIEW) template <typename Char> using std_string_view = std::experimental::basic_string_view<Char>; #else template <typename T> struct std_string_view {}; #endif #ifdef FMT_USE_INT128 // Do nothing. #elif defined(__SIZEOF_INT128__) && !FMT_NVCC && \ !(FMT_CLANG_VERSION && FMT_MSC_VER) # define FMT_USE_INT128 1 using int128_t = __int128_t; using uint128_t = __uint128_t; #else # define FMT_USE_INT128 0 #endif #if !FMT_USE_INT128 struct int128_t {}; struct uint128_t {}; #endif // Casts a nonnegative integer to unsigned. template <typename Int> FMT_CONSTEXPR typename std::make_unsigned<Int>::type to_unsigned(Int value) { FMT_ASSERT(value >= 0, "negative value"); return static_cast<typename std::make_unsigned<Int>::type>(value); } FMT_MSC_WARNING(suppress : 4566) constexpr unsigned char micro[] = "\u00B5"; template <typename Char> constexpr bool is_unicode() { return FMT_UNICODE || sizeof(Char) != 1 || (sizeof(micro) == 3 && micro[0] == 0xC2 && micro[1] == 0xB5); } #ifdef __cpp_char8_t using char8_type = char8_t; #else enum char8_type : unsigned char {}; #endif } // namespace detail #ifdef FMT_USE_INTERNAL namespace internal = detail; // DEPRECATED #endif /** An implementation of ``std::basic_string_view`` for pre-C++17. It provides a subset of the API. ``fmt::basic_string_view`` is used for format strings even if ``std::string_view`` is available to prevent issues when a library is compiled with a different ``-std`` option than the client code (which is not recommended). */ template <typename Char> class basic_string_view { private: const Char* data_; size_t size_; public: using value_type = Char; using iterator = const Char*; constexpr basic_string_view() FMT_NOEXCEPT : data_(nullptr), size_(0) {} /** Constructs a string reference object from a C string and a size. */ constexpr basic_string_view(const Char* s, size_t count) FMT_NOEXCEPT : data_(s), size_(count) {} /** \rst Constructs a string reference object from a C string computing the size with ``std::char_traits<Char>::length``. \endrst */ #if __cplusplus >= 201703L // C++17's char_traits::length() is constexpr. FMT_CONSTEXPR #endif basic_string_view(const Char* s) : data_(s), size_(std::char_traits<Char>::length(s)) {} /** Constructs a string reference from a ``std::basic_string`` object. */ template <typename Traits, typename Alloc> FMT_CONSTEXPR basic_string_view( const std::basic_string<Char, Traits, Alloc>& s) FMT_NOEXCEPT : data_(s.data()), size_(s.size()) {} template <typename S, FMT_ENABLE_IF(std::is_same< S, detail::std_string_view<Char>>::value)> FMT_CONSTEXPR basic_string_view(S s) FMT_NOEXCEPT : data_(s.data()), size_(s.size()) {} /** Returns a pointer to the string data. */ constexpr const Char* data() const { return data_; } /** Returns the string size. */ constexpr size_t size() const { return size_; } constexpr iterator begin() const { return data_; } constexpr iterator end() const { return data_ + size_; } constexpr const Char& operator[](size_t pos) const { return data_[pos]; } FMT_CONSTEXPR void remove_prefix(size_t n) { data_ += n; size_ -= n; } // Lexicographically compare this string reference to other. int compare(basic_string_view other) const { size_t str_size = size_ < other.size_ ? size_ : other.size_; int result = std::char_traits<Char>::compare(data_, other.data_, str_size); if (result == 0) result = size_ == other.size_ ? 0 : (size_ < other.size_ ? -1 : 1); return result; } friend bool operator==(basic_string_view lhs, basic_string_view rhs) { return lhs.compare(rhs) == 0; } friend bool operator!=(basic_string_view lhs, basic_string_view rhs) { return lhs.compare(rhs) != 0; } friend bool operator<(basic_string_view lhs, basic_string_view rhs) { return lhs.compare(rhs) < 0; } friend bool operator<=(basic_string_view lhs, basic_string_view rhs) { return lhs.compare(rhs) <= 0; } friend bool operator>(basic_string_view lhs, basic_string_view rhs) { return lhs.compare(rhs) > 0; } friend bool operator>=(basic_string_view lhs, basic_string_view rhs) { return lhs.compare(rhs) >= 0; } }; using string_view = basic_string_view<char>; using wstring_view = basic_string_view<wchar_t>; /** Specifies if ``T`` is a character type. Can be specialized by users. */ template <typename T> struct is_char : std::false_type {}; template <> struct is_char<char> : std::true_type {}; template <> struct is_char<wchar_t> : std::true_type {}; template <> struct is_char<detail::char8_type> : std::true_type {}; template <> struct is_char<char16_t> : std::true_type {}; template <> struct is_char<char32_t> : std::true_type {}; /** \rst Returns a string view of `s`. In order to add custom string type support to {fmt} provide an overload of `to_string_view` for it in the same namespace as the type for the argument-dependent lookup to work. **Example**:: namespace my_ns { inline string_view to_string_view(const my_string& s) { return {s.data(), s.length()}; } } std::string message = fmt::format(my_string("The answer is {}"), 42); \endrst */ template <typename Char, FMT_ENABLE_IF(is_char<Char>::value)> inline basic_string_view<Char> to_string_view(const Char* s) { return s; } template <typename Char, typename Traits, typename Alloc> inline basic_string_view<Char> to_string_view( const std::basic_string<Char, Traits, Alloc>& s) { return s; } template <typename Char> constexpr basic_string_view<Char> to_string_view(basic_string_view<Char> s) { return s; } template <typename Char, FMT_ENABLE_IF(!std::is_empty<detail::std_string_view<Char>>::value)> inline basic_string_view<Char> to_string_view(detail::std_string_view<Char> s) { return s; } // A base class for compile-time strings. It is defined in the fmt namespace to // make formatting functions visible via ADL, e.g. format(FMT_STRING("{}"), 42). struct compile_string {}; template <typename S> struct is_compile_string : std::is_base_of<compile_string, S> {}; template <typename S, FMT_ENABLE_IF(is_compile_string<S>::value)> constexpr basic_string_view<typename S::char_type> to_string_view(const S& s) { return s; } namespace detail { void to_string_view(...); using fmt::v7::to_string_view; // Specifies whether S is a string type convertible to fmt::basic_string_view. // It should be a constexpr function but MSVC 2017 fails to compile it in // enable_if and MSVC 2015 fails to compile it as an alias template. template <typename S> struct is_string : std::is_class<decltype(to_string_view(std::declval<S>()))> { }; template <typename S, typename = void> struct char_t_impl {}; template <typename S> struct char_t_impl<S, enable_if_t<is_string<S>::value>> { using result = decltype(to_string_view(std::declval<S>())); using type = typename result::value_type; }; // Reports a compile-time error if S is not a valid format string. template <typename..., typename S, FMT_ENABLE_IF(!is_compile_string<S>::value)> FMT_INLINE void check_format_string(const S&) { #ifdef FMT_ENFORCE_COMPILE_STRING static_assert(is_compile_string<S>::value, "FMT_ENFORCE_COMPILE_STRING requires all format strings to use " "FMT_STRING."); #endif } template <typename..., typename S, FMT_ENABLE_IF(is_compile_string<S>::value)> void check_format_string(S); struct error_handler { constexpr error_handler() = default; constexpr error_handler(const error_handler&) = default; // This function is intentionally not constexpr to give a compile-time error. FMT_NORETURN FMT_API void on_error(const char* message); }; } // namespace detail /** String's character type. */ template <typename S> using char_t = typename detail::char_t_impl<S>::type; /** \rst Parsing context consisting of a format string range being parsed and an argument counter for automatic indexing. You can use one of the following type aliases for common character types: +-----------------------+-------------------------------------+ | Type | Definition | +=======================+=====================================+ | format_parse_context | basic_format_parse_context<char> | +-----------------------+-------------------------------------+ | wformat_parse_context | basic_format_parse_context<wchar_t> | +-----------------------+-------------------------------------+ \endrst */ template <typename Char, typename ErrorHandler = detail::error_handler> class basic_format_parse_context : private ErrorHandler { private: basic_string_view<Char> format_str_; int next_arg_id_; public: using char_type = Char; using iterator = typename basic_string_view<Char>::iterator; explicit constexpr basic_format_parse_context( basic_string_view<Char> format_str, ErrorHandler eh = {}, int next_arg_id = 0) : ErrorHandler(eh), format_str_(format_str), next_arg_id_(next_arg_id) {} /** Returns an iterator to the beginning of the format string range being parsed. */ constexpr iterator begin() const FMT_NOEXCEPT { return format_str_.begin(); } /** Returns an iterator past the end of the format string range being parsed. */ constexpr iterator end() const FMT_NOEXCEPT { return format_str_.end(); } /** Advances the begin iterator to ``it``. */ FMT_CONSTEXPR void advance_to(iterator it) { format_str_.remove_prefix(detail::to_unsigned(it - begin())); } /** Reports an error if using the manual argument indexing; otherwise returns the next argument index and switches to the automatic indexing. */ FMT_CONSTEXPR int next_arg_id() { // Don't check if the argument id is valid to avoid overhead and because it // will be checked during formatting anyway. if (next_arg_id_ >= 0) return next_arg_id_++; on_error("cannot switch from manual to automatic argument indexing"); return 0; } /** Reports an error if using the automatic argument indexing; otherwise switches to the manual indexing. */ FMT_CONSTEXPR void check_arg_id(int) { if (next_arg_id_ > 0) on_error("cannot switch from automatic to manual argument indexing"); else next_arg_id_ = -1; } FMT_CONSTEXPR void check_arg_id(basic_string_view<Char>) {} FMT_CONSTEXPR void on_error(const char* message) { ErrorHandler::on_error(message); } constexpr ErrorHandler error_handler() const { return *this; } }; using format_parse_context = basic_format_parse_context<char>; using wformat_parse_context = basic_format_parse_context<wchar_t>; template <typename Context> class basic_format_arg; template <typename Context> class basic_format_args; template <typename Context> class dynamic_format_arg_store; // A formatter for objects of type T. template <typename T, typename Char = char, typename Enable = void> struct formatter { // A deleted default constructor indicates a disabled formatter. formatter() = delete; }; // Specifies if T has an enabled formatter specialization. A type can be // formattable even if it doesn't have a formatter e.g. via a conversion. template <typename T, typename Context> using has_formatter = std::is_constructible<typename Context::template formatter_type<T>>; // Checks whether T is a container with contiguous storage. template <typename T> struct is_contiguous : std::false_type {}; template <typename Char> struct is_contiguous<std::basic_string<Char>> : std::true_type {}; namespace detail { // Extracts a reference to the container from back_insert_iterator. template <typename Container> inline Container& get_container(std::back_insert_iterator<Container> it) { using bi_iterator = std::back_insert_iterator<Container>; struct accessor : bi_iterator { accessor(bi_iterator iter) : bi_iterator(iter) {} using bi_iterator::container; }; return *accessor(it).container; } /** \rst A contiguous memory buffer with an optional growing ability. It is an internal class and shouldn't be used directly, only via `~fmt::basic_memory_buffer`. \endrst */ template <typename T> class buffer { private: T* ptr_; size_t size_; size_t capacity_; protected: // Don't initialize ptr_ since it is not accessed to save a few cycles. FMT_MSC_WARNING(suppress : 26495) buffer(size_t sz) FMT_NOEXCEPT : size_(sz), capacity_(sz) {} buffer(T* p = nullptr, size_t sz = 0, size_t cap = 0) FMT_NOEXCEPT : ptr_(p), size_(sz), capacity_(cap) {} ~buffer() = default; /** Sets the buffer data and capacity. */ void set(T* buf_data, size_t buf_capacity) FMT_NOEXCEPT { ptr_ = buf_data; capacity_ = buf_capacity; } /** Increases the buffer capacity to hold at least *capacity* elements. */ virtual void grow(size_t capacity) = 0; public: using value_type = T; using const_reference = const T&; buffer(const buffer&) = delete; void operator=(const buffer&) = delete; T* begin() FMT_NOEXCEPT { return ptr_; } T* end() FMT_NOEXCEPT { return ptr_ + size_; } const T* begin() const FMT_NOEXCEPT { return ptr_; } const T* end() const FMT_NOEXCEPT { return ptr_ + size_; } /** Returns the size of this buffer. */ size_t size() const FMT_NOEXCEPT { return size_; } /** Returns the capacity of this buffer. */ size_t capacity() const FMT_NOEXCEPT { return capacity_; } /** Returns a pointer to the buffer data. */ T* data() FMT_NOEXCEPT { return ptr_; } /** Returns a pointer to the buffer data. */ const T* data() const FMT_NOEXCEPT { return ptr_; } /** Clears this buffer. */ void clear() { size_ = 0; } // Tries resizing the buffer to contain *count* elements. If T is a POD type // the new elements may not be initialized. void try_resize(size_t count) { try_reserve(count); size_ = count <= capacity_ ? count : capacity_; } // Tries increasing the buffer capacity to *new_capacity*. It can increase the // capacity by a smaller amount than requested but guarantees there is space // for at least one additional element either by increasing the capacity or by // flushing the buffer if it is full. void try_reserve(size_t new_capacity) { if (new_capacity > capacity_) grow(new_capacity); } void push_back(const T& value) { try_reserve(size_ + 1); ptr_[size_++] = value; } /** Appends data to the end of the buffer. */ template <typename U> void append(const U* begin, const U* end); template <typename I> T& operator[](I index) { return ptr_[index]; } template <typename I> const T& operator[](I index) const { return ptr_[index]; } }; struct buffer_traits { explicit buffer_traits(size_t) {} size_t count() const { return 0; } size_t limit(size_t size) { return size; } }; class fixed_buffer_traits { private: size_t count_ = 0; size_t limit_; public: explicit fixed_buffer_traits(size_t limit) : limit_(limit) {} size_t count() const { return count_; } size_t limit(size_t size) { size_t n = limit_ > count_ ? limit_ - count_ : 0; count_ += size; return size < n ? size : n; } }; // A buffer that writes to an output iterator when flushed. template <typename OutputIt, typename T, typename Traits = buffer_traits> class iterator_buffer final : public Traits, public buffer<T> { private: OutputIt out_; enum { buffer_size = 256 }; T data_[buffer_size]; protected: void grow(size_t) final FMT_OVERRIDE { if (this->size() == buffer_size) flush(); } void flush(); public: explicit iterator_buffer(OutputIt out, size_t n = buffer_size) : Traits(n), buffer<T>(data_, 0, buffer_size), out_(out) {} ~iterator_buffer() { flush(); } OutputIt out() { flush(); return out_; } size_t count() const { return Traits::count() + this->size(); } }; template <typename T> class iterator_buffer<T*, T> final : public buffer<T> { protected: void grow(size_t) final FMT_OVERRIDE {} public: explicit iterator_buffer(T* out, size_t = 0) : buffer<T>(out, 0, ~size_t()) {} T* out() { return &*this->end(); } }; // A buffer that writes to a container with the contiguous storage. template <typename Container> class iterator_buffer<std::back_insert_iterator<Container>, enable_if_t<is_contiguous<Container>::value, typename Container::value_type>> final : public buffer<typename Container::value_type> { private: Container& container_; protected: void grow(size_t capacity) final FMT_OVERRIDE { container_.resize(capacity); this->set(&container_[0], capacity); } public: explicit iterator_buffer(Container& c) : buffer<typename Container::value_type>(c.size()), container_(c) {} explicit iterator_buffer(std::back_insert_iterator<Container> out, size_t = 0) : iterator_buffer(get_container(out)) {} std::back_insert_iterator<Container> out() { return std::back_inserter(container_); } }; // A buffer that counts the number of code units written discarding the output. template <typename T = char> class counting_buffer final : public buffer<T> { private: enum { buffer_size = 256 }; T data_[buffer_size]; size_t count_ = 0; protected: void grow(size_t) final FMT_OVERRIDE { if (this->size() != buffer_size) return; count_ += this->size(); this->clear(); } public: counting_buffer() : buffer<T>(data_, 0, buffer_size) {} size_t count() { return count_ + this->size(); } }; // An output iterator that appends to the buffer. // It is used to reduce symbol sizes for the common case. template <typename T> class buffer_appender : public std::back_insert_iterator<buffer<T>> { using base = std::back_insert_iterator<buffer<T>>; public: explicit buffer_appender(buffer<T>& buf) : base(buf) {} buffer_appender(base it) : base(it) {} buffer_appender& operator++() { base::operator++(); return *this; } buffer_appender operator++(int) { buffer_appender tmp = *this; ++*this; return tmp; } }; // Maps an output iterator into a buffer. template <typename T, typename OutputIt> iterator_buffer<OutputIt, T> get_buffer(OutputIt); template <typename T> buffer<T>& get_buffer(buffer_appender<T>); template <typename OutputIt> OutputIt get_buffer_init(OutputIt out) { return out; } template <typename T> buffer<T>& get_buffer_init(buffer_appender<T> out) { return get_container(out); } template <typename Buffer> auto get_iterator(Buffer& buf) -> decltype(buf.out()) { return buf.out(); } template <typename T> buffer_appender<T> get_iterator(buffer<T>& buf) { return buffer_appender<T>(buf); } template <typename T, typename Char = char, typename Enable = void> struct fallback_formatter { fallback_formatter() = delete; }; // Specifies if T has an enabled fallback_formatter specialization. template <typename T, typename Context> using has_fallback_formatter = std::is_constructible<fallback_formatter<T, typename Context::char_type>>; struct view {}; template <typename Char, typename T> struct named_arg : view { const Char* name; const T& value; named_arg(const Char* n, const T& v) : name(n), value(v) {} }; template <typename Char> struct named_arg_info { const Char* name; int id; }; template <typename T, typename Char, size_t NUM_ARGS, size_t NUM_NAMED_ARGS> struct arg_data { // args_[0].named_args points to named_args_ to avoid bloating format_args. // +1 to workaround a bug in gcc 7.5 that causes duplicated-branches warning. T args_[1 + (NUM_ARGS != 0 ? NUM_ARGS : +1)]; named_arg_info<Char> named_args_[NUM_NAMED_ARGS]; template <typename... U> arg_data(const U&... init) : args_{T(named_args_, NUM_NAMED_ARGS), init...} {} arg_data(const arg_data& other) = delete; const T* args() const { return args_ + 1; } named_arg_info<Char>* named_args() { return named_args_; } }; template <typename T, typename Char, size_t NUM_ARGS> struct arg_data<T, Char, NUM_ARGS, 0> { // +1 to workaround a bug in gcc 7.5 that causes duplicated-branches warning. T args_[NUM_ARGS != 0 ? NUM_ARGS : +1]; template <typename... U> FMT_CONSTEXPR FMT_INLINE arg_data(const U&... init) : args_{init...} {} FMT_CONSTEXPR FMT_INLINE const T* args() const { return args_; } FMT_CONSTEXPR FMT_INLINE std::nullptr_t named_args() { return nullptr; } }; template <typename Char> inline void init_named_args(named_arg_info<Char>*, int, int) {} template <typename Char, typename T, typename... Tail> void init_named_args(named_arg_info<Char>* named_args, int arg_count, int named_arg_count, const T&, const Tail&... args) { init_named_args(named_args, arg_count + 1, named_arg_count, args...); } template <typename Char, typename T, typename... Tail> void init_named_args(named_arg_info<Char>* named_args, int arg_count, int named_arg_count, const named_arg<Char, T>& arg, const Tail&... args) { named_args[named_arg_count++] = {arg.name, arg_count}; init_named_args(named_args, arg_count + 1, named_arg_count, args...); } template <typename... Args> FMT_CONSTEXPR FMT_INLINE void init_named_args(std::nullptr_t, int, int, const Args&...) {} template <typename T> struct is_named_arg : std::false_type {}; template <typename T, typename Char> struct is_named_arg<named_arg<Char, T>> : std::true_type {}; template <bool B = false> constexpr size_t count() { return B ? 1 : 0; } template <bool B1, bool B2, bool... Tail> constexpr size_t count() { return (B1 ? 1 : 0) + count<B2, Tail...>(); } template <typename... Args> constexpr size_t count_named_args() { return count<is_named_arg<Args>::value...>(); } enum class type { none_type, // Integer types should go first, int_type, uint_type, long_long_type, ulong_long_type, int128_type, uint128_type, bool_type, char_type, last_integer_type = char_type, // followed by floating-point types. float_type, double_type, long_double_type, last_numeric_type = long_double_type, cstring_type, string_type, pointer_type, custom_type }; // Maps core type T to the corresponding type enum constant. template <typename T, typename Char> struct type_constant : std::integral_constant<type, type::custom_type> {}; #define FMT_TYPE_CONSTANT(Type, constant) \ template <typename Char> \ struct type_constant<Type, Char> \ : std::integral_constant<type, type::constant> {} FMT_TYPE_CONSTANT(int, int_type); FMT_TYPE_CONSTANT(unsigned, uint_type); FMT_TYPE_CONSTANT(long long, long_long_type); FMT_TYPE_CONSTANT(unsigned long long, ulong_long_type); FMT_TYPE_CONSTANT(int128_t, int128_type); FMT_TYPE_CONSTANT(uint128_t, uint128_type); FMT_TYPE_CONSTANT(bool, bool_type); FMT_TYPE_CONSTANT(Char, char_type); FMT_TYPE_CONSTANT(float, float_type); FMT_TYPE_CONSTANT(double, double_type); FMT_TYPE_CONSTANT(long double, long_double_type); FMT_TYPE_CONSTANT(const Char*, cstring_type); FMT_TYPE_CONSTANT(basic_string_view<Char>, string_type); FMT_TYPE_CONSTANT(const void*, pointer_type); constexpr bool is_integral_type(type t) { return t > type::none_type && t <= type::last_integer_type; } constexpr bool is_arithmetic_type(type t) { return t > type::none_type && t <= type::last_numeric_type; } template <typename Char> struct string_value { const Char* data; size_t size; }; template <typename Char> struct named_arg_value { const named_arg_info<Char>* data; size_t size; }; template <typename Context> struct custom_value { using parse_context = typename Context::parse_context_type; const void* value; void (*format)(const void* arg, parse_context& parse_ctx, Context& ctx); }; // A formatting argument value. template <typename Context> class value { public: using char_type = typename Context::char_type; union { int int_value; unsigned uint_value; long long long_long_value; unsigned long long ulong_long_value; int128_t int128_value; uint128_t uint128_value; bool bool_value; char_type char_value; float float_value; double double_value; long double long_double_value; const void* pointer; string_value<char_type> string; custom_value<Context> custom; named_arg_value<char_type> named_args; }; constexpr FMT_INLINE value(int val = 0) : int_value(val) {} constexpr FMT_INLINE value(unsigned val) : uint_value(val) {} constexpr FMT_INLINE value(long long val) : long_long_value(val) {} constexpr FMT_INLINE value(unsigned long long val) : ulong_long_value(val) {} FMT_INLINE value(int128_t val) : int128_value(val) {} FMT_INLINE value(uint128_t val) : uint128_value(val) {} FMT_INLINE value(float val) : float_value(val) {} FMT_INLINE value(double val) : double_value(val) {} FMT_INLINE value(long double val) : long_double_value(val) {} constexpr FMT_INLINE value(bool val) : bool_value(val) {} constexpr FMT_INLINE value(char_type val) : char_value(val) {} FMT_CONSTEXPR FMT_INLINE value(const char_type* val) { string.data = val; if (is_constant_evaluated()) string.size = {}; } FMT_CONSTEXPR FMT_INLINE value(basic_string_view<char_type> val) { string.data = val.data(); string.size = val.size(); } FMT_INLINE value(const void* val) : pointer(val) {} FMT_INLINE value(const named_arg_info<char_type>* args, size_t size) : named_args{args, size} {} template <typename T> FMT_INLINE value(const T& val) { custom.value = &val; // Get the formatter type through the context to allow different contexts // have different extension points, e.g. `formatter<T>` for `format` and // `printf_formatter<T>` for `printf`. custom.format = format_custom_arg< T, conditional_t<has_formatter<T, Context>::value, typename Context::template formatter_type<T>, fallback_formatter<T, char_type>>>; } private: // Formats an argument of a custom type, such as a user-defined class. template <typename T, typename Formatter> static void format_custom_arg(const void* arg, typename Context::parse_context_type& parse_ctx, Context& ctx) { Formatter f; parse_ctx.advance_to(f.parse(parse_ctx)); ctx.advance_to(f.format(*static_cast<const T*>(arg), ctx)); } }; template <typename Context, typename T> FMT_CONSTEXPR basic_format_arg<Context> make_arg(const T& value); // To minimize the number of types we need to deal with, long is translated // either to int or to long long depending on its size. enum { long_short = sizeof(long) == sizeof(int) }; using long_type = conditional_t<long_short, int, long long>; using ulong_type = conditional_t<long_short, unsigned, unsigned long long>; struct unformattable {}; // Maps formatting arguments to core types. template <typename Context> struct arg_mapper { using char_type = typename Context::char_type; FMT_CONSTEXPR int map(signed char val) { return val; } FMT_CONSTEXPR unsigned map(unsigned char val) { return val; } FMT_CONSTEXPR int map(short val) { return val; } FMT_CONSTEXPR unsigned map(unsigned short val) { return val; } FMT_CONSTEXPR int map(int val) { return val; } FMT_CONSTEXPR unsigned map(unsigned val) { return val; } FMT_CONSTEXPR long_type map(long val) { return val; } FMT_CONSTEXPR ulong_type map(unsigned long val) { return val; } FMT_CONSTEXPR long long map(long long val) { return val; } FMT_CONSTEXPR unsigned long long map(unsigned long long val) { return val; } FMT_CONSTEXPR int128_t map(int128_t val) { return val; } FMT_CONSTEXPR uint128_t map(uint128_t val) { return val; } FMT_CONSTEXPR bool map(bool val) { return val; } template <typename T, FMT_ENABLE_IF(is_char<T>::value)> FMT_CONSTEXPR char_type map(T val) { static_assert( std::is_same<T, char>::value || std::is_same<T, char_type>::value, "mixing character types is disallowed"); return val; } FMT_CONSTEXPR float map(float val) { return val; } FMT_CONSTEXPR double map(double val) { return val; } FMT_CONSTEXPR long double map(long double val) { return val; } FMT_CONSTEXPR const char_type* map(char_type* val) { return val; } FMT_CONSTEXPR const char_type* map(const char_type* val) { return val; } template <typename T, FMT_ENABLE_IF(is_string<T>::value)> FMT_CONSTEXPR basic_string_view<char_type> map(const T& val) { static_assert(std::is_same<char_type, char_t<T>>::value, "mixing character types is disallowed"); return to_string_view(val); } template <typename T, FMT_ENABLE_IF( std::is_constructible<basic_string_view<char_type>, T>::value && !is_string<T>::value && !has_formatter<T, Context>::value && !has_fallback_formatter<T, Context>::value)> FMT_CONSTEXPR basic_string_view<char_type> map(const T& val) { return basic_string_view<char_type>(val); } template < typename T, FMT_ENABLE_IF( std::is_constructible<std_string_view<char_type>, T>::value && !std::is_constructible<basic_string_view<char_type>, T>::value && !is_string<T>::value && !has_formatter<T, Context>::value && !has_fallback_formatter<T, Context>::value)> FMT_CONSTEXPR basic_string_view<char_type> map(const T& val) { return std_string_view<char_type>(val); } FMT_CONSTEXPR const char* map(const signed char* val) { static_assert(std::is_same<char_type, char>::value, "invalid string type"); return reinterpret_cast<const char*>(val); } FMT_CONSTEXPR const char* map(const unsigned char* val) { static_assert(std::is_same<char_type, char>::value, "invalid string type"); return reinterpret_cast<const char*>(val); } FMT_CONSTEXPR const char* map(signed char* val) { const auto* const_val = val; return map(const_val); } FMT_CONSTEXPR const char* map(unsigned char* val) { const auto* const_val = val; return map(const_val); } FMT_CONSTEXPR const void* map(void* val) { return val; } FMT_CONSTEXPR const void* map(const void* val) { return val; } FMT_CONSTEXPR const void* map(std::nullptr_t val) { return val; } // We use SFINAE instead of a const T* parameter to avoid conflicting with // the C array overload. template <typename T> FMT_CONSTEXPR auto map(T) -> enable_if_t<std::is_pointer<T>::value, int> { // Formatting of arbitrary pointers is disallowed. If you want to output // a pointer cast it to "void *" or "const void *". In particular, this // forbids formatting of "[const] volatile char *" which is printed as bool // by iostreams. static_assert(!sizeof(T), "formatting of non-void pointers is disallowed"); return 0; } template <typename T, std::size_t N> FMT_CONSTEXPR auto map(const T (&values)[N]) -> const T (&)[N] { return values; } template <typename T, FMT_ENABLE_IF(std::is_enum<T>::value && !has_formatter<T, Context>::value && !has_fallback_formatter<T, Context>::value)> FMT_CONSTEXPR auto map(const T& val) -> decltype(std::declval<arg_mapper>().map( static_cast<typename std::underlying_type<T>::type>(val))) { return map(static_cast<typename std::underlying_type<T>::type>(val)); } template <typename T, FMT_ENABLE_IF(!is_string<T>::value && !is_char<T>::value && (has_formatter<T, Context>::value || has_fallback_formatter<T, Context>::value))> FMT_CONSTEXPR const T& map(const T& val) { return val; } template <typename T> FMT_CONSTEXPR auto map(const named_arg<char_type, T>& val) -> decltype(std::declval<arg_mapper>().map(val.value)) { return map(val.value); } unformattable map(...) { return {}; } }; // A type constant after applying arg_mapper<Context>. template <typename T, typename Context> using mapped_type_constant = type_constant<decltype(arg_mapper<Context>().map(std::declval<const T&>())), typename Context::char_type>; enum { packed_arg_bits = 4 }; // Maximum number of arguments with packed types. enum { max_packed_args = 62 / packed_arg_bits }; enum : unsigned long long { is_unpacked_bit = 1ULL << 63 }; enum : unsigned long long { has_named_args_bit = 1ULL << 62 }; } // namespace detail // A formatting argument. It is a trivially copyable/constructible type to // allow storage in basic_memory_buffer. template <typename Context> class basic_format_arg { private: detail::value<Context> value_; detail::type type_; template <typename ContextType, typename T> friend FMT_CONSTEXPR basic_format_arg<ContextType> detail::make_arg( const T& value); template <typename Visitor, typename Ctx> friend FMT_CONSTEXPR auto visit_format_arg(Visitor&& vis, const basic_format_arg<Ctx>& arg) -> decltype(vis(0)); friend class basic_format_args<Context>; friend class dynamic_format_arg_store<Context>; using char_type = typename Context::char_type; template <typename T, typename Char, size_t NUM_ARGS, size_t NUM_NAMED_ARGS> friend struct detail::arg_data; basic_format_arg(const detail::named_arg_info<char_type>* args, size_t size) : value_(args, size) {} public: class handle { public: explicit handle(detail::custom_value<Context> custom) : custom_(custom) {} void format(typename Context::parse_context_type& parse_ctx, Context& ctx) const { custom_.format(custom_.value, parse_ctx, ctx); } private: detail::custom_value<Context> custom_; }; constexpr basic_format_arg() : type_(detail::type::none_type) {} constexpr explicit operator bool() const FMT_NOEXCEPT { return type_ != detail::type::none_type; } detail::type type() const { return type_; } bool is_integral() const { return detail::is_integral_type(type_); } bool is_arithmetic() const { return detail::is_arithmetic_type(type_); } }; /** \rst Visits an argument dispatching to the appropriate visit method based on the argument type. For example, if the argument type is ``double`` then ``vis(value)`` will be called with the value of type ``double``. \endrst */ template <typename Visitor, typename Context> FMT_CONSTEXPR_DECL FMT_INLINE auto visit_format_arg( Visitor&& vis, const basic_format_arg<Context>& arg) -> decltype(vis(0)) { using char_type = typename Context::char_type; switch (arg.type_) { case detail::type::none_type: break; case detail::type::int_type: return vis(arg.value_.int_value); case detail::type::uint_type: return vis(arg.value_.uint_value); case detail::type::long_long_type: return vis(arg.value_.long_long_value); case detail::type::ulong_long_type: return vis(arg.value_.ulong_long_value); #if FMT_USE_INT128 case detail::type::int128_type: return vis(arg.value_.int128_value); case detail::type::uint128_type: return vis(arg.value_.uint128_value); #else case detail::type::int128_type: case detail::type::uint128_type: break; #endif case detail::type::bool_type: return vis(arg.value_.bool_value); case detail::type::char_type: return vis(arg.value_.char_value); case detail::type::float_type: return vis(arg.value_.float_value); case detail::type::double_type: return vis(arg.value_.double_value); case detail::type::long_double_type: return vis(arg.value_.long_double_value); case detail::type::cstring_type: return vis(arg.value_.string.data); case detail::type::string_type: return vis(basic_string_view<char_type>(arg.value_.string.data, arg.value_.string.size)); case detail::type::pointer_type: return vis(arg.value_.pointer); case detail::type::custom_type: return vis(typename basic_format_arg<Context>::handle(arg.value_.custom)); } return vis(monostate()); } template <typename T> struct formattable : std::false_type {}; namespace detail { #if FMT_GCC_VERSION && FMT_GCC_VERSION < 500 // A workaround for gcc 4.8 to make void_t work in a SFINAE context. template <typename... Ts> struct void_t_impl { using type = void; }; template <typename... Ts> using void_t = typename detail::void_t_impl<Ts...>::type; #else template <typename...> using void_t = void; #endif template <typename It, typename T, typename Enable = void> struct is_output_iterator : std::false_type {}; template <typename It, typename T> struct is_output_iterator< It, T, void_t<typename std::iterator_traits<It>::iterator_category, decltype(*std::declval<It>() = std::declval<T>())>> : std::true_type {}; template <typename OutputIt> struct is_back_insert_iterator : std::false_type {}; template <typename Container> struct is_back_insert_iterator<std::back_insert_iterator<Container>> : std::true_type {}; template <typename OutputIt> struct is_contiguous_back_insert_iterator : std::false_type {}; template <typename Container> struct is_contiguous_back_insert_iterator<std::back_insert_iterator<Container>> : is_contiguous<Container> {}; template <typename Char> struct is_contiguous_back_insert_iterator<buffer_appender<Char>> : std::true_type {}; // A type-erased reference to an std::locale to avoid heavy <locale> include. class locale_ref { private: const void* locale_; // A type-erased pointer to std::locale. public: constexpr locale_ref() : locale_(nullptr) {} template <typename Locale> explicit locale_ref(const Locale& loc); explicit operator bool() const FMT_NOEXCEPT { return locale_ != nullptr; } template <typename Locale> Locale get() const; }; template <typename> constexpr unsigned long long encode_types() { return 0; } template <typename Context, typename Arg, typename... Args> constexpr unsigned long long encode_types() { return static_cast<unsigned>(mapped_type_constant<Arg, Context>::value) | (encode_types<Context, Args...>() << packed_arg_bits); } template <typename Context, typename T> FMT_CONSTEXPR basic_format_arg<Context> make_arg(const T& value) { basic_format_arg<Context> arg; arg.type_ = mapped_type_constant<T, Context>::value; arg.value_ = arg_mapper<Context>().map(value); return arg; } template <typename T> int check(unformattable) { static_assert( formattable<T>(), "Cannot format an argument. To make type T formattable provide a " "formatter<T> specialization: https://fmt.dev/latest/api.html#udt"); return 0; } template <typename T, typename U> constexpr const U& check(const U& val) { return val; } // The type template parameter is there to avoid an ODR violation when using // a fallback formatter in one translation unit and an implicit conversion in // another (not recommended). template <bool IS_PACKED, typename Context, type, typename T, FMT_ENABLE_IF(IS_PACKED)> constexpr value<Context> make_arg(const T& val) { return check<T>(arg_mapper<Context>().map(val)); } template <bool IS_PACKED, typename Context, type, typename T, FMT_ENABLE_IF(!IS_PACKED)> inline basic_format_arg<Context> make_arg(const T& value) { return make_arg<Context>(value); } } // namespace detail // Formatting context. template <typename OutputIt, typename Char> class basic_format_context { public: /** The character type for the output. */ using char_type = Char; private: OutputIt out_; basic_format_args<basic_format_context> args_; detail::locale_ref loc_; public: using iterator = OutputIt; using format_arg = basic_format_arg<basic_format_context>; using parse_context_type = basic_format_parse_context<Char>; template <typename T> using formatter_type = formatter<T, char_type>; basic_format_context(const basic_format_context&) = delete; void operator=(const basic_format_context&) = delete; /** Constructs a ``basic_format_context`` object. References to the arguments are stored in the object so make sure they have appropriate lifetimes. */ constexpr basic_format_context( OutputIt out, basic_format_args<basic_format_context> ctx_args, detail::locale_ref loc = detail::locale_ref()) : out_(out), args_(ctx_args), loc_(loc) {} constexpr format_arg arg(int id) const { return args_.get(id); } FMT_CONSTEXPR format_arg arg(basic_string_view<char_type> name) { return args_.get(name); } int arg_id(basic_string_view<char_type> name) { return args_.get_id(name); } const basic_format_args<basic_format_context>& args() const { return args_; } FMT_CONSTEXPR detail::error_handler error_handler() { return {}; } void on_error(const char* message) { error_handler().on_error(message); } // Returns an iterator to the beginning of the output range. FMT_CONSTEXPR iterator out() { return out_; } // Advances the begin iterator to ``it``. void advance_to(iterator it) { if (!detail::is_back_insert_iterator<iterator>()) out_ = it; } FMT_CONSTEXPR detail::locale_ref locale() { return loc_; } }; template <typename Char> using buffer_context = basic_format_context<detail::buffer_appender<Char>, Char>; using format_context = buffer_context<char>; using wformat_context = buffer_context<wchar_t>; // Workaround an alias issue: https://stackoverflow.com/q/62767544/471164. #define FMT_BUFFER_CONTEXT(Char) \ basic_format_context<detail::buffer_appender<Char>, Char> template <typename T, typename Char = char> using is_formattable = bool_constant<!std::is_same< decltype(detail::arg_mapper<buffer_context<Char>>().map(std::declval<T>())), detail::unformattable>::value>; /** \rst An array of references to arguments. It can be implicitly converted into `~fmt::basic_format_args` for passing into type-erased formatting functions such as `~fmt::vformat`. \endrst */ template <typename Context, typename... Args> class format_arg_store #if FMT_GCC_VERSION && FMT_GCC_VERSION < 409 // Workaround a GCC template argument substitution bug. : public basic_format_args<Context> #endif { private: static const size_t num_args = sizeof...(Args); static const size_t num_named_args = detail::count_named_args<Args...>(); static const bool is_packed = num_args <= detail::max_packed_args; using value_type = conditional_t<is_packed, detail::value<Context>, basic_format_arg<Context>>; detail::arg_data<value_type, typename Context::char_type, num_args, num_named_args> data_; friend class basic_format_args<Context>; static constexpr unsigned long long desc = (is_packed ? detail::encode_types<Context, Args...>() : detail::is_unpacked_bit | num_args) | (num_named_args != 0 ? static_cast<unsigned long long>(detail::has_named_args_bit) : 0); public: FMT_CONSTEXPR format_arg_store(const Args&... args) : #if FMT_GCC_VERSION && FMT_GCC_VERSION < 409 basic_format_args<Context>(*this), #endif data_{detail::make_arg< is_packed, Context, detail::mapped_type_constant<Args, Context>::value>(args)...} { detail::init_named_args(data_.named_args(), 0, 0, args...); } }; /** \rst Constructs a `~fmt::format_arg_store` object that contains references to arguments and can be implicitly converted to `~fmt::format_args`. `Context` can be omitted in which case it defaults to `~fmt::context`. See `~fmt::arg` for lifetime considerations. \endrst */ template <typename Context = format_context, typename... Args> constexpr format_arg_store<Context, Args...> make_format_args( const Args&... args) { return {args...}; } /** \rst Constructs a `~fmt::format_arg_store` object that contains references to arguments and can be implicitly converted to `~fmt::format_args`. If ``format_str`` is a compile-time string then `make_args_checked` checks its validity at compile time. \endrst */ template <typename... Args, typename S, typename Char = char_t<S>> inline auto make_args_checked(const S& format_str, const remove_reference_t<Args>&... args) -> format_arg_store<buffer_context<Char>, remove_reference_t<Args>...> { static_assert( detail::count<( std::is_base_of<detail::view, remove_reference_t<Args>>::value && std::is_reference<Args>::value)...>() == 0, "passing views as lvalues is disallowed"); detail::check_format_string<Args...>(format_str); return {args...}; } /** \rst Returns a named argument to be used in a formatting function. It should only be used in a call to a formatting function. **Example**:: fmt::print("Elapsed time: {s:.2f} seconds", fmt::arg("s", 1.23)); \endrst */ template <typename Char, typename T> inline detail::named_arg<Char, T> arg(const Char* name, const T& arg) { static_assert(!detail::is_named_arg<T>(), "nested named arguments"); return {name, arg}; } /** \rst A view of a collection of formatting arguments. To avoid lifetime issues it should only be used as a parameter type in type-erased functions such as ``vformat``:: void vlog(string_view format_str, format_args args); // OK format_args args = make_format_args(42); // Error: dangling reference \endrst */ template <typename Context> class basic_format_args { public: using size_type = int; using format_arg = basic_format_arg<Context>; private: // A descriptor that contains information about formatting arguments. // If the number of arguments is less or equal to max_packed_args then // argument types are passed in the descriptor. This reduces binary code size // per formatting function call. unsigned long long desc_; union { // If is_packed() returns true then argument values are stored in values_; // otherwise they are stored in args_. This is done to improve cache // locality and reduce compiled code size since storing larger objects // may require more code (at least on x86-64) even if the same amount of // data is actually copied to stack. It saves ~10% on the bloat test. const detail::value<Context>* values_; const format_arg* args_; }; constexpr bool is_packed() const { return (desc_ & detail::is_unpacked_bit) == 0; } bool has_named_args() const { return (desc_ & detail::has_named_args_bit) != 0; } FMT_CONSTEXPR detail::type type(int index) const { int shift = index * detail::packed_arg_bits; unsigned int mask = (1 << detail::packed_arg_bits) - 1; return static_cast<detail::type>((desc_ >> shift) & mask); } constexpr basic_format_args(unsigned long long desc, const detail::value<Context>* values) : desc_(desc), values_(values) {} constexpr basic_format_args(unsigned long long desc, const format_arg* args) : desc_(desc), args_(args) {} public: constexpr basic_format_args() : desc_(0), args_(nullptr) {} /** \rst Constructs a `basic_format_args` object from `~fmt::format_arg_store`. \endrst */ template <typename... Args> constexpr FMT_INLINE basic_format_args( const format_arg_store<Context, Args...>& store) : basic_format_args(store.desc, store.data_.args()) {} /** \rst Constructs a `basic_format_args` object from `~fmt::dynamic_format_arg_store`. \endrst */ constexpr FMT_INLINE basic_format_args( const dynamic_format_arg_store<Context>& store) : basic_format_args(store.get_types(), store.data()) {} /** \rst Constructs a `basic_format_args` object from a dynamic set of arguments. \endrst */ constexpr basic_format_args(const format_arg* args, int count) : basic_format_args(detail::is_unpacked_bit | detail::to_unsigned(count), args) {} /** Returns the argument with the specified id. */ FMT_CONSTEXPR format_arg get(int id) const { format_arg arg; if (!is_packed()) { if (id < max_size()) arg = args_[id]; return arg; } if (id >= detail::max_packed_args) return arg; arg.type_ = type(id); if (arg.type_ == detail::type::none_type) return arg; arg.value_ = values_[id]; return arg; } template <typename Char> format_arg get(basic_string_view<Char> name) const { int id = get_id(name); return id >= 0 ? get(id) : format_arg(); } template <typename Char> int get_id(basic_string_view<Char> name) const { if (!has_named_args()) return -1; const auto& named_args = (is_packed() ? values_[-1] : args_[-1].value_).named_args; for (size_t i = 0; i < named_args.size; ++i) { if (named_args.data[i].name == name) return named_args.data[i].id; } return -1; } int max_size() const { unsigned long long max_packed = detail::max_packed_args; return static_cast<int>(is_packed() ? max_packed : desc_ & ~detail::is_unpacked_bit); } }; #ifdef FMT_ARM_ABI_COMPATIBILITY /** An alias to ``basic_format_args<format_context>``. */ // Separate types would result in shorter symbols but break ABI compatibility // between clang and gcc on ARM (#1919). using format_args = basic_format_args<format_context>; using wformat_args = basic_format_args<wformat_context>; #else // DEPRECATED! These are kept for ABI compatibility. // It is a separate type rather than an alias to make symbols readable. struct format_args : basic_format_args<format_context> { template <typename... Args> FMT_INLINE format_args(const Args&... args) : basic_format_args(args...) {} }; struct wformat_args : basic_format_args<wformat_context> { using basic_format_args::basic_format_args; }; #endif namespace detail { template <typename Char, FMT_ENABLE_IF(!std::is_same<Char, char>::value)> std::basic_string<Char> vformat( basic_string_view<Char> format_str, basic_format_args<buffer_context<type_identity_t<Char>>> args); FMT_API std::string vformat(string_view format_str, format_args args); template <typename Char> void vformat_to( buffer<Char>& buf, basic_string_view<Char> format_str, basic_format_args<FMT_BUFFER_CONTEXT(type_identity_t<Char>)> args, detail::locale_ref loc = {}); template <typename Char, typename Args, FMT_ENABLE_IF(!std::is_same<Char, char>::value)> inline void vprint_mojibake(std::FILE*, basic_string_view<Char>, const Args&) {} FMT_API void vprint_mojibake(std::FILE*, string_view, format_args); #ifndef _WIN32 inline void vprint_mojibake(std::FILE*, string_view, format_args) {} #endif } // namespace detail /** Formats a string and writes the output to ``out``. */ // GCC 8 and earlier cannot handle std::back_insert_iterator<Container> with // vformat_to<ArgFormatter>(...) overload, so SFINAE on iterator type instead. template <typename OutputIt, typename S, typename Char = char_t<S>, bool enable = detail::is_output_iterator<OutputIt, Char>::value> auto vformat_to(OutputIt out, const S& format_str, basic_format_args<buffer_context<type_identity_t<Char>>> args) -> typename std::enable_if<enable, OutputIt>::type { decltype(detail::get_buffer<Char>(out)) buf(detail::get_buffer_init(out)); detail::vformat_to(buf, to_string_view(format_str), args); return detail::get_iterator(buf); } /** \rst Formats arguments, writes the result to the output iterator ``out`` and returns the iterator past the end of the output range. **Example**:: std::vector<char> out; fmt::format_to(std::back_inserter(out), "{}", 42); \endrst */ // We cannot use FMT_ENABLE_IF because of a bug in gcc 8.3. template <typename OutputIt, typename S, typename... Args, bool enable = detail::is_output_iterator<OutputIt, char_t<S>>::value> inline auto format_to(OutputIt out, const S& format_str, Args&&... args) -> typename std::enable_if<enable, OutputIt>::type { const auto& vargs = fmt::make_args_checked<Args...>(format_str, args...); return vformat_to(out, to_string_view(format_str), vargs); } template <typename OutputIt> struct format_to_n_result { /** Iterator past the end of the output range. */ OutputIt out; /** Total (not truncated) output size. */ size_t size; }; template <typename OutputIt, typename Char, typename... Args, FMT_ENABLE_IF(detail::is_output_iterator<OutputIt, Char>::value)> inline format_to_n_result<OutputIt> vformat_to_n( OutputIt out, size_t n, basic_string_view<Char> format_str, basic_format_args<buffer_context<type_identity_t<Char>>> args) { detail::iterator_buffer<OutputIt, Char, detail::fixed_buffer_traits> buf(out, n); detail::vformat_to(buf, format_str, args); return {buf.out(), buf.count()}; } /** \rst Formats arguments, writes up to ``n`` characters of the result to the output iterator ``out`` and returns the total output size and the iterator past the end of the output range. \endrst */ template <typename OutputIt, typename S, typename... Args, bool enable = detail::is_output_iterator<OutputIt, char_t<S>>::value> inline auto format_to_n(OutputIt out, size_t n, const S& format_str, const Args&... args) -> typename std::enable_if<enable, format_to_n_result<OutputIt>>::type { const auto& vargs = fmt::make_args_checked<Args...>(format_str, args...); return vformat_to_n(out, n, to_string_view(format_str), vargs); } /** Returns the number of characters in the output of ``format(format_str, args...)``. */ template <typename S, typename... Args, typename Char = char_t<S>> inline size_t formatted_size(const S& format_str, Args&&... args) { const auto& vargs = fmt::make_args_checked<Args...>(format_str, args...); detail::counting_buffer<> buf; detail::vformat_to(buf, to_string_view(format_str), vargs); return buf.count(); } template <typename S, typename Char = char_t<S>> FMT_INLINE std::basic_string<Char> vformat( const S& format_str, basic_format_args<buffer_context<type_identity_t<Char>>> args) { return detail::vformat(to_string_view(format_str), args); } /** \rst Formats arguments and returns the result as a string. **Example**:: #include <fmt/core.h> std::string message = fmt::format("The answer is {}", 42); \endrst */ // Pass char_t as a default template parameter instead of using // std::basic_string<char_t<S>> to reduce the symbol size. template <typename S, typename... Args, typename Char = char_t<S>, FMT_ENABLE_IF(!FMT_COMPILE_TIME_CHECKS || !std::is_same<Char, char>::value)> FMT_INLINE std::basic_string<Char> format(const S& format_str, Args&&... args) { const auto& vargs = fmt::make_args_checked<Args...>(format_str, args...); return detail::vformat(to_string_view(format_str), vargs); } FMT_API void vprint(string_view, format_args); FMT_API void vprint(std::FILE*, string_view, format_args); /** \rst Formats ``args`` according to specifications in ``format_str`` and writes the output to the file ``f``. Strings are assumed to be Unicode-encoded unless the ``FMT_UNICODE`` macro is set to 0. **Example**:: fmt::print(stderr, "Don't {}!", "panic"); \endrst */ template <typename S, typename... Args, typename Char = char_t<S>> inline void print(std::FILE* f, const S& format_str, Args&&... args) { const auto& vargs = fmt::make_args_checked<Args...>(format_str, args...); return detail::is_unicode<Char>() ? vprint(f, to_string_view(format_str), vargs) : detail::vprint_mojibake(f, to_string_view(format_str), vargs); } /** \rst Formats ``args`` according to specifications in ``format_str`` and writes the output to ``stdout``. Strings are assumed to be Unicode-encoded unless the ``FMT_UNICODE`` macro is set to 0. **Example**:: fmt::print("Elapsed time: {0:.2f} seconds", 1.23); \endrst */ template <typename S, typename... Args, typename Char = char_t<S>> inline void print(const S& format_str, Args&&... args) { const auto& vargs = fmt::make_args_checked<Args...>(format_str, args...); return detail::is_unicode<Char>() ? vprint(to_string_view(format_str), vargs) : detail::vprint_mojibake(stdout, to_string_view(format_str), vargs); } FMT_END_NAMESPACE #endif // FMT_CORE_H_ // Define FMT_DYNAMIC_ARGS to make core.h provide dynamic_format_arg_store // DEPRECATED! Include fmt/args.h directly instead. #ifdef FMT_DYNAMIC_ARGS #include "args.h" #endif /* Formatting library for C++ Copyright (c) 2012 - present, Victor Zverovich Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. --- Optional exception to the license --- As an exception, if, as a result of your compiling your source code, portions of this Software are embedded into a machine-executable object form of such source code, you may redistribute such embedded portions in such object form without including the above copyright and permission notices. */ #ifndef FMT_FORMAT_H_ #define FMT_FORMAT_H_ #include <cerrno> #include <cmath> #include <cstddef> // std::byte #include <cstdint> #include <cwchar> #include <limits> #include <memory> #include <stdexcept> #include <utility> // std::swap #ifdef __INTEL_COMPILER # define FMT_ICC_VERSION __INTEL_COMPILER #elif defined(__ICL) # define FMT_ICC_VERSION __ICL #else # define FMT_ICC_VERSION 0 #endif #ifdef __NVCC__ # define FMT_CUDA_VERSION (__CUDACC_VER_MAJOR__ * 100 + __CUDACC_VER_MINOR__) #else # define FMT_CUDA_VERSION 0 #endif #ifdef __has_builtin # define FMT_HAS_BUILTIN(x) __has_builtin(x) #else # define FMT_HAS_BUILTIN(x) 0 #endif #if FMT_GCC_VERSION || FMT_CLANG_VERSION # define FMT_NOINLINE __attribute__((noinline)) #else # define FMT_NOINLINE #endif #if FMT_GCC_VERSION # define FMT_GCC_VISIBILITY_HIDDEN __attribute__((visibility("hidden"))) #else # define FMT_GCC_VISIBILITY_HIDDEN #endif #if __cplusplus == 201103L || __cplusplus == 201402L # if defined(__INTEL_COMPILER) || defined(__PGI) # define FMT_FALLTHROUGH # elif defined(__clang__) # define FMT_FALLTHROUGH [[clang::fallthrough]] # elif FMT_GCC_VERSION >= 700 && \ (!defined(__EDG_VERSION__) || __EDG_VERSION__ >= 520) # define FMT_FALLTHROUGH [[gnu::fallthrough]] # else # define FMT_FALLTHROUGH # endif #elif FMT_HAS_CPP17_ATTRIBUTE(fallthrough) || \ (defined(_MSVC_LANG) && _MSVC_LANG >= 201703L) # define FMT_FALLTHROUGH [[fallthrough]] #else # define FMT_FALLTHROUGH #endif #ifndef FMT_MAYBE_UNUSED # if FMT_HAS_CPP17_ATTRIBUTE(maybe_unused) # define FMT_MAYBE_UNUSED [[maybe_unused]] # else # define FMT_MAYBE_UNUSED # endif #endif #ifndef FMT_THROW # if FMT_EXCEPTIONS # if FMT_MSC_VER || FMT_NVCC FMT_BEGIN_NAMESPACE namespace detail { template <typename Exception> inline void do_throw(const Exception& x) { // Silence unreachable code warnings in MSVC and NVCC because these // are nearly impossible to fix in a generic code. volatile bool b = true; if (b) throw x; } } // namespace detail FMT_END_NAMESPACE # define FMT_THROW(x) detail::do_throw(x) # else # define FMT_THROW(x) throw x # endif # else # define FMT_THROW(x) \ do { \ FMT_ASSERT(false, (x).what()); \ } while (false) # endif #endif #if FMT_EXCEPTIONS # define FMT_TRY try # define FMT_CATCH(x) catch (x) #else # define FMT_TRY if (true) # define FMT_CATCH(x) if (false) #endif #ifndef FMT_USE_USER_DEFINED_LITERALS // EDG based compilers (Intel, NVIDIA, Elbrus, etc), GCC and MSVC support UDLs. # if (FMT_HAS_FEATURE(cxx_user_literals) || FMT_GCC_VERSION >= 407 || \ FMT_MSC_VER >= 1900) && \ (!defined(__EDG_VERSION__) || __EDG_VERSION__ >= /* UDL feature */ 480) # define FMT_USE_USER_DEFINED_LITERALS 1 # else # define FMT_USE_USER_DEFINED_LITERALS 0 # endif #endif #ifndef FMT_USE_UDL_TEMPLATE // EDG frontend based compilers (icc, nvcc, PGI, etc) and GCC < 6.4 do not // properly support UDL templates and GCC >= 9 warns about them. # if FMT_USE_USER_DEFINED_LITERALS && \ (!defined(__EDG_VERSION__) || __EDG_VERSION__ >= 501) && \ ((FMT_GCC_VERSION >= 604 && __cplusplus >= 201402L) || \ FMT_CLANG_VERSION >= 304) && \ !defined(__PGI) && !defined(__NVCC__) # define FMT_USE_UDL_TEMPLATE 1 # else # define FMT_USE_UDL_TEMPLATE 0 # endif #endif #ifndef FMT_USE_FLOAT # define FMT_USE_FLOAT 1 #endif #ifndef FMT_USE_DOUBLE # define FMT_USE_DOUBLE 1 #endif #ifndef FMT_USE_LONG_DOUBLE # define FMT_USE_LONG_DOUBLE 1 #endif // Defining FMT_REDUCE_INT_INSTANTIATIONS to 1, will reduce the number of // integer formatter template instantiations to just one by only using the // largest integer type. This results in a reduction in binary size but will // cause a decrease in integer formatting performance. #if !defined(FMT_REDUCE_INT_INSTANTIATIONS) # define FMT_REDUCE_INT_INSTANTIATIONS 0 #endif // __builtin_clz is broken in clang with Microsoft CodeGen: // https://github.com/fmtlib/fmt/issues/519 #if (FMT_GCC_VERSION || FMT_HAS_BUILTIN(__builtin_clz)) && !FMT_MSC_VER # define FMT_BUILTIN_CLZ(n) __builtin_clz(n) #endif #if (FMT_GCC_VERSION || FMT_HAS_BUILTIN(__builtin_clzll)) && !FMT_MSC_VER # define FMT_BUILTIN_CLZLL(n) __builtin_clzll(n) #endif #if (FMT_GCC_VERSION || FMT_HAS_BUILTIN(__builtin_ctz)) # define FMT_BUILTIN_CTZ(n) __builtin_ctz(n) #endif #if (FMT_GCC_VERSION || FMT_HAS_BUILTIN(__builtin_ctzll)) # define FMT_BUILTIN_CTZLL(n) __builtin_ctzll(n) #endif #if FMT_MSC_VER # include <intrin.h> // _BitScanReverse[64], _BitScanForward[64], _umul128 #endif // Some compilers masquerade as both MSVC and GCC-likes or otherwise support // __builtin_clz and __builtin_clzll, so only define FMT_BUILTIN_CLZ using the // MSVC intrinsics if the clz and clzll builtins are not available. #if FMT_MSC_VER && !defined(FMT_BUILTIN_CLZLL) && \ !defined(FMT_BUILTIN_CTZLL) && !defined(_MANAGED) FMT_BEGIN_NAMESPACE namespace detail { // Avoid Clang with Microsoft CodeGen's -Wunknown-pragmas warning. # ifndef __clang__ # pragma intrinsic(_BitScanForward) # pragma intrinsic(_BitScanReverse) # endif # if defined(_WIN64) && !defined(__clang__) # pragma intrinsic(_BitScanForward64) # pragma intrinsic(_BitScanReverse64) # endif inline int clz(uint32_t x) { unsigned long r = 0; _BitScanReverse(&r, x); FMT_ASSERT(x != 0, ""); // Static analysis complains about using uninitialized data // "r", but the only way that can happen is if "x" is 0, // which the callers guarantee to not happen. FMT_MSC_WARNING(suppress : 6102) return 31 ^ static_cast<int>(r); } # define FMT_BUILTIN_CLZ(n) detail::clz(n) inline int clzll(uint64_t x) { unsigned long r = 0; # ifdef _WIN64 _BitScanReverse64(&r, x); # else // Scan the high 32 bits. if (_BitScanReverse(&r, static_cast<uint32_t>(x >> 32))) return 63 ^ (r + 32); // Scan the low 32 bits. _BitScanReverse(&r, static_cast<uint32_t>(x)); # endif FMT_ASSERT(x != 0, ""); FMT_MSC_WARNING(suppress : 6102) // Suppress a bogus static analysis warning. return 63 ^ static_cast<int>(r); } # define FMT_BUILTIN_CLZLL(n) detail::clzll(n) inline int ctz(uint32_t x) { unsigned long r = 0; _BitScanForward(&r, x); FMT_ASSERT(x != 0, ""); FMT_MSC_WARNING(suppress : 6102) // Suppress a bogus static analysis warning. return static_cast<int>(r); } # define FMT_BUILTIN_CTZ(n) detail::ctz(n) inline int ctzll(uint64_t x) { unsigned long r = 0; FMT_ASSERT(x != 0, ""); FMT_MSC_WARNING(suppress : 6102) // Suppress a bogus static analysis warning. # ifdef _WIN64 _BitScanForward64(&r, x); # else // Scan the low 32 bits. if (_BitScanForward(&r, static_cast<uint32_t>(x))) return static_cast<int>(r); // Scan the high 32 bits. _BitScanForward(&r, static_cast<uint32_t>(x >> 32)); r += 32; # endif return static_cast<int>(r); } # define FMT_BUILTIN_CTZLL(n) detail::ctzll(n) } // namespace detail FMT_END_NAMESPACE #endif // Enable the deprecated numeric alignment. #ifndef FMT_DEPRECATED_NUMERIC_ALIGN # define FMT_DEPRECATED_NUMERIC_ALIGN 0 #endif FMT_BEGIN_NAMESPACE namespace detail { #if __cplusplus >= 202002L || \ (__cplusplus >= 201709L && FMT_GCC_VERSION >= 1002) # define FMT_CONSTEXPR20 constexpr #else # define FMT_CONSTEXPR20 #endif // An equivalent of `*reinterpret_cast<Dest*>(&source)` that doesn't have // undefined behavior (e.g. due to type aliasing). // Example: uint64_t d = bit_cast<uint64_t>(2.718); template <typename Dest, typename Source> inline Dest bit_cast(const Source& source) { static_assert(sizeof(Dest) == sizeof(Source), "size mismatch"); Dest dest; std::memcpy(&dest, &source, sizeof(dest)); return dest; } inline bool is_big_endian() { const auto u = 1u; struct bytes { char data[sizeof(u)]; }; return bit_cast<bytes>(u).data[0] == 0; } // A fallback implementation of uintptr_t for systems that lack it. struct fallback_uintptr { unsigned char value[sizeof(void*)]; fallback_uintptr() = default; explicit fallback_uintptr(const void* p) { *this = bit_cast<fallback_uintptr>(p); if (is_big_endian()) { for (size_t i = 0, j = sizeof(void*) - 1; i < j; ++i, --j) std::swap(value[i], value[j]); } } }; #ifdef UINTPTR_MAX using uintptr_t = ::uintptr_t; inline uintptr_t to_uintptr(const void* p) { return bit_cast<uintptr_t>(p); } #else using uintptr_t = fallback_uintptr; inline fallback_uintptr to_uintptr(const void* p) { return fallback_uintptr(p); } #endif // Returns the largest possible value for type T. Same as // std::numeric_limits<T>::max() but shorter and not affected by the max macro. template <typename T> constexpr T max_value() { return (std::numeric_limits<T>::max)(); } template <typename T> constexpr int num_bits() { return std::numeric_limits<T>::digits; } // std::numeric_limits<T>::digits may return 0 for 128-bit ints. template <> constexpr int num_bits<int128_t>() { return 128; } template <> constexpr int num_bits<uint128_t>() { return 128; } template <> constexpr int num_bits<fallback_uintptr>() { return static_cast<int>(sizeof(void*) * std::numeric_limits<unsigned char>::digits); } FMT_INLINE void assume(bool condition) { (void)condition; #if FMT_HAS_BUILTIN(__builtin_assume) __builtin_assume(condition); #endif } // An approximation of iterator_t for pre-C++20 systems. template <typename T> using iterator_t = decltype(std::begin(std::declval<T&>())); template <typename T> using sentinel_t = decltype(std::end(std::declval<T&>())); // A workaround for std::string not having mutable data() until C++17. template <typename Char> inline Char* get_data(std::basic_string<Char>& s) { return &s[0]; } template <typename Container> inline typename Container::value_type* get_data(Container& c) { return c.data(); } #if defined(_SECURE_SCL) && _SECURE_SCL // Make a checked iterator to avoid MSVC warnings. template <typename T> using checked_ptr = stdext::checked_array_iterator<T*>; template <typename T> checked_ptr<T> make_checked(T* p, size_t size) { return {p, size}; } #else template <typename T> using checked_ptr = T*; template <typename T> inline T* make_checked(T* p, size_t) { return p; } #endif template <typename Container, FMT_ENABLE_IF(is_contiguous<Container>::value)> #if FMT_CLANG_VERSION >= 307 __attribute__((no_sanitize("undefined"))) #endif inline checked_ptr<typename Container::value_type> reserve(std::back_insert_iterator<Container> it, size_t n) { Container& c = get_container(it); size_t size = c.size(); c.resize(size + n); return make_checked(get_data(c) + size, n); } template <typename T> inline buffer_appender<T> reserve(buffer_appender<T> it, size_t n) { buffer<T>& buf = get_container(it); buf.try_reserve(buf.size() + n); return it; } template <typename Iterator> constexpr Iterator& reserve(Iterator& it, size_t) { return it; } template <typename OutputIt> using reserve_iterator = remove_reference_t<decltype(reserve(std::declval<OutputIt&>(), 0))>; template <typename T, typename OutputIt> constexpr T* to_pointer(OutputIt, size_t) { return nullptr; } template <typename T> T* to_pointer(buffer_appender<T> it, size_t n) { buffer<T>& buf = get_container(it); auto size = buf.size(); if (buf.capacity() < size + n) return nullptr; buf.try_resize(size + n); return buf.data() + size; } template <typename Container, FMT_ENABLE_IF(is_contiguous<Container>::value)> inline std::back_insert_iterator<Container> base_iterator( std::back_insert_iterator<Container>& it, checked_ptr<typename Container::value_type>) { return it; } template <typename Iterator> constexpr Iterator base_iterator(Iterator, Iterator it) { return it; } // An output iterator that counts the number of objects written to it and // discards them. class counting_iterator { private: size_t count_; public: using iterator_category = std::output_iterator_tag; using difference_type = std::ptrdiff_t; using pointer = void; using reference = void; using _Unchecked_type = counting_iterator; // Mark iterator as checked. struct value_type { template <typename T> void operator=(const T&) {} }; counting_iterator() : count_(0) {} size_t count() const { return count_; } counting_iterator& operator++() { ++count_; return *this; } counting_iterator operator++(int) { auto it = *this; ++*this; return it; } friend counting_iterator operator+(counting_iterator it, difference_type n) { it.count_ += static_cast<size_t>(n); return it; } value_type operator*() const { return {}; } }; // <algorithm> is spectacularly slow to compile in C++20 so use a simple fill_n // instead (#1998). template <typename OutputIt, typename Size, typename T> FMT_CONSTEXPR OutputIt fill_n(OutputIt out, Size count, const T& value) { for (Size i = 0; i < count; ++i) *out++ = value; return out; } template <typename T, typename Size> FMT_CONSTEXPR20 T* fill_n(T* out, Size count, char value) { if (is_constant_evaluated()) { return fill_n<T*, Size, T>(out, count, value); } std::memset(out, value, to_unsigned(count)); return out + count; } template <typename InputIt, typename OutChar> using needs_conversion = bool_constant< std::is_same<typename std::iterator_traits<InputIt>::value_type, char>::value && std::is_same<OutChar, char8_type>::value>; template <typename OutChar, typename InputIt, typename OutputIt, FMT_ENABLE_IF(!needs_conversion<InputIt, OutChar>::value)> FMT_CONSTEXPR OutputIt copy_str(InputIt begin, InputIt end, OutputIt it) { while (begin != end) *it++ = *begin++; return it; } template <typename OutChar, typename InputIt, FMT_ENABLE_IF(!needs_conversion<InputIt, OutChar>::value)> FMT_CONSTEXPR20 OutChar* copy_str(InputIt begin, InputIt end, OutChar* out) { if (is_constant_evaluated()) { return copy_str<OutChar, InputIt, OutChar*>(begin, end, out); } return std::uninitialized_copy(begin, end, out); } template <typename OutChar, typename InputIt, typename OutputIt, FMT_ENABLE_IF(needs_conversion<InputIt, OutChar>::value)> OutputIt copy_str(InputIt begin, InputIt end, OutputIt it) { while (begin != end) *it++ = static_cast<char8_type>(*begin++); return it; } template <typename OutChar, typename InputIt, FMT_ENABLE_IF(!needs_conversion<InputIt, OutChar>::value)> buffer_appender<OutChar> copy_str(InputIt begin, InputIt end, buffer_appender<OutChar> out) { get_container(out).append(begin, end); return out; } template <typename Char, typename InputIt> inline counting_iterator copy_str(InputIt begin, InputIt end, counting_iterator it) { return it + (end - begin); } template <typename Char> FMT_CONSTEXPR int code_point_length(const Char* begin) { if (const_check(sizeof(Char) != 1)) return 1; constexpr char lengths[] = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 3, 3, 4, 0}; int len = lengths[static_cast<unsigned char>(*begin) >> 3]; // Compute the pointer to the next character early so that the next // iteration can start working on the next character. Neither Clang // nor GCC figure out this reordering on their own. return len + !len; } // A public domain branchless UTF-8 decoder by Christopher Wellons: // https://github.com/skeeto/branchless-utf8 /* Decode the next character, c, from s, reporting errors in e. * * Since this is a branchless decoder, four bytes will be read from the * buffer regardless of the actual length of the next character. This * means the buffer _must_ have at least three bytes of zero padding * following the end of the data stream. * * Errors are reported in e, which will be non-zero if the parsed * character was somehow invalid: invalid byte sequence, non-canonical * encoding, or a surrogate half. * * The function returns a pointer to the next character. When an error * occurs, this pointer will be a guess that depends on the particular * error, but it will always advance at least one byte. */ FMT_CONSTEXPR inline const char* utf8_decode(const char* s, uint32_t* c, int* e) { constexpr const int masks[] = {0x00, 0x7f, 0x1f, 0x0f, 0x07}; constexpr const uint32_t mins[] = {4194304, 0, 128, 2048, 65536}; constexpr const int shiftc[] = {0, 18, 12, 6, 0}; constexpr const int shifte[] = {0, 6, 4, 2, 0}; int len = code_point_length(s); const char* next = s + len; // Assume a four-byte character and load four bytes. Unused bits are // shifted out. *c = uint32_t(s[0] & masks[len]) << 18; *c |= uint32_t(s[1] & 0x3f) << 12; *c |= uint32_t(s[2] & 0x3f) << 6; *c |= uint32_t(s[3] & 0x3f) << 0; *c >>= shiftc[len]; // Accumulate the various error conditions. using uchar = unsigned char; *e = (*c < mins[len]) << 6; // non-canonical encoding *e |= ((*c >> 11) == 0x1b) << 7; // surrogate half? *e |= (*c > 0x10FFFF) << 8; // out of range? *e |= (uchar(s[1]) & 0xc0) >> 2; *e |= (uchar(s[2]) & 0xc0) >> 4; *e |= uchar(s[3]) >> 6; *e ^= 0x2a; // top two bits of each tail byte correct? *e >>= shifte[len]; return next; } template <typename F> FMT_CONSTEXPR void for_each_codepoint(string_view s, F f) { auto decode = [f](const char* p) { auto cp = uint32_t(); auto error = 0; p = utf8_decode(p, &cp, &error); f(cp, error); return p; }; auto p = s.data(); const size_t block_size = 4; // utf8_decode always reads blocks of 4 chars. if (s.size() >= block_size) { for (auto end = p + s.size() - block_size + 1; p < end;) p = decode(p); } if (auto num_chars_left = s.data() + s.size() - p) { char buf[2 * block_size - 1] = {}; copy_str<char>(p, p + num_chars_left, buf); p = buf; do { p = decode(p); } while (p - buf < num_chars_left); } } template <typename Char> inline size_t compute_width(basic_string_view<Char> s) { return s.size(); } // Computes approximate display width of a UTF-8 string. FMT_CONSTEXPR inline size_t compute_width(string_view s) { size_t num_code_points = 0; // It is not a lambda for compatibility with C++14. struct count_code_points { size_t* count; FMT_CONSTEXPR void operator()(uint32_t cp, int error) const { *count += 1 + (error == 0 && cp >= 0x1100 && (cp <= 0x115f || // Hangul Jamo init. consonants cp == 0x2329 || // LEFT-POINTING ANGLE BRACKET〈 cp == 0x232a || // RIGHT-POINTING ANGLE BRACKET 〉 // CJK ... Yi except Unicode Character “〿”: (cp >= 0x2e80 && cp <= 0xa4cf && cp != 0x303f) || (cp >= 0xac00 && cp <= 0xd7a3) || // Hangul Syllables (cp >= 0xf900 && cp <= 0xfaff) || // CJK Compatibility Ideographs (cp >= 0xfe10 && cp <= 0xfe19) || // Vertical Forms (cp >= 0xfe30 && cp <= 0xfe6f) || // CJK Compatibility Forms (cp >= 0xff00 && cp <= 0xff60) || // Fullwidth Forms (cp >= 0xffe0 && cp <= 0xffe6) || // Fullwidth Forms (cp >= 0x20000 && cp <= 0x2fffd) || // CJK (cp >= 0x30000 && cp <= 0x3fffd) || // Miscellaneous Symbols and Pictographs + Emoticons: (cp >= 0x1f300 && cp <= 0x1f64f) || // Supplemental Symbols and Pictographs: (cp >= 0x1f900 && cp <= 0x1f9ff))); } }; for_each_codepoint(s, count_code_points{&num_code_points}); return num_code_points; } inline size_t compute_width(basic_string_view<char8_type> s) { return compute_width(basic_string_view<char>( reinterpret_cast<const char*>(s.data()), s.size())); } template <typename Char> inline size_t code_point_index(basic_string_view<Char> s, size_t n) { size_t size = s.size(); return n < size ? n : size; } // Calculates the index of the nth code point in a UTF-8 string. inline size_t code_point_index(basic_string_view<char8_type> s, size_t n) { const char8_type* data = s.data(); size_t num_code_points = 0; for (size_t i = 0, size = s.size(); i != size; ++i) { if ((data[i] & 0xc0) != 0x80 && ++num_code_points > n) return i; } return s.size(); } template <typename T> using is_fast_float = bool_constant<std::numeric_limits<T>::is_iec559 && sizeof(T) <= sizeof(double)>; #ifndef FMT_USE_FULL_CACHE_DRAGONBOX # define FMT_USE_FULL_CACHE_DRAGONBOX 0 #endif template <typename T> template <typename U> void buffer<T>::append(const U* begin, const U* end) { do { auto count = to_unsigned(end - begin); try_reserve(size_ + count); auto free_cap = capacity_ - size_; if (free_cap < count) count = free_cap; std::uninitialized_copy_n(begin, count, make_checked(ptr_ + size_, count)); size_ += count; begin += count; } while (begin != end); } template <typename OutputIt, typename T, typename Traits> void iterator_buffer<OutputIt, T, Traits>::flush() { auto size = this->size(); this->clear(); out_ = copy_str<T>(data_, data_ + this->limit(size), out_); } } // namespace detail // The number of characters to store in the basic_memory_buffer object itself // to avoid dynamic memory allocation. enum { inline_buffer_size = 500 }; /** \rst A dynamically growing memory buffer for trivially copyable/constructible types with the first ``SIZE`` elements stored in the object itself. You can use one of the following type aliases for common character types: +----------------+------------------------------+ | Type | Definition | +================+==============================+ | memory_buffer | basic_memory_buffer<char> | +----------------+------------------------------+ | wmemory_buffer | basic_memory_buffer<wchar_t> | +----------------+------------------------------+ **Example**:: fmt::memory_buffer out; format_to(out, "The answer is {}.", 42); This will append the following output to the ``out`` object: .. code-block:: none The answer is 42. The output can be converted to an ``std::string`` with ``to_string(out)``. \endrst */ template <typename T, size_t SIZE = inline_buffer_size, typename Allocator = std::allocator<T>> class basic_memory_buffer final : public detail::buffer<T> { private: T store_[SIZE]; // Don't inherit from Allocator avoid generating type_info for it. Allocator alloc_; // Deallocate memory allocated by the buffer. void deallocate() { T* data = this->data(); if (data != store_) alloc_.deallocate(data, this->capacity()); } protected: void grow(size_t size) final FMT_OVERRIDE; public: using value_type = T; using const_reference = const T&; explicit basic_memory_buffer(const Allocator& alloc = Allocator()) : alloc_(alloc) { this->set(store_, SIZE); } ~basic_memory_buffer() { deallocate(); } private: // Move data from other to this buffer. void move(basic_memory_buffer& other) { alloc_ = std::move(other.alloc_); T* data = other.data(); size_t size = other.size(), capacity = other.capacity(); if (data == other.store_) { this->set(store_, capacity); std::uninitialized_copy(other.store_, other.store_ + size, detail::make_checked(store_, capacity)); } else { this->set(data, capacity); // Set pointer to the inline array so that delete is not called // when deallocating. other.set(other.store_, 0); } this->resize(size); } public: /** \rst Constructs a :class:`fmt::basic_memory_buffer` object moving the content of the other object to it. \endrst */ basic_memory_buffer(basic_memory_buffer&& other) FMT_NOEXCEPT { move(other); } /** \rst Moves the content of the other ``basic_memory_buffer`` object to this one. \endrst */ basic_memory_buffer& operator=(basic_memory_buffer&& other) FMT_NOEXCEPT { FMT_ASSERT(this != &other, ""); deallocate(); move(other); return *this; } // Returns a copy of the allocator associated with this buffer. Allocator get_allocator() const { return alloc_; } /** Resizes the buffer to contain *count* elements. If T is a POD type new elements may not be initialized. */ void resize(size_t count) { this->try_resize(count); } /** Increases the buffer capacity to *new_capacity*. */ void reserve(size_t new_capacity) { this->try_reserve(new_capacity); } // Directly append data into the buffer using detail::buffer<T>::append; template <typename ContiguousRange> void append(const ContiguousRange& range) { append(range.data(), range.data() + range.size()); } }; template <typename T, size_t SIZE, typename Allocator> void basic_memory_buffer<T, SIZE, Allocator>::grow(size_t size) { #ifdef FMT_FUZZ if (size > 5000) throw std::runtime_error("fuzz mode - won't grow that much"); #endif const size_t max_size = std::allocator_traits<Allocator>::max_size(alloc_); size_t old_capacity = this->capacity(); size_t new_capacity = old_capacity + old_capacity / 2; if (size > new_capacity) new_capacity = size; else if (new_capacity > max_size) new_capacity = size > max_size ? size : max_size; T* old_data = this->data(); T* new_data = std::allocator_traits<Allocator>::allocate(alloc_, new_capacity); // The following code doesn't throw, so the raw pointer above doesn't leak. std::uninitialized_copy(old_data, old_data + this->size(), detail::make_checked(new_data, new_capacity)); this->set(new_data, new_capacity); // deallocate must not throw according to the standard, but even if it does, // the buffer already uses the new storage and will deallocate it in // destructor. if (old_data != store_) alloc_.deallocate(old_data, old_capacity); } using memory_buffer = basic_memory_buffer<char>; using wmemory_buffer = basic_memory_buffer<wchar_t>; template <typename T, size_t SIZE, typename Allocator> struct is_contiguous<basic_memory_buffer<T, SIZE, Allocator>> : std::true_type { }; /** A formatting error such as invalid format string. */ FMT_CLASS_API class FMT_API format_error : public std::runtime_error { public: explicit format_error(const char* message) : std::runtime_error(message) {} explicit format_error(const std::string& message) : std::runtime_error(message) {} format_error(const format_error&) = default; format_error& operator=(const format_error&) = default; format_error(format_error&&) = default; format_error& operator=(format_error&&) = default; ~format_error() FMT_NOEXCEPT FMT_OVERRIDE; }; namespace detail { template <typename T> using is_signed = std::integral_constant<bool, std::numeric_limits<T>::is_signed || std::is_same<T, int128_t>::value>; // Returns true if value is negative, false otherwise. // Same as `value < 0` but doesn't produce warnings if T is an unsigned type. template <typename T, FMT_ENABLE_IF(is_signed<T>::value)> FMT_CONSTEXPR bool is_negative(T value) { return value < 0; } template <typename T, FMT_ENABLE_IF(!is_signed<T>::value)> FMT_CONSTEXPR bool is_negative(T) { return false; } template <typename T, FMT_ENABLE_IF(std::is_floating_point<T>::value)> FMT_CONSTEXPR bool is_supported_floating_point(T) { return (std::is_same<T, float>::value && FMT_USE_FLOAT) || (std::is_same<T, double>::value && FMT_USE_DOUBLE) || (std::is_same<T, long double>::value && FMT_USE_LONG_DOUBLE); } // Smallest of uint32_t, uint64_t, uint128_t that is large enough to // represent all values of an integral type T. template <typename T> using uint32_or_64_or_128_t = conditional_t<num_bits<T>() <= 32 && !FMT_REDUCE_INT_INSTANTIATIONS, uint32_t, conditional_t<num_bits<T>() <= 64, uint64_t, uint128_t>>; template <typename T> using uint64_or_128_t = conditional_t<num_bits<T>() <= 64, uint64_t, uint128_t>; // 128-bit integer type used internally struct FMT_EXTERN_TEMPLATE_API uint128_wrapper { uint128_wrapper() = default; #if FMT_USE_INT128 uint128_t internal_; uint128_wrapper(uint64_t high, uint64_t low) FMT_NOEXCEPT : internal_{static_cast<uint128_t>(low) | (static_cast<uint128_t>(high) << 64)} {} uint128_wrapper(uint128_t u) : internal_{u} {} uint64_t high() const FMT_NOEXCEPT { return uint64_t(internal_ >> 64); } uint64_t low() const FMT_NOEXCEPT { return uint64_t(internal_); } uint128_wrapper& operator+=(uint64_t n) FMT_NOEXCEPT { internal_ += n; return *this; } #else uint64_t high_; uint64_t low_; uint128_wrapper(uint64_t high, uint64_t low) FMT_NOEXCEPT : high_{high}, low_{low} {} uint64_t high() const FMT_NOEXCEPT { return high_; } uint64_t low() const FMT_NOEXCEPT { return low_; } uint128_wrapper& operator+=(uint64_t n) FMT_NOEXCEPT { # if defined(_MSC_VER) && defined(_M_X64) unsigned char carry = _addcarry_u64(0, low_, n, &low_); _addcarry_u64(carry, high_, 0, &high_); return *this; # else uint64_t sum = low_ + n; high_ += (sum < low_ ? 1 : 0); low_ = sum; return *this; # endif } #endif }; // Table entry type for divisibility test used internally template <typename T> struct FMT_EXTERN_TEMPLATE_API divtest_table_entry { T mod_inv; T max_quotient; }; // Static data is placed in this class template for the header-only config. template <typename T = void> struct FMT_EXTERN_TEMPLATE_API basic_data { static const uint64_t powers_of_10_64[]; static const uint32_t zero_or_powers_of_10_32_new[]; static const uint64_t zero_or_powers_of_10_64_new[]; static const uint64_t grisu_pow10_significands[]; static const int16_t grisu_pow10_exponents[]; static const divtest_table_entry<uint32_t> divtest_table_for_pow5_32[]; static const divtest_table_entry<uint64_t> divtest_table_for_pow5_64[]; static const uint64_t dragonbox_pow10_significands_64[]; static const uint128_wrapper dragonbox_pow10_significands_128[]; // log10(2) = 0x0.4d104d427de7fbcc... static const uint64_t log10_2_significand = 0x4d104d427de7fbcc; #if !FMT_USE_FULL_CACHE_DRAGONBOX static const uint64_t powers_of_5_64[]; static const uint32_t dragonbox_pow10_recovery_errors[]; #endif // GCC generates slightly better code for pairs than chars. using digit_pair = char[2]; static const digit_pair digits[]; static constexpr const char hex_digits[] = "0123456789abcdef"; static const char foreground_color[]; static const char background_color[]; static const char reset_color[5]; static const wchar_t wreset_color[5]; static const char signs[]; static constexpr const char left_padding_shifts[5] = {31, 31, 0, 1, 0}; static constexpr const char right_padding_shifts[5] = {0, 31, 0, 1, 0}; // DEPRECATED! These are for ABI compatibility. static const uint32_t zero_or_powers_of_10_32[]; static const uint64_t zero_or_powers_of_10_64[]; }; // Maps bsr(n) to ceil(log10(pow(2, bsr(n) + 1) - 1)). // This is a function instead of an array to workaround a bug in GCC10 (#1810). FMT_INLINE uint16_t bsr2log10(int bsr) { static constexpr uint16_t data[] = { 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10, 10, 10, 10, 11, 11, 11, 12, 12, 12, 13, 13, 13, 13, 14, 14, 14, 15, 15, 15, 16, 16, 16, 16, 17, 17, 17, 18, 18, 18, 19, 19, 19, 19, 20}; return data[bsr]; } #ifndef FMT_EXPORTED FMT_EXTERN template struct basic_data<void>; #endif // This is a struct rather than an alias to avoid shadowing warnings in gcc. struct data : basic_data<> {}; template <typename T> FMT_CONSTEXPR int count_digits_fallback(T n) { int count = 1; for (;;) { // Integer division is slow so do it for a group of four digits instead // of for every digit. The idea comes from the talk by Alexandrescu // "Three Optimization Tips for C++". See speed-test for a comparison. if (n < 10) return count; if (n < 100) return count + 1; if (n < 1000) return count + 2; if (n < 10000) return count + 3; n /= 10000u; count += 4; } } #if FMT_USE_INT128 FMT_CONSTEXPR inline int count_digits(uint128_t n) { return count_digits_fallback(n); } #endif // Returns the number of decimal digits in n. Leading zeros are not counted // except for n == 0 in which case count_digits returns 1. FMT_CONSTEXPR20 inline int count_digits(uint64_t n) { if (is_constant_evaluated()) { return count_digits_fallback(n); } #ifdef FMT_BUILTIN_CLZLL // https://github.com/fmtlib/format-benchmark/blob/master/digits10 auto t = bsr2log10(FMT_BUILTIN_CLZLL(n | 1) ^ 63); return t - (n < data::zero_or_powers_of_10_64_new[t]); #else return count_digits_fallback(n); #endif } // Counts the number of digits in n. BITS = log2(radix). template <int BITS, typename UInt> FMT_CONSTEXPR int count_digits(UInt n) { #ifdef FMT_BUILTIN_CLZ if (num_bits<UInt>() == 32) return (FMT_BUILTIN_CLZ(static_cast<uint32_t>(n) | 1) ^ 31) / BITS + 1; #endif int num_digits = 0; do { ++num_digits; } while ((n >>= BITS) != 0); return num_digits; } template <> int count_digits<4>(detail::fallback_uintptr n); #if FMT_GCC_VERSION || FMT_CLANG_VERSION # define FMT_ALWAYS_INLINE inline __attribute__((always_inline)) #elif FMT_MSC_VER # define FMT_ALWAYS_INLINE __forceinline #else # define FMT_ALWAYS_INLINE inline #endif #ifdef FMT_BUILTIN_CLZ // Optional version of count_digits for better performance on 32-bit platforms. FMT_CONSTEXPR20 inline int count_digits(uint32_t n) { if (is_constant_evaluated()) { return count_digits_fallback(n); } auto t = bsr2log10(FMT_BUILTIN_CLZ(n | 1) ^ 31); return t - (n < data::zero_or_powers_of_10_32_new[t]); } #endif template <typename Int> constexpr int digits10() FMT_NOEXCEPT { return std::numeric_limits<Int>::digits10; } template <> constexpr int digits10<int128_t>() FMT_NOEXCEPT { return 38; } template <> constexpr int digits10<uint128_t>() FMT_NOEXCEPT { return 38; } template <typename Char> FMT_API std::string grouping_impl(locale_ref loc); template <typename Char> inline std::string grouping(locale_ref loc) { return grouping_impl<char>(loc); } template <> inline std::string grouping<wchar_t>(locale_ref loc) { return grouping_impl<wchar_t>(loc); } template <typename Char> FMT_API Char thousands_sep_impl(locale_ref loc); template <typename Char> inline Char thousands_sep(locale_ref loc) { return Char(thousands_sep_impl<char>(loc)); } template <> inline wchar_t thousands_sep(locale_ref loc) { return thousands_sep_impl<wchar_t>(loc); } template <typename Char> FMT_API Char decimal_point_impl(locale_ref loc); template <typename Char> inline Char decimal_point(locale_ref loc) { return Char(decimal_point_impl<char>(loc)); } template <> inline wchar_t decimal_point(locale_ref loc) { return decimal_point_impl<wchar_t>(loc); } // Compares two characters for equality. template <typename Char> bool equal2(const Char* lhs, const char* rhs) { return lhs[0] == rhs[0] && lhs[1] == rhs[1]; } inline bool equal2(const char* lhs, const char* rhs) { return memcmp(lhs, rhs, 2) == 0; } // Copies two characters from src to dst. template <typename Char> void copy2(Char* dst, const char* src) { *dst++ = static_cast<Char>(*src++); *dst = static_cast<Char>(*src); } FMT_INLINE void copy2(char* dst, const char* src) { memcpy(dst, src, 2); } template <typename Iterator> struct format_decimal_result { Iterator begin; Iterator end; }; // Formats a decimal unsigned integer value writing into out pointing to a // buffer of specified size. The caller must ensure that the buffer is large // enough. template <typename Char, typename UInt> FMT_CONSTEXPR20 format_decimal_result<Char*> format_decimal(Char* out, UInt value, int size) { FMT_ASSERT(size >= count_digits(value), "invalid digit count"); out += size; Char* end = out; if (is_constant_evaluated()) { while (value >= 10) { *--out = static_cast<Char>('0' + value % 10); value /= 10; } *--out = static_cast<Char>('0' + value); return {out, end}; } while (value >= 100) { // Integer division is slow so do it for a group of two digits instead // of for every digit. The idea comes from the talk by Alexandrescu // "Three Optimization Tips for C++". See speed-test for a comparison. out -= 2; copy2(out, data::digits[value % 100]); value /= 100; } if (value < 10) { *--out = static_cast<Char>('0' + value); return {out, end}; } out -= 2; copy2(out, data::digits[value]); return {out, end}; } template <typename Char, typename UInt, typename Iterator, FMT_ENABLE_IF(!std::is_pointer<remove_cvref_t<Iterator>>::value)> inline format_decimal_result<Iterator> format_decimal(Iterator out, UInt value, int size) { // Buffer is large enough to hold all digits (digits10 + 1). Char buffer[digits10<UInt>() + 1]; auto end = format_decimal(buffer, value, size).end; return {out, detail::copy_str<Char>(buffer, end, out)}; } template <unsigned BASE_BITS, typename Char, typename UInt> FMT_CONSTEXPR Char* format_uint(Char* buffer, UInt value, int num_digits, bool upper = false) { buffer += num_digits; Char* end = buffer; do { const char* digits = upper ? "0123456789ABCDEF" : data::hex_digits; unsigned digit = (value & ((1 << BASE_BITS) - 1)); *--buffer = static_cast<Char>(BASE_BITS < 4 ? static_cast<char>('0' + digit) : digits[digit]); } while ((value >>= BASE_BITS) != 0); return end; } template <unsigned BASE_BITS, typename Char> Char* format_uint(Char* buffer, detail::fallback_uintptr n, int num_digits, bool = false) { auto char_digits = std::numeric_limits<unsigned char>::digits / 4; int start = (num_digits + char_digits - 1) / char_digits - 1; if (int start_digits = num_digits % char_digits) { unsigned value = n.value[start--]; buffer = format_uint<BASE_BITS>(buffer, value, start_digits); } for (; start >= 0; --start) { unsigned value = n.value[start]; buffer += char_digits; auto p = buffer; for (int i = 0; i < char_digits; ++i) { unsigned digit = (value & ((1 << BASE_BITS) - 1)); *--p = static_cast<Char>(data::hex_digits[digit]); value >>= BASE_BITS; } } return buffer; } template <unsigned BASE_BITS, typename Char, typename It, typename UInt> inline It format_uint(It out, UInt value, int num_digits, bool upper = false) { if (auto ptr = to_pointer<Char>(out, to_unsigned(num_digits))) { format_uint<BASE_BITS>(ptr, value, num_digits, upper); return out; } // Buffer should be large enough to hold all digits (digits / BASE_BITS + 1). char buffer[num_bits<UInt>() / BASE_BITS + 1]; format_uint<BASE_BITS>(buffer, value, num_digits, upper); return detail::copy_str<Char>(buffer, buffer + num_digits, out); } // A converter from UTF-8 to UTF-16. class utf8_to_utf16 { private: wmemory_buffer buffer_; public: FMT_API explicit utf8_to_utf16(string_view s); operator wstring_view() const { return {&buffer_[0], size()}; } size_t size() const { return buffer_.size() - 1; } const wchar_t* c_str() const { return &buffer_[0]; } std::wstring str() const { return {&buffer_[0], size()}; } }; template <typename T = void> struct null {}; // Workaround an array initialization issue in gcc 4.8. template <typename Char> struct fill_t { private: enum { max_size = 4 }; Char data_[max_size] = {Char(' '), Char(0), Char(0), Char(0)}; unsigned char size_ = 1; public: FMT_CONSTEXPR void operator=(basic_string_view<Char> s) { auto size = s.size(); if (size > max_size) { FMT_THROW(format_error("invalid fill")); return; } for (size_t i = 0; i < size; ++i) data_[i] = s[i]; size_ = static_cast<unsigned char>(size); } constexpr size_t size() const { return size_; } constexpr const Char* data() const { return data_; } FMT_CONSTEXPR Char& operator[](size_t index) { return data_[index]; } FMT_CONSTEXPR const Char& operator[](size_t index) const { return data_[index]; } }; } // namespace detail // We cannot use enum classes as bit fields because of a gcc bug // https://gcc.gnu.org/bugzilla/show_bug.cgi?id=61414. namespace align { enum type { none, left, right, center, numeric }; } using align_t = align::type; namespace sign { enum type { none, minus, plus, space }; } using sign_t = sign::type; // Format specifiers for built-in and string types. template <typename Char> struct basic_format_specs { int width; int precision; char type; align_t align : 4; sign_t sign : 3; bool alt : 1; // Alternate form ('#'). bool localized : 1; detail::fill_t<Char> fill; constexpr basic_format_specs() : width(0), precision(-1), type(0), align(align::none), sign(sign::none), alt(false), localized(false) {} }; using format_specs = basic_format_specs<char>; namespace detail { namespace dragonbox { // Type-specific information that Dragonbox uses. template <class T> struct float_info; template <> struct float_info<float> { using carrier_uint = uint32_t; static const int significand_bits = 23; static const int exponent_bits = 8; static const int min_exponent = -126; static const int max_exponent = 127; static const int exponent_bias = -127; static const int decimal_digits = 9; static const int kappa = 1; static const int big_divisor = 100; static const int small_divisor = 10; static const int min_k = -31; static const int max_k = 46; static const int cache_bits = 64; static const int divisibility_check_by_5_threshold = 39; static const int case_fc_pm_half_lower_threshold = -1; static const int case_fc_pm_half_upper_threshold = 6; static const int case_fc_lower_threshold = -2; static const int case_fc_upper_threshold = 6; static const int case_shorter_interval_left_endpoint_lower_threshold = 2; static const int case_shorter_interval_left_endpoint_upper_threshold = 3; static const int shorter_interval_tie_lower_threshold = -35; static const int shorter_interval_tie_upper_threshold = -35; static const int max_trailing_zeros = 7; }; template <> struct float_info<double> { using carrier_uint = uint64_t; static const int significand_bits = 52; static const int exponent_bits = 11; static const int min_exponent = -1022; static const int max_exponent = 1023; static const int exponent_bias = -1023; static const int decimal_digits = 17; static const int kappa = 2; static const int big_divisor = 1000; static const int small_divisor = 100; static const int min_k = -292; static const int max_k = 326; static const int cache_bits = 128; static const int divisibility_check_by_5_threshold = 86; static const int case_fc_pm_half_lower_threshold = -2; static const int case_fc_pm_half_upper_threshold = 9; static const int case_fc_lower_threshold = -4; static const int case_fc_upper_threshold = 9; static const int case_shorter_interval_left_endpoint_lower_threshold = 2; static const int case_shorter_interval_left_endpoint_upper_threshold = 3; static const int shorter_interval_tie_lower_threshold = -77; static const int shorter_interval_tie_upper_threshold = -77; static const int max_trailing_zeros = 16; }; template <typename T> struct decimal_fp { using significand_type = typename float_info<T>::carrier_uint; significand_type significand; int exponent; }; template <typename T> FMT_API decimal_fp<T> to_decimal(T x) FMT_NOEXCEPT; } // namespace dragonbox template <typename T> constexpr typename dragonbox::float_info<T>::carrier_uint exponent_mask() { using uint = typename dragonbox::float_info<T>::carrier_uint; return ((uint(1) << dragonbox::float_info<T>::exponent_bits) - 1) << dragonbox::float_info<T>::significand_bits; } // A floating-point presentation format. enum class float_format : unsigned char { general, // General: exponent notation or fixed point based on magnitude. exp, // Exponent notation with the default precision of 6, e.g. 1.2e-3. fixed, // Fixed point with the default precision of 6, e.g. 0.0012. hex }; struct float_specs { int precision; float_format format : 8; sign_t sign : 8; bool upper : 1; bool locale : 1; bool binary32 : 1; bool use_grisu : 1; bool showpoint : 1; }; // Writes the exponent exp in the form "[+-]d{2,3}" to buffer. template <typename Char, typename It> It write_exponent(int exp, It it) { FMT_ASSERT(-10000 < exp && exp < 10000, "exponent out of range"); if (exp < 0) { *it++ = static_cast<Char>('-'); exp = -exp; } else { *it++ = static_cast<Char>('+'); } if (exp >= 100) { const char* top = data::digits[exp / 100]; if (exp >= 1000) *it++ = static_cast<Char>(top[0]); *it++ = static_cast<Char>(top[1]); exp %= 100; } const char* d = data::digits[exp]; *it++ = static_cast<Char>(d[0]); *it++ = static_cast<Char>(d[1]); return it; } template <typename T> int format_float(T value, int precision, float_specs specs, buffer<char>& buf); // Formats a floating-point number with snprintf. template <typename T> int snprintf_float(T value, int precision, float_specs specs, buffer<char>& buf); template <typename T> T promote_float(T value) { return value; } inline double promote_float(float value) { return static_cast<double>(value); } template <typename Handler> FMT_CONSTEXPR void handle_int_type_spec(char spec, Handler&& handler) { switch (spec) { case 0: case 'd': handler.on_dec(); break; case 'x': case 'X': handler.on_hex(); break; case 'b': case 'B': handler.on_bin(); break; case 'o': handler.on_oct(); break; #ifdef FMT_DEPRECATED_N_SPECIFIER case 'n': handler.on_num(); break; #endif case 'c': handler.on_chr(); break; default: handler.on_error(); } } template <typename Char, typename Handler> FMT_CONSTEXPR void handle_bool_type_spec(const basic_format_specs<Char>* specs, Handler&& handler) { if (!specs) return handler.on_str(); if (specs->type && specs->type != 's') return handler.on_int(); handler.on_str(); } template <typename ErrorHandler = error_handler, typename Char> FMT_CONSTEXPR float_specs parse_float_type_spec( const basic_format_specs<Char>& specs, ErrorHandler&& eh = {}) { auto result = float_specs(); result.showpoint = specs.alt; result.locale = specs.localized; switch (specs.type) { case 0: result.format = float_format::general; break; case 'G': result.upper = true; FMT_FALLTHROUGH; case 'g': result.format = float_format::general; break; case 'E': result.upper = true; FMT_FALLTHROUGH; case 'e': result.format = float_format::exp; result.showpoint |= specs.precision != 0; break; case 'F': result.upper = true; FMT_FALLTHROUGH; case 'f': result.format = float_format::fixed; result.showpoint |= specs.precision != 0; break; case 'A': result.upper = true; FMT_FALLTHROUGH; case 'a': result.format = float_format::hex; break; #ifdef FMT_DEPRECATED_N_SPECIFIER case 'n': result.locale = true; break; #endif default: eh.on_error("invalid type specifier"); break; } return result; } template <typename Char, typename Handler> FMT_CONSTEXPR void handle_char_specs(const basic_format_specs<Char>* specs, Handler&& handler) { if (!specs) return handler.on_char(); if (specs->type && specs->type != 'c') return handler.on_int(); if (specs->align == align::numeric || specs->sign != sign::none || specs->alt) handler.on_error("invalid format specifier for char"); handler.on_char(); } template <typename Char, typename Handler> FMT_CONSTEXPR void handle_cstring_type_spec(Char spec, Handler&& handler) { if (spec == 0 || spec == 's') handler.on_string(); else if (spec == 'p') handler.on_pointer(); else handler.on_error("invalid type specifier"); } template <typename Char, typename ErrorHandler> FMT_CONSTEXPR void check_string_type_spec(Char spec, ErrorHandler&& eh) { if (spec != 0 && spec != 's') eh.on_error("invalid type specifier"); } template <typename Char, typename ErrorHandler> FMT_CONSTEXPR void check_pointer_type_spec(Char spec, ErrorHandler&& eh) { if (spec != 0 && spec != 'p') eh.on_error("invalid type specifier"); } template <typename ErrorHandler> class int_type_checker : private ErrorHandler { public: FMT_CONSTEXPR explicit int_type_checker(ErrorHandler eh) : ErrorHandler(eh) {} FMT_CONSTEXPR void on_dec() {} FMT_CONSTEXPR void on_hex() {} FMT_CONSTEXPR void on_bin() {} FMT_CONSTEXPR void on_oct() {} FMT_CONSTEXPR void on_num() {} FMT_CONSTEXPR void on_chr() {} FMT_CONSTEXPR void on_error() { ErrorHandler::on_error("invalid type specifier"); } }; template <typename ErrorHandler> class char_specs_checker : public ErrorHandler { private: char type_; public: FMT_CONSTEXPR char_specs_checker(char type, ErrorHandler eh) : ErrorHandler(eh), type_(type) {} FMT_CONSTEXPR void on_int() { handle_int_type_spec(type_, int_type_checker<ErrorHandler>(*this)); } FMT_CONSTEXPR void on_char() {} }; template <typename ErrorHandler> class cstring_type_checker : public ErrorHandler { public: FMT_CONSTEXPR explicit cstring_type_checker(ErrorHandler eh) : ErrorHandler(eh) {} FMT_CONSTEXPR void on_string() {} FMT_CONSTEXPR void on_pointer() {} }; template <typename ErrorHandler> class bool_type_checker : private ErrorHandler { private: char type_; public: FMT_CONSTEXPR explicit bool_type_checker(char type, ErrorHandler eh) : ErrorHandler(eh), type_(type) {} FMT_CONSTEXPR void on_int() { handle_int_type_spec(type_, int_type_checker<ErrorHandler>(*this)); } FMT_CONSTEXPR void on_str() {} }; template <typename OutputIt, typename Char> FMT_CONSTEXPR OutputIt fill(OutputIt it, size_t n, const fill_t<Char>& fill) { auto fill_size = fill.size(); if (fill_size == 1) return detail::fill_n(it, n, fill[0]); auto data = fill.data(); for (size_t i = 0; i < n; ++i) it = copy_str<Char>(data, data + fill_size, it); return it; } // Writes the output of f, padded according to format specifications in specs. // size: output size in code units. // width: output display width in (terminal) column positions. template <align::type align = align::left, typename OutputIt, typename Char, typename F> FMT_CONSTEXPR OutputIt write_padded(OutputIt out, const basic_format_specs<Char>& specs, size_t size, size_t width, F&& f) { static_assert(align == align::left || align == align::right, ""); unsigned spec_width = to_unsigned(specs.width); size_t padding = spec_width > width ? spec_width - width : 0; auto* shifts = align == align::left ? data::left_padding_shifts : data::right_padding_shifts; size_t left_padding = padding >> shifts[specs.align]; size_t right_padding = padding - left_padding; auto it = reserve(out, size + padding * specs.fill.size()); if (left_padding != 0) it = fill(it, left_padding, specs.fill); it = f(it); if (right_padding != 0) it = fill(it, padding - left_padding, specs.fill); return base_iterator(out, it); } template <align::type align = align::left, typename OutputIt, typename Char, typename F> constexpr OutputIt write_padded(OutputIt out, const basic_format_specs<Char>& specs, size_t size, F&& f) { return write_padded<align>(out, specs, size, size, f); } template <typename Char, typename OutputIt> OutputIt write_bytes(OutputIt out, string_view bytes, const basic_format_specs<Char>& specs) { return write_padded(out, specs, bytes.size(), [bytes](reserve_iterator<OutputIt> it) { const char* data = bytes.data(); return copy_str<Char>(data, data + bytes.size(), it); }); } template <typename Char, typename OutputIt> constexpr OutputIt write_char(OutputIt out, Char value, const basic_format_specs<Char>& specs) { return write_padded(out, specs, 1, [=](reserve_iterator<OutputIt> it) { *it++ = value; return it; }); } // Data for write_int that doesn't depend on output iterator type. It is used to // avoid template code bloat. template <typename Char> struct write_int_data { size_t size; size_t padding; FMT_CONSTEXPR write_int_data(int num_digits, string_view prefix, const basic_format_specs<Char>& specs) : size(prefix.size() + to_unsigned(num_digits)), padding(0) { if (specs.align == align::numeric) { auto width = to_unsigned(specs.width); if (width > size) { padding = width - size; size = width; } } else if (specs.precision > num_digits) { size = prefix.size() + to_unsigned(specs.precision); padding = to_unsigned(specs.precision - num_digits); } } }; // Writes an integer in the format // <left-padding><prefix><numeric-padding><digits><right-padding> // where <digits> are written by write_digits(it). template <typename OutputIt, typename Char, typename W> FMT_CONSTEXPR FMT_INLINE OutputIt write_int(OutputIt out, int num_digits, string_view prefix, const basic_format_specs<Char>& specs, W write_digits) { if (specs.width == 0 && specs.precision < 0) { auto it = reserve(out, to_unsigned(num_digits) + prefix.size()); if (prefix.size() != 0) it = copy_str<Char>(prefix.begin(), prefix.end(), it); return base_iterator(out, write_digits(it)); } auto data = write_int_data<Char>(num_digits, prefix, specs); return write_padded<align::right>( out, specs, data.size, [=](reserve_iterator<OutputIt> it) { if (prefix.size() != 0) it = copy_str<Char>(prefix.begin(), prefix.end(), it); it = detail::fill_n(it, data.padding, static_cast<Char>('0')); return write_digits(it); }); } template <typename OutputIt, typename UInt, typename Char> FMT_CONSTEXPR OutputIt write_dec(OutputIt out, UInt value, string_view prefix, const basic_format_specs<Char>& specs) { auto num_digits = count_digits(value); return write_int(out, num_digits, prefix, specs, [=](reserve_iterator<OutputIt> it) { return format_decimal<Char>(it, value, num_digits).end; }); } template <typename OutputIt, typename UInt, typename Char> OutputIt write_int_localized(OutputIt out, UInt value, string_view prefix, const basic_format_specs<Char>& specs, locale_ref loc) { static_assert(std::is_same<uint64_or_128_t<UInt>, UInt>::value, ""); const auto sep_size = 1; std::string groups = grouping<Char>(loc); if (groups.empty()) return write_dec(out, value, prefix, specs); auto sep = thousands_sep<Char>(loc); if (!sep) return write_dec(out, value, prefix, specs); int num_digits = count_digits(value); int size = num_digits, n = num_digits; std::string::const_iterator group = groups.cbegin(); while (group != groups.cend() && n > *group && *group > 0 && *group != max_value<char>()) { size += sep_size; n -= *group; ++group; } if (group == groups.cend()) size += sep_size * ((n - 1) / groups.back()); char digits[40]; format_decimal(digits, value, num_digits); basic_memory_buffer<Char> buffer; size += static_cast<int>(prefix.size()); const auto usize = to_unsigned(size); buffer.resize(usize); basic_string_view<Char> s(&sep, sep_size); // Index of a decimal digit with the least significant digit having index 0. int digit_index = 0; group = groups.cbegin(); auto p = buffer.data() + size - 1; for (int i = num_digits - 1; i > 0; --i) { *p-- = static_cast<Char>(digits[i]); if (*group <= 0 || ++digit_index % *group != 0 || *group == max_value<char>()) continue; if (group + 1 != groups.cend()) { digit_index = 0; ++group; } std::uninitialized_copy(s.data(), s.data() + s.size(), make_checked(p, s.size())); p -= s.size(); } *p-- = static_cast<Char>(*digits); if (prefix.size() != 0) *p = static_cast<Char>(prefix[0]); auto data = buffer.data(); return write_padded<align::right>( out, specs, usize, usize, [=](reserve_iterator<OutputIt> it) { return copy_str<Char>(data, data + size, it); }); } template <typename OutputIt, typename T, typename Char> FMT_CONSTEXPR OutputIt write_int(OutputIt out, T value, const basic_format_specs<Char>& specs, locale_ref loc) { char prefix[4] = {}; auto prefix_size = 0u; auto abs_value = static_cast<uint32_or_64_or_128_t<T>>(value); if (is_negative(value)) { prefix[0] = '-'; ++prefix_size; abs_value = 0 - abs_value; } else if (specs.sign != sign::none && specs.sign != sign::minus) { prefix[0] = specs.sign == sign::plus ? '+' : ' '; ++prefix_size; } switch (specs.type) { case 0: case 'd': return specs.localized ? write_int_localized(out, static_cast<uint64_or_128_t<T>>(abs_value), {prefix, prefix_size}, specs, loc) : write_dec(out, abs_value, {prefix, prefix_size}, specs); case 'x': case 'X': { if (specs.alt) { prefix[prefix_size++] = '0'; prefix[prefix_size++] = specs.type; } bool upper = specs.type != 'x'; int num_digits = count_digits<4>(abs_value); return write_int(out, num_digits, {prefix, prefix_size}, specs, [=](reserve_iterator<OutputIt> it) { return format_uint<4, Char>(it, abs_value, num_digits, upper); }); } case 'b': case 'B': { if (specs.alt) { prefix[prefix_size++] = '0'; prefix[prefix_size++] = static_cast<char>(specs.type); } int num_digits = count_digits<1>(abs_value); return write_int(out, num_digits, {prefix, prefix_size}, specs, [=](reserve_iterator<OutputIt> it) { return format_uint<1, Char>(it, abs_value, num_digits); }); } case 'o': { int num_digits = count_digits<3>(abs_value); if (specs.alt && specs.precision <= num_digits && abs_value != 0) { // Octal prefix '0' is counted as a digit, so only add it if precision // is not greater than the number of digits. prefix[prefix_size++] = '0'; } return write_int(out, num_digits, {prefix, prefix_size}, specs, [=](reserve_iterator<OutputIt> it) { return format_uint<3, Char>(it, abs_value, num_digits); }); } #ifdef FMT_DEPRECATED_N_SPECIFIER case 'n': return write_int_localized(out, abs_value, {prefix, prefix_size}, specs, loc); #endif case 'c': return write_char(out, static_cast<Char>(abs_value), specs); default: FMT_THROW(format_error("invalid type specifier")); } return out; } template <typename OutputIt, typename StrChar, typename Char> FMT_CONSTEXPR OutputIt write(OutputIt out, basic_string_view<StrChar> s, const basic_format_specs<Char>& specs) { auto data = s.data(); auto size = s.size(); if (specs.precision >= 0 && to_unsigned(specs.precision) < size) size = code_point_index(s, to_unsigned(specs.precision)); auto width = specs.width != 0 ? compute_width(basic_string_view<StrChar>(data, size)) : 0; return write_padded(out, specs, size, width, [=](reserve_iterator<OutputIt> it) { return copy_str<Char>(data, data + size, it); }); } template <typename Char, typename OutputIt> OutputIt write_nonfinite(OutputIt out, bool isinf, const basic_format_specs<Char>& specs, const float_specs& fspecs) { auto str = isinf ? (fspecs.upper ? "INF" : "inf") : (fspecs.upper ? "NAN" : "nan"); constexpr size_t str_size = 3; auto sign = fspecs.sign; auto size = str_size + (sign ? 1 : 0); return write_padded(out, specs, size, [=](reserve_iterator<OutputIt> it) { if (sign) *it++ = static_cast<Char>(data::signs[sign]); return copy_str<Char>(str, str + str_size, it); }); } // A decimal floating-point number significand * pow(10, exp). struct big_decimal_fp { const char* significand; int significand_size; int exponent; }; inline int get_significand_size(const big_decimal_fp& fp) { return fp.significand_size; } template <typename T> inline int get_significand_size(const dragonbox::decimal_fp<T>& fp) { return count_digits(fp.significand); } template <typename Char, typename OutputIt> inline OutputIt write_significand(OutputIt out, const char* significand, int& significand_size) { return copy_str<Char>(significand, significand + significand_size, out); } template <typename Char, typename OutputIt, typename UInt> inline OutputIt write_significand(OutputIt out, UInt significand, int significand_size) { return format_decimal<Char>(out, significand, significand_size).end; } template <typename Char, typename UInt, FMT_ENABLE_IF(std::is_integral<UInt>::value)> inline Char* write_significand(Char* out, UInt significand, int significand_size, int integral_size, Char decimal_point) { if (!decimal_point) return format_decimal(out, significand, significand_size).end; auto end = format_decimal(out + 1, significand, significand_size).end; if (integral_size == 1) out[0] = out[1]; else std::uninitialized_copy_n(out + 1, integral_size, out); out[integral_size] = decimal_point; return end; } template <typename OutputIt, typename UInt, typename Char, FMT_ENABLE_IF(!std::is_pointer<remove_cvref_t<OutputIt>>::value)> inline OutputIt write_significand(OutputIt out, UInt significand, int significand_size, int integral_size, Char decimal_point) { // Buffer is large enough to hold digits (digits10 + 1) and a decimal point. Char buffer[digits10<UInt>() + 2]; auto end = write_significand(buffer, significand, significand_size, integral_size, decimal_point); return detail::copy_str<Char>(buffer, end, out); } template <typename OutputIt, typename Char> inline OutputIt write_significand(OutputIt out, const char* significand, int significand_size, int integral_size, Char decimal_point) { out = detail::copy_str<Char>(significand, significand + integral_size, out); if (!decimal_point) return out; *out++ = decimal_point; return detail::copy_str<Char>(significand + integral_size, significand + significand_size, out); } template <typename OutputIt, typename DecimalFP, typename Char> OutputIt write_float(OutputIt out, const DecimalFP& fp, const basic_format_specs<Char>& specs, float_specs fspecs, Char decimal_point) { auto significand = fp.significand; int significand_size = get_significand_size(fp); static const Char zero = static_cast<Char>('0'); auto sign = fspecs.sign; size_t size = to_unsigned(significand_size) + (sign ? 1 : 0); using iterator = reserve_iterator<OutputIt>; int output_exp = fp.exponent + significand_size - 1; auto use_exp_format = [=]() { if (fspecs.format == float_format::exp) return true; if (fspecs.format != float_format::general) return false; // Use the fixed notation if the exponent is in [exp_lower, exp_upper), // e.g. 0.0001 instead of 1e-04. Otherwise use the exponent notation. const int exp_lower = -4, exp_upper = 16; return output_exp < exp_lower || output_exp >= (fspecs.precision > 0 ? fspecs.precision : exp_upper); }; if (use_exp_format()) { int num_zeros = 0; if (fspecs.showpoint) { num_zeros = fspecs.precision - significand_size; if (num_zeros < 0) num_zeros = 0; size += to_unsigned(num_zeros); } else if (significand_size == 1) { decimal_point = Char(); } auto abs_output_exp = output_exp >= 0 ? output_exp : -output_exp; int exp_digits = 2; if (abs_output_exp >= 100) exp_digits = abs_output_exp >= 1000 ? 4 : 3; size += to_unsigned((decimal_point ? 1 : 0) + 2 + exp_digits); char exp_char = fspecs.upper ? 'E' : 'e'; auto write = [=](iterator it) { if (sign) *it++ = static_cast<Char>(data::signs[sign]); // Insert a decimal point after the first digit and add an exponent. it = write_significand(it, significand, significand_size, 1, decimal_point); if (num_zeros > 0) it = detail::fill_n(it, num_zeros, zero); *it++ = static_cast<Char>(exp_char); return write_exponent<Char>(output_exp, it); }; return specs.width > 0 ? write_padded<align::right>(out, specs, size, write) : base_iterator(out, write(reserve(out, size))); } int exp = fp.exponent + significand_size; if (fp.exponent >= 0) { // 1234e5 -> 123400000[.0+] size += to_unsigned(fp.exponent); int num_zeros = fspecs.precision - exp; #ifdef FMT_FUZZ if (num_zeros > 5000) throw std::runtime_error("fuzz mode - avoiding excessive cpu use"); #endif if (fspecs.showpoint) { if (num_zeros <= 0 && fspecs.format != float_format::fixed) num_zeros = 1; if (num_zeros > 0) size += to_unsigned(num_zeros) + 1; } return write_padded<align::right>(out, specs, size, [&](iterator it) { if (sign) *it++ = static_cast<Char>(data::signs[sign]); it = write_significand<Char>(it, significand, significand_size); it = detail::fill_n(it, fp.exponent, zero); if (!fspecs.showpoint) return it; *it++ = decimal_point; return num_zeros > 0 ? detail::fill_n(it, num_zeros, zero) : it; }); } else if (exp > 0) { // 1234e-2 -> 12.34[0+] int num_zeros = fspecs.showpoint ? fspecs.precision - significand_size : 0; size += 1 + to_unsigned(num_zeros > 0 ? num_zeros : 0); return write_padded<align::right>(out, specs, size, [&](iterator it) { if (sign) *it++ = static_cast<Char>(data::signs[sign]); it = write_significand(it, significand, significand_size, exp, decimal_point); return num_zeros > 0 ? detail::fill_n(it, num_zeros, zero) : it; }); } // 1234e-6 -> 0.001234 int num_zeros = -exp; if (significand_size == 0 && fspecs.precision >= 0 && fspecs.precision < num_zeros) { num_zeros = fspecs.precision; } bool pointy = num_zeros != 0 || significand_size != 0 || fspecs.showpoint; size += 1 + (pointy ? 1 : 0) + to_unsigned(num_zeros); return write_padded<align::right>(out, specs, size, [&](iterator it) { if (sign) *it++ = static_cast<Char>(data::signs[sign]); *it++ = zero; if (!pointy) return it; *it++ = decimal_point; it = detail::fill_n(it, num_zeros, zero); return write_significand<Char>(it, significand, significand_size); }); } template <typename Char, typename OutputIt, typename T, FMT_ENABLE_IF(std::is_floating_point<T>::value)> OutputIt write(OutputIt out, T value, basic_format_specs<Char> specs, locale_ref loc = {}) { if (const_check(!is_supported_floating_point(value))) return out; float_specs fspecs = parse_float_type_spec(specs); fspecs.sign = specs.sign; if (std::signbit(value)) { // value < 0 is false for NaN so use signbit. fspecs.sign = sign::minus; value = -value; } else if (fspecs.sign == sign::minus) { fspecs.sign = sign::none; } if (!std::isfinite(value)) return write_nonfinite(out, std::isinf(value), specs, fspecs); if (specs.align == align::numeric && fspecs.sign) { auto it = reserve(out, 1); *it++ = static_cast<Char>(data::signs[fspecs.sign]); out = base_iterator(out, it); fspecs.sign = sign::none; if (specs.width != 0) --specs.width; } memory_buffer buffer; if (fspecs.format == float_format::hex) { if (fspecs.sign) buffer.push_back(data::signs[fspecs.sign]); snprintf_float(promote_float(value), specs.precision, fspecs, buffer); return write_bytes(out, {buffer.data(), buffer.size()}, specs); } int precision = specs.precision >= 0 || !specs.type ? specs.precision : 6; if (fspecs.format == float_format::exp) { if (precision == max_value<int>()) FMT_THROW(format_error("number is too big")); else ++precision; } if (const_check(std::is_same<T, float>())) fspecs.binary32 = true; fspecs.use_grisu = is_fast_float<T>(); int exp = format_float(promote_float(value), precision, fspecs, buffer); fspecs.precision = precision; Char point = fspecs.locale ? decimal_point<Char>(loc) : static_cast<Char>('.'); auto fp = big_decimal_fp{buffer.data(), static_cast<int>(buffer.size()), exp}; return write_float(out, fp, specs, fspecs, point); } template <typename Char, typename OutputIt, typename T, FMT_ENABLE_IF(is_fast_float<T>::value)> OutputIt write(OutputIt out, T value) { if (const_check(!is_supported_floating_point(value))) return out; using floaty = conditional_t<std::is_same<T, long double>::value, double, T>; using uint = typename dragonbox::float_info<floaty>::carrier_uint; auto bits = bit_cast<uint>(value); auto fspecs = float_specs(); auto sign_bit = bits & (uint(1) << (num_bits<uint>() - 1)); if (sign_bit != 0) { fspecs.sign = sign::minus; value = -value; } static const auto specs = basic_format_specs<Char>(); uint mask = exponent_mask<floaty>(); if ((bits & mask) == mask) return write_nonfinite(out, std::isinf(value), specs, fspecs); auto dec = dragonbox::to_decimal(static_cast<floaty>(value)); return write_float(out, dec, specs, fspecs, static_cast<Char>('.')); } template <typename Char, typename OutputIt, typename T, FMT_ENABLE_IF(std::is_floating_point<T>::value && !is_fast_float<T>::value)> inline OutputIt write(OutputIt out, T value) { return write(out, value, basic_format_specs<Char>()); } template <typename Char, typename OutputIt, typename UIntPtr> OutputIt write_ptr(OutputIt out, UIntPtr value, const basic_format_specs<Char>* specs) { int num_digits = count_digits<4>(value); auto size = to_unsigned(num_digits) + size_t(2); auto write = [=](reserve_iterator<OutputIt> it) { *it++ = static_cast<Char>('0'); *it++ = static_cast<Char>('x'); return format_uint<4, Char>(it, value, num_digits); }; return specs ? write_padded<align::right>(out, *specs, size, write) : base_iterator(out, write(reserve(out, size))); } template <typename T> struct is_integral : std::is_integral<T> {}; template <> struct is_integral<int128_t> : std::true_type {}; template <> struct is_integral<uint128_t> : std::true_type {}; template <typename Char, typename OutputIt> OutputIt write(OutputIt out, monostate) { FMT_ASSERT(false, ""); return out; } template <typename Char, typename OutputIt, FMT_ENABLE_IF(!std::is_same<Char, char>::value)> OutputIt write(OutputIt out, string_view value) { auto it = reserve(out, value.size()); it = copy_str<Char>(value.begin(), value.end(), it); return base_iterator(out, it); } template <typename Char, typename OutputIt> FMT_CONSTEXPR OutputIt write(OutputIt out, basic_string_view<Char> value) { auto it = reserve(out, value.size()); it = copy_str<Char>(value.begin(), value.end(), it); return base_iterator(out, it); } template <typename Char, typename OutputIt, typename T, FMT_ENABLE_IF(is_integral<T>::value && !std::is_same<T, bool>::value && !std::is_same<T, Char>::value)> FMT_CONSTEXPR OutputIt write(OutputIt out, T value) { auto abs_value = static_cast<uint32_or_64_or_128_t<T>>(value); bool negative = is_negative(value); // Don't do -abs_value since it trips unsigned-integer-overflow sanitizer. if (negative) abs_value = ~abs_value + 1; int num_digits = count_digits(abs_value); auto size = (negative ? 1 : 0) + static_cast<size_t>(num_digits); auto it = reserve(out, size); if (auto ptr = to_pointer<Char>(it, size)) { if (negative) *ptr++ = static_cast<Char>('-'); format_decimal<Char>(ptr, abs_value, num_digits); return out; } if (negative) *it++ = static_cast<Char>('-'); it = format_decimal<Char>(it, abs_value, num_digits).end; return base_iterator(out, it); } // FMT_ENABLE_IF() condition separated to workaround MSVC bug template < typename Char, typename OutputIt, typename T, bool check = std::is_enum<T>::value && !std::is_same<T, Char>::value && mapped_type_constant<T, basic_format_context<OutputIt, Char>>::value != type::custom_type, FMT_ENABLE_IF(check)> FMT_CONSTEXPR OutputIt write(OutputIt out, T value) { return write<Char>( out, static_cast<typename std::underlying_type<T>::type>(value)); } template <typename Char, typename OutputIt> constexpr OutputIt write(OutputIt out, bool value) { return write<Char>(out, string_view(value ? "true" : "false")); } template <typename Char, typename OutputIt> FMT_CONSTEXPR OutputIt write(OutputIt out, Char value) { auto it = reserve(out, 1); *it++ = value; return base_iterator(out, it); } template <typename Char, typename OutputIt> FMT_CONSTEXPR OutputIt write(OutputIt out, const Char* value) { if (!value) { FMT_THROW(format_error("string pointer is null")); } else { auto length = std::char_traits<Char>::length(value); out = write(out, basic_string_view<Char>(value, length)); } return out; } template <typename Char, typename OutputIt> OutputIt write(OutputIt out, const void* value) { return write_ptr<Char>(out, to_uintptr(value), nullptr); } template <typename Char, typename OutputIt, typename T> auto write(OutputIt out, const T& value) -> typename std::enable_if< mapped_type_constant<T, basic_format_context<OutputIt, Char>>::value == type::custom_type, OutputIt>::type { using context_type = basic_format_context<OutputIt, Char>; using formatter_type = conditional_t<has_formatter<T, context_type>::value, typename context_type::template formatter_type<T>, fallback_formatter<T, Char>>; context_type ctx(out, {}, {}); return formatter_type().format(value, ctx); } // An argument visitor that formats the argument and writes it via the output // iterator. It's a class and not a generic lambda for compatibility with C++11. template <typename OutputIt, typename Char> struct default_arg_formatter { using context = basic_format_context<OutputIt, Char>; OutputIt out; basic_format_args<context> args; locale_ref loc; template <typename T> OutputIt operator()(T value) { return write<Char>(out, value); } OutputIt operator()(typename basic_format_arg<context>::handle handle) { basic_format_parse_context<Char> parse_ctx({}); basic_format_context<OutputIt, Char> format_ctx(out, args, loc); handle.format(parse_ctx, format_ctx); return format_ctx.out(); } }; template <typename OutputIt, typename Char, typename ErrorHandler = error_handler> class arg_formatter_base { public: using iterator = OutputIt; using char_type = Char; using format_specs = basic_format_specs<Char>; private: iterator out_; locale_ref locale_; format_specs* specs_; // Attempts to reserve space for n extra characters in the output range. // Returns a pointer to the reserved range or a reference to out_. auto reserve(size_t n) -> decltype(detail::reserve(out_, n)) { return detail::reserve(out_, n); } void write(char value) { auto&& it = reserve(1); *it++ = value; } template <typename Ch, FMT_ENABLE_IF(std::is_same<Ch, Char>::value)> void write(Ch value) { out_ = detail::write<Char>(out_, value); } void write(string_view value) { auto&& it = reserve(value.size()); it = copy_str<Char>(value.begin(), value.end(), it); } void write(wstring_view value) { static_assert(std::is_same<Char, wchar_t>::value, ""); auto&& it = reserve(value.size()); it = copy_str<Char>(value.begin(), value.end(), it); } template <typename Ch> void write(const Ch* s, size_t size, const format_specs& specs) { auto width = specs.width != 0 ? compute_width(basic_string_view<Ch>(s, size)) : 0; out_ = write_padded(out_, specs, size, width, [=](reserve_iterator<OutputIt> it) { return copy_str<Char>(s, s + size, it); }); } template <typename Ch> FMT_CONSTEXPR void write(basic_string_view<Ch> s, const format_specs& specs = {}) { out_ = detail::write(out_, s, specs); } void write_pointer(const void* p) { out_ = write_ptr<char_type>(out_, to_uintptr(p), specs_); } struct char_spec_handler : ErrorHandler { arg_formatter_base& formatter; Char value; constexpr char_spec_handler(arg_formatter_base& f, Char val) : formatter(f), value(val) {} FMT_CONSTEXPR void on_int() { // char is only formatted as int if there are specs. formatter.out_ = detail::write_int(formatter.out_, static_cast<int>(value), *formatter.specs_, formatter.locale_); } FMT_CONSTEXPR void on_char() { if (formatter.specs_) formatter.out_ = write_char(formatter.out_, value, *formatter.specs_); else formatter.write(value); } }; struct cstring_spec_handler : error_handler { arg_formatter_base& formatter; const Char* value; cstring_spec_handler(arg_formatter_base& f, const Char* val) : formatter(f), value(val) {} void on_string() { formatter.write(value); } void on_pointer() { formatter.write_pointer(value); } }; protected: iterator out() { return out_; } format_specs* specs() { return specs_; } FMT_CONSTEXPR void write(bool value) { if (specs_) write(string_view(value ? "true" : "false"), *specs_); else out_ = detail::write<Char>(out_, value); } void write(const Char* value) { if (!value) { FMT_THROW(format_error("string pointer is null")); } else { auto length = std::char_traits<char_type>::length(value); basic_string_view<char_type> sv(value, length); specs_ ? write(sv, *specs_) : write(sv); } } public: constexpr arg_formatter_base(OutputIt out, format_specs* s, locale_ref loc) : out_(out), locale_(loc), specs_(s) {} iterator operator()(monostate) { FMT_ASSERT(false, "invalid argument type"); return out_; } template <typename T, FMT_ENABLE_IF(is_integral<T>::value)> FMT_CONSTEXPR FMT_INLINE iterator operator()(T value) { return out_ = specs_ ? detail::write_int(out_, value, *specs_, locale_) : detail::write<Char>(out_, value); } FMT_CONSTEXPR iterator operator()(Char value) { handle_char_specs(specs_, char_spec_handler(*this, static_cast<Char>(value))); return out_; } FMT_CONSTEXPR iterator operator()(bool value) { if (specs_ && specs_->type && specs_->type != 's') return (*this)(value ? 1 : 0); write(value != 0); return out_; } template <typename T, FMT_ENABLE_IF(std::is_floating_point<T>::value)> iterator operator()(T value) { auto specs = specs_ ? *specs_ : format_specs(); if (const_check(is_supported_floating_point(value))) out_ = detail::write(out_, value, specs, locale_); else FMT_ASSERT(false, "unsupported float argument type"); return out_; } iterator operator()(const Char* value) { if (!specs_) return write(value), out_; handle_cstring_type_spec(specs_->type, cstring_spec_handler(*this, value)); return out_; } FMT_CONSTEXPR iterator operator()(basic_string_view<Char> value) { if (specs_) { check_string_type_spec(specs_->type, error_handler()); write(value, *specs_); } else { write(value); } return out_; } iterator operator()(const void* value) { if (specs_) check_pointer_type_spec(specs_->type, error_handler()); write_pointer(value); return out_; } }; /** The default argument formatter. */ template <typename OutputIt, typename Char> class arg_formatter : public arg_formatter_base<OutputIt, Char> { private: using char_type = Char; using base = arg_formatter_base<OutputIt, Char>; using context_type = basic_format_context<OutputIt, Char>; context_type& ctx_; public: using iterator = typename base::iterator; using format_specs = typename base::format_specs; /** \rst Constructs an argument formatter object. *ctx* is a reference to the formatting context, *specs* contains format specifier information for standard argument types. \endrst */ constexpr explicit arg_formatter(context_type& ctx, format_specs* specs = nullptr) : base(ctx.out(), specs, ctx.locale()), ctx_(ctx) {} using base::operator(); iterator operator()(typename basic_format_arg<context_type>::handle) { // User-defined types are handled separately because they require access to // the parse context. return ctx_.out(); } }; template <typename Char> FMT_CONSTEXPR bool is_name_start(Char c) { return ('a' <= c && c <= 'z') || ('A' <= c && c <= 'Z') || '_' == c; } // Parses the range [begin, end) as an unsigned integer. This function assumes // that the range is non-empty and the first character is a digit. template <typename Char, typename ErrorHandler> FMT_CONSTEXPR int parse_nonnegative_int(const Char*& begin, const Char* end, ErrorHandler&& eh) { FMT_ASSERT(begin != end && '0' <= *begin && *begin <= '9', ""); unsigned value = 0; // Convert to unsigned to prevent a warning. constexpr unsigned max_int = max_value<int>(); unsigned big = max_int / 10; do { // Check for overflow. if (value > big) { value = max_int + 1; break; } value = value * 10 + unsigned(*begin - '0'); ++begin; } while (begin != end && '0' <= *begin && *begin <= '9'); if (value > max_int) eh.on_error("number is too big"); return static_cast<int>(value); } template <typename Context> class custom_formatter { private: using char_type = typename Context::char_type; basic_format_parse_context<char_type>& parse_ctx_; Context& ctx_; public: explicit custom_formatter(basic_format_parse_context<char_type>& parse_ctx, Context& ctx) : parse_ctx_(parse_ctx), ctx_(ctx) {} void operator()(typename basic_format_arg<Context>::handle h) const { h.format(parse_ctx_, ctx_); } template <typename T> void operator()(T) const {} }; template <typename T> using is_integer = bool_constant<is_integral<T>::value && !std::is_same<T, bool>::value && !std::is_same<T, char>::value && !std::is_same<T, wchar_t>::value>; template <typename ErrorHandler> class width_checker { public: explicit FMT_CONSTEXPR width_checker(ErrorHandler& eh) : handler_(eh) {} template <typename T, FMT_ENABLE_IF(is_integer<T>::value)> FMT_CONSTEXPR unsigned long long operator()(T value) { if (is_negative(value)) handler_.on_error("negative width"); return static_cast<unsigned long long>(value); } template <typename T, FMT_ENABLE_IF(!is_integer<T>::value)> FMT_CONSTEXPR unsigned long long operator()(T) { handler_.on_error("width is not integer"); return 0; } private: ErrorHandler& handler_; }; template <typename ErrorHandler> class precision_checker { public: explicit FMT_CONSTEXPR precision_checker(ErrorHandler& eh) : handler_(eh) {} template <typename T, FMT_ENABLE_IF(is_integer<T>::value)> FMT_CONSTEXPR unsigned long long operator()(T value) { if (is_negative(value)) handler_.on_error("negative precision"); return static_cast<unsigned long long>(value); } template <typename T, FMT_ENABLE_IF(!is_integer<T>::value)> FMT_CONSTEXPR unsigned long long operator()(T) { handler_.on_error("precision is not integer"); return 0; } private: ErrorHandler& handler_; }; // A format specifier handler that sets fields in basic_format_specs. template <typename Char> class specs_setter { public: explicit FMT_CONSTEXPR specs_setter(basic_format_specs<Char>& specs) : specs_(specs) {} FMT_CONSTEXPR specs_setter(const specs_setter& other) : specs_(other.specs_) {} FMT_CONSTEXPR void on_align(align_t align) { specs_.align = align; } FMT_CONSTEXPR void on_fill(basic_string_view<Char> fill) { specs_.fill = fill; } FMT_CONSTEXPR void on_plus() { specs_.sign = sign::plus; } FMT_CONSTEXPR void on_minus() { specs_.sign = sign::minus; } FMT_CONSTEXPR void on_space() { specs_.sign = sign::space; } FMT_CONSTEXPR void on_hash() { specs_.alt = true; } FMT_CONSTEXPR void on_localized() { specs_.localized = true; } FMT_CONSTEXPR void on_zero() { specs_.align = align::numeric; specs_.fill[0] = Char('0'); } FMT_CONSTEXPR void on_width(int width) { specs_.width = width; } FMT_CONSTEXPR void on_precision(int precision) { specs_.precision = precision; } FMT_CONSTEXPR void end_precision() {} FMT_CONSTEXPR void on_type(Char type) { specs_.type = static_cast<char>(type); } protected: basic_format_specs<Char>& specs_; }; template <typename ErrorHandler> class numeric_specs_checker { public: FMT_CONSTEXPR numeric_specs_checker(ErrorHandler& eh, detail::type arg_type) : error_handler_(eh), arg_type_(arg_type) {} FMT_CONSTEXPR void require_numeric_argument() { if (!is_arithmetic_type(arg_type_)) error_handler_.on_error("format specifier requires numeric argument"); } FMT_CONSTEXPR void check_sign() { require_numeric_argument(); if (is_integral_type(arg_type_) && arg_type_ != type::int_type && arg_type_ != type::long_long_type && arg_type_ != type::char_type) { error_handler_.on_error("format specifier requires signed argument"); } } FMT_CONSTEXPR void check_precision() { if (is_integral_type(arg_type_) || arg_type_ == type::pointer_type) error_handler_.on_error("precision not allowed for this argument type"); } private: ErrorHandler& error_handler_; detail::type arg_type_; }; // A format specifier handler that checks if specifiers are consistent with the // argument type. template <typename Handler> class specs_checker : public Handler { private: numeric_specs_checker<Handler> checker_; // Suppress an MSVC warning about using this in initializer list. FMT_CONSTEXPR Handler& error_handler() { return *this; } public: FMT_CONSTEXPR specs_checker(const Handler& handler, detail::type arg_type) : Handler(handler), checker_(error_handler(), arg_type) {} FMT_CONSTEXPR specs_checker(const specs_checker& other) : Handler(other), checker_(error_handler(), other.arg_type_) {} FMT_CONSTEXPR void on_align(align_t align) { if (align == align::numeric) checker_.require_numeric_argument(); Handler::on_align(align); } FMT_CONSTEXPR void on_plus() { checker_.check_sign(); Handler::on_plus(); } FMT_CONSTEXPR void on_minus() { checker_.check_sign(); Handler::on_minus(); } FMT_CONSTEXPR void on_space() { checker_.check_sign(); Handler::on_space(); } FMT_CONSTEXPR void on_hash() { checker_.require_numeric_argument(); Handler::on_hash(); } FMT_CONSTEXPR void on_localized() { checker_.require_numeric_argument(); Handler::on_localized(); } FMT_CONSTEXPR void on_zero() { checker_.require_numeric_argument(); Handler::on_zero(); } FMT_CONSTEXPR void end_precision() { checker_.check_precision(); } }; template <template <typename> class Handler, typename FormatArg, typename ErrorHandler> FMT_CONSTEXPR int get_dynamic_spec(FormatArg arg, ErrorHandler eh) { unsigned long long value = visit_format_arg(Handler<ErrorHandler>(eh), arg); if (value > to_unsigned(max_value<int>())) eh.on_error("number is too big"); return static_cast<int>(value); } struct auto_id {}; template <typename Context, typename ID> FMT_CONSTEXPR typename Context::format_arg get_arg(Context& ctx, ID id) { auto arg = ctx.arg(id); if (!arg) ctx.on_error("argument not found"); return arg; } // The standard format specifier handler with checking. template <typename ParseContext, typename Context> class specs_handler : public specs_setter<typename Context::char_type> { public: using char_type = typename Context::char_type; FMT_CONSTEXPR specs_handler(basic_format_specs<char_type>& specs, ParseContext& parse_ctx, Context& ctx) : specs_setter<char_type>(specs), parse_context_(parse_ctx), context_(ctx) {} template <typename Id> FMT_CONSTEXPR void on_dynamic_width(Id arg_id) { this->specs_.width = get_dynamic_spec<width_checker>( get_arg(arg_id), context_.error_handler()); } template <typename Id> FMT_CONSTEXPR void on_dynamic_precision(Id arg_id) { this->specs_.precision = get_dynamic_spec<precision_checker>( get_arg(arg_id), context_.error_handler()); } void on_error(const char* message) { context_.on_error(message); } private: // This is only needed for compatibility with gcc 4.4. using format_arg = typename Context::format_arg; FMT_CONSTEXPR format_arg get_arg(auto_id) { return detail::get_arg(context_, parse_context_.next_arg_id()); } FMT_CONSTEXPR format_arg get_arg(int arg_id) { parse_context_.check_arg_id(arg_id); return detail::get_arg(context_, arg_id); } FMT_CONSTEXPR format_arg get_arg(basic_string_view<char_type> arg_id) { parse_context_.check_arg_id(arg_id); return detail::get_arg(context_, arg_id); } ParseContext& parse_context_; Context& context_; }; enum class arg_id_kind { none, index, name }; // An argument reference. template <typename Char> struct arg_ref { FMT_CONSTEXPR arg_ref() : kind(arg_id_kind::none), val() {} FMT_CONSTEXPR explicit arg_ref(int index) : kind(arg_id_kind::index), val(index) {} FMT_CONSTEXPR explicit arg_ref(basic_string_view<Char> name) : kind(arg_id_kind::name), val(name) {} FMT_CONSTEXPR arg_ref& operator=(int idx) { kind = arg_id_kind::index; val.index = idx; return *this; } arg_id_kind kind; union value { FMT_CONSTEXPR value(int id = 0) : index{id} {} FMT_CONSTEXPR value(basic_string_view<Char> n) : name(n) {} int index; basic_string_view<Char> name; } val; }; // Format specifiers with width and precision resolved at formatting rather // than parsing time to allow re-using the same parsed specifiers with // different sets of arguments (precompilation of format strings). template <typename Char> struct dynamic_format_specs : basic_format_specs<Char> { arg_ref<Char> width_ref; arg_ref<Char> precision_ref; }; // Format spec handler that saves references to arguments representing dynamic // width and precision to be resolved at formatting time. template <typename ParseContext> class dynamic_specs_handler : public specs_setter<typename ParseContext::char_type> { public: using char_type = typename ParseContext::char_type; FMT_CONSTEXPR dynamic_specs_handler(dynamic_format_specs<char_type>& specs, ParseContext& ctx) : specs_setter<char_type>(specs), specs_(specs), context_(ctx) {} FMT_CONSTEXPR dynamic_specs_handler(const dynamic_specs_handler& other) : specs_setter<char_type>(other), specs_(other.specs_), context_(other.context_) {} template <typename Id> FMT_CONSTEXPR void on_dynamic_width(Id arg_id) { specs_.width_ref = make_arg_ref(arg_id); } template <typename Id> FMT_CONSTEXPR void on_dynamic_precision(Id arg_id) { specs_.precision_ref = make_arg_ref(arg_id); } FMT_CONSTEXPR void on_error(const char* message) { context_.on_error(message); } private: using arg_ref_type = arg_ref<char_type>; FMT_CONSTEXPR arg_ref_type make_arg_ref(int arg_id) { context_.check_arg_id(arg_id); return arg_ref_type(arg_id); } FMT_CONSTEXPR arg_ref_type make_arg_ref(auto_id) { return arg_ref_type(context_.next_arg_id()); } FMT_CONSTEXPR arg_ref_type make_arg_ref(basic_string_view<char_type> arg_id) { context_.check_arg_id(arg_id); basic_string_view<char_type> format_str( context_.begin(), to_unsigned(context_.end() - context_.begin())); return arg_ref_type(arg_id); } dynamic_format_specs<char_type>& specs_; ParseContext& context_; }; template <typename Char, typename IDHandler> FMT_CONSTEXPR const Char* do_parse_arg_id(const Char* begin, const Char* end, IDHandler&& handler) { FMT_ASSERT(begin != end, ""); Char c = *begin; if (c >= '0' && c <= '9') { int index = 0; if (c != '0') index = parse_nonnegative_int(begin, end, handler); else ++begin; if (begin == end || (*begin != '}' && *begin != ':')) handler.on_error("invalid format string"); else handler(index); return begin; } if (!is_name_start(c)) { handler.on_error("invalid format string"); return begin; } auto it = begin; do { ++it; } while (it != end && (is_name_start(c = *it) || ('0' <= c && c <= '9'))); handler(basic_string_view<Char>(begin, to_unsigned(it - begin))); return it; } template <typename Char, typename IDHandler> FMT_CONSTEXPR_DECL FMT_INLINE const Char* parse_arg_id(const Char* begin, const Char* end, IDHandler&& handler) { Char c = *begin; if (c != '}' && c != ':') return do_parse_arg_id(begin, end, handler); handler(); return begin; } // Adapts SpecHandler to IDHandler API for dynamic width. template <typename SpecHandler, typename Char> struct width_adapter { explicit FMT_CONSTEXPR width_adapter(SpecHandler& h) : handler(h) {} FMT_CONSTEXPR void operator()() { handler.on_dynamic_width(auto_id()); } FMT_CONSTEXPR void operator()(int id) { handler.on_dynamic_width(id); } FMT_CONSTEXPR void operator()(basic_string_view<Char> id) { handler.on_dynamic_width(id); } FMT_CONSTEXPR void on_error(const char* message) { handler.on_error(message); } SpecHandler& handler; }; // Adapts SpecHandler to IDHandler API for dynamic precision. template <typename SpecHandler, typename Char> struct precision_adapter { explicit FMT_CONSTEXPR precision_adapter(SpecHandler& h) : handler(h) {} FMT_CONSTEXPR void operator()() { handler.on_dynamic_precision(auto_id()); } FMT_CONSTEXPR void operator()(int id) { handler.on_dynamic_precision(id); } FMT_CONSTEXPR void operator()(basic_string_view<Char> id) { handler.on_dynamic_precision(id); } FMT_CONSTEXPR void on_error(const char* message) { handler.on_error(message); } SpecHandler& handler; }; template <typename Char> constexpr bool is_ascii_letter(Char c) { return (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z'); } // Converts a character to ASCII. Returns a number > 127 on conversion failure. template <typename Char, FMT_ENABLE_IF(std::is_integral<Char>::value)> constexpr Char to_ascii(Char value) { return value; } template <typename Char, FMT_ENABLE_IF(std::is_enum<Char>::value)> constexpr typename std::underlying_type<Char>::type to_ascii(Char value) { return value; } // Parses fill and alignment. template <typename Char, typename Handler> FMT_CONSTEXPR const Char* parse_align(const Char* begin, const Char* end, Handler&& handler) { FMT_ASSERT(begin != end, ""); auto align = align::none; auto p = begin + code_point_length(begin); if (p >= end) p = begin; for (;;) { switch (to_ascii(*p)) { case '<': align = align::left; break; case '>': align = align::right; break; #if FMT_DEPRECATED_NUMERIC_ALIGN case '=': align = align::numeric; break; #endif case '^': align = align::center; break; } if (align != align::none) { if (p != begin) { auto c = *begin; if (c == '{') return handler.on_error("invalid fill character '{'"), begin; handler.on_fill(basic_string_view<Char>(begin, to_unsigned(p - begin))); begin = p + 1; } else ++begin; handler.on_align(align); break; } else if (p == begin) { break; } p = begin; } return begin; } template <typename Char, typename Handler> FMT_CONSTEXPR const Char* parse_width(const Char* begin, const Char* end, Handler&& handler) { FMT_ASSERT(begin != end, ""); if ('0' <= *begin && *begin <= '9') { handler.on_width(parse_nonnegative_int(begin, end, handler)); } else if (*begin == '{') { ++begin; if (begin != end) begin = parse_arg_id(begin, end, width_adapter<Handler, Char>(handler)); if (begin == end || *begin != '}') return handler.on_error("invalid format string"), begin; ++begin; } return begin; } template <typename Char, typename Handler> FMT_CONSTEXPR const Char* parse_precision(const Char* begin, const Char* end, Handler&& handler) { ++begin; auto c = begin != end ? *begin : Char(); if ('0' <= c && c <= '9') { handler.on_precision(parse_nonnegative_int(begin, end, handler)); } else if (c == '{') { ++begin; if (begin != end) { begin = parse_arg_id(begin, end, precision_adapter<Handler, Char>(handler)); } if (begin == end || *begin++ != '}') return handler.on_error("invalid format string"), begin; } else { return handler.on_error("missing precision specifier"), begin; } handler.end_precision(); return begin; } // Parses standard format specifiers and sends notifications about parsed // components to handler. template <typename Char, typename SpecHandler> FMT_CONSTEXPR_DECL FMT_INLINE const Char* parse_format_specs( const Char* begin, const Char* end, SpecHandler&& handler) { if (begin + 1 < end && begin[1] == '}' && is_ascii_letter(*begin) && *begin != 'L') { handler.on_type(*begin++); return begin; } if (begin == end) return begin; begin = parse_align(begin, end, handler); if (begin == end) return begin; // Parse sign. switch (to_ascii(*begin)) { case '+': handler.on_plus(); ++begin; break; case '-': handler.on_minus(); ++begin; break; case ' ': handler.on_space(); ++begin; break; } if (begin == end) return begin; if (*begin == '#') { handler.on_hash(); if (++begin == end) return begin; } // Parse zero flag. if (*begin == '0') { handler.on_zero(); if (++begin == end) return begin; } begin = parse_width(begin, end, handler); if (begin == end) return begin; // Parse precision. if (*begin == '.') { begin = parse_precision(begin, end, handler); if (begin == end) return begin; } if (*begin == 'L') { handler.on_localized(); ++begin; } // Parse type. if (begin != end && *begin != '}') handler.on_type(*begin++); return begin; } // Return the result via the out param to workaround gcc bug 77539. template <bool IS_CONSTEXPR, typename T, typename Ptr = const T*> FMT_CONSTEXPR bool find(Ptr first, Ptr last, T value, Ptr& out) { for (out = first; out != last; ++out) { if (*out == value) return true; } return false; } template <> inline bool find<false, char>(const char* first, const char* last, char value, const char*& out) { out = static_cast<const char*>( std::memchr(first, value, detail::to_unsigned(last - first))); return out != nullptr; } template <typename Handler, typename Char> struct id_adapter { Handler& handler; int arg_id; FMT_CONSTEXPR void operator()() { arg_id = handler.on_arg_id(); } FMT_CONSTEXPR void operator()(int id) { arg_id = handler.on_arg_id(id); } FMT_CONSTEXPR void operator()(basic_string_view<Char> id) { arg_id = handler.on_arg_id(id); } FMT_CONSTEXPR void on_error(const char* message) { handler.on_error(message); } }; template <typename Char, typename Handler> FMT_CONSTEXPR const Char* parse_replacement_field(const Char* begin, const Char* end, Handler&& handler) { ++begin; if (begin == end) return handler.on_error("invalid format string"), end; if (*begin == '}') { handler.on_replacement_field(handler.on_arg_id(), begin); } else if (*begin == '{') { handler.on_text(begin, begin + 1); } else { auto adapter = id_adapter<Handler, Char>{handler, 0}; begin = parse_arg_id(begin, end, adapter); Char c = begin != end ? *begin : Char(); if (c == '}') { handler.on_replacement_field(adapter.arg_id, begin); } else if (c == ':') { begin = handler.on_format_specs(adapter.arg_id, begin + 1, end); if (begin == end || *begin != '}') return handler.on_error("unknown format specifier"), end; } else { return handler.on_error("missing '}' in format string"), end; } } return begin + 1; } template <bool IS_CONSTEXPR, typename Char, typename Handler> FMT_CONSTEXPR_DECL FMT_INLINE void parse_format_string( basic_string_view<Char> format_str, Handler&& handler) { auto begin = format_str.data(); auto end = begin + format_str.size(); if (end - begin < 32) { // Use a simple loop instead of memchr for small strings. const Char* p = begin; while (p != end) { auto c = *p++; if (c == '{') { handler.on_text(begin, p - 1); begin = p = parse_replacement_field(p - 1, end, handler); } else if (c == '}') { if (p == end || *p != '}') return handler.on_error("unmatched '}' in format string"); handler.on_text(begin, p); begin = ++p; } } handler.on_text(begin, end); return; } struct writer { FMT_CONSTEXPR void operator()(const Char* pbegin, const Char* pend) { if (pbegin == pend) return; for (;;) { const Char* p = nullptr; if (!find<IS_CONSTEXPR>(pbegin, pend, '}', p)) return handler_.on_text(pbegin, pend); ++p; if (p == pend || *p != '}') return handler_.on_error("unmatched '}' in format string"); handler_.on_text(pbegin, p); pbegin = p + 1; } } Handler& handler_; } write{handler}; while (begin != end) { // Doing two passes with memchr (one for '{' and another for '}') is up to // 2.5x faster than the naive one-pass implementation on big format strings. const Char* p = begin; if (*begin != '{' && !find<IS_CONSTEXPR>(begin + 1, end, '{', p)) return write(begin, end); write(begin, p); begin = parse_replacement_field(p, end, handler); } } template <typename T, typename ParseContext> FMT_CONSTEXPR const typename ParseContext::char_type* parse_format_specs( ParseContext& ctx) { using char_type = typename ParseContext::char_type; using context = buffer_context<char_type>; using mapped_type = conditional_t< detail::mapped_type_constant<T, context>::value != type::custom_type, decltype(arg_mapper<context>().map(std::declval<const T&>())), T>; auto f = conditional_t<has_formatter<mapped_type, context>::value, formatter<mapped_type, char_type>, detail::fallback_formatter<T, char_type>>(); return f.parse(ctx); } template <typename OutputIt, typename Char, typename Context> struct format_handler : detail::error_handler { basic_format_parse_context<Char> parse_context; Context context; format_handler(OutputIt out, basic_string_view<Char> str, basic_format_args<Context> format_args, detail::locale_ref loc) : parse_context(str), context(out, format_args, loc) {} void on_text(const Char* begin, const Char* end) { auto text = basic_string_view<Char>(begin, to_unsigned(end - begin)); context.advance_to(write<Char>(context.out(), text)); } int on_arg_id() { return parse_context.next_arg_id(); } int on_arg_id(int id) { return parse_context.check_arg_id(id), id; } int on_arg_id(basic_string_view<Char> id) { int arg_id = context.arg_id(id); if (arg_id < 0) on_error("argument not found"); return arg_id; } FMT_INLINE void on_replacement_field(int id, const Char*) { auto arg = get_arg(context, id); context.advance_to(visit_format_arg( default_arg_formatter<OutputIt, Char>{context.out(), context.args(), context.locale()}, arg)); } const Char* on_format_specs(int id, const Char* begin, const Char* end) { auto arg = get_arg(context, id); if (arg.type() == type::custom_type) { advance_to(parse_context, begin); visit_format_arg(custom_formatter<Context>(parse_context, context), arg); return parse_context.begin(); } auto specs = basic_format_specs<Char>(); using parse_context_t = basic_format_parse_context<Char>; specs_checker<specs_handler<parse_context_t, Context>> handler( specs_handler<parse_context_t, Context>(specs, parse_context, context), arg.type()); begin = parse_format_specs(begin, end, handler); if (begin == end || *begin != '}') on_error("missing '}' in format string"); context.advance_to( visit_format_arg(arg_formatter<OutputIt, Char>(context, &specs), arg)); return begin; } }; // A parse context with extra argument id checks. It is only used at compile // time because adding checks at runtime would introduce substantial overhead // and would be redundant since argument ids are checked when arguments are // retrieved anyway. template <typename Char, typename ErrorHandler = error_handler> class compile_parse_context : public basic_format_parse_context<Char, ErrorHandler> { private: int num_args_; using base = basic_format_parse_context<Char, ErrorHandler>; public: explicit FMT_CONSTEXPR compile_parse_context( basic_string_view<Char> format_str, int num_args = max_value<int>(), ErrorHandler eh = {}) : base(format_str, eh), num_args_(num_args) {} FMT_CONSTEXPR int next_arg_id() { int id = base::next_arg_id(); if (id >= num_args_) this->on_error("argument not found"); return id; } FMT_CONSTEXPR void check_arg_id(int id) { base::check_arg_id(id); if (id >= num_args_) this->on_error("argument not found"); } using base::check_arg_id; }; template <typename Char, typename ErrorHandler, typename... Args> class format_string_checker { public: explicit FMT_CONSTEXPR format_string_checker( basic_string_view<Char> format_str, ErrorHandler eh) : context_(format_str, num_args, eh), parse_funcs_{&parse_format_specs<Args, parse_context_type>...} {} FMT_CONSTEXPR void on_text(const Char*, const Char*) {} FMT_CONSTEXPR int on_arg_id() { return context_.next_arg_id(); } FMT_CONSTEXPR int on_arg_id(int id) { return context_.check_arg_id(id), id; } FMT_CONSTEXPR int on_arg_id(basic_string_view<Char>) { on_error("compile-time checks don't support named arguments"); return 0; } FMT_CONSTEXPR void on_replacement_field(int, const Char*) {} FMT_CONSTEXPR const Char* on_format_specs(int id, const Char* begin, const Char*) { advance_to(context_, begin); // id >= 0 check is a workaround for gcc 10 bug (#2065). return id >= 0 && id < num_args ? parse_funcs_[id](context_) : begin; } FMT_CONSTEXPR void on_error(const char* message) { context_.on_error(message); } private: using parse_context_type = compile_parse_context<Char, ErrorHandler>; enum { num_args = sizeof...(Args) }; // Format specifier parsing function. using parse_func = const Char* (*)(parse_context_type&); parse_context_type context_; parse_func parse_funcs_[num_args > 0 ? num_args : 1]; }; // Converts string literals to basic_string_view. template <typename Char, size_t N> FMT_CONSTEXPR basic_string_view<Char> compile_string_to_view( const Char (&s)[N]) { // Remove trailing null character if needed. Won't be present if this is used // with raw character array (i.e. not defined as a string). return {s, N - ((std::char_traits<Char>::to_int_type(s[N - 1]) == 0) ? 1 : 0)}; } // Converts string_view to basic_string_view. template <typename Char> FMT_CONSTEXPR basic_string_view<Char> compile_string_to_view( const std_string_view<Char>& s) { return {s.data(), s.size()}; } #define FMT_STRING_IMPL(s, base) \ [] { \ /* Use the hidden visibility as a workaround for a GCC bug (#1973). */ \ /* Use a macro-like name to avoid shadowing warnings. */ \ struct FMT_GCC_VISIBILITY_HIDDEN FMT_COMPILE_STRING : base { \ using char_type = fmt::remove_cvref_t<decltype(s[0])>; \ FMT_MAYBE_UNUSED FMT_CONSTEXPR \ operator fmt::basic_string_view<char_type>() const { \ return fmt::detail::compile_string_to_view<char_type>(s); \ } \ }; \ return FMT_COMPILE_STRING(); \ }() /** \rst Constructs a compile-time format string from a string literal *s*. **Example**:: // A compile-time error because 'd' is an invalid specifier for strings. std::string s = fmt::format(FMT_STRING("{:d}"), "foo"); \endrst */ #define FMT_STRING(s) FMT_STRING_IMPL(s, fmt::compile_string) template <typename... Args, typename S, enable_if_t<(is_compile_string<S>::value), int>> void check_format_string(S format_str) { FMT_CONSTEXPR_DECL auto s = to_string_view(format_str); using checker = format_string_checker<typename S::char_type, error_handler, remove_cvref_t<Args>...>; FMT_CONSTEXPR_DECL bool invalid_format = (parse_format_string<true>(s, checker(s, {})), true); (void)invalid_format; } template <template <typename> class Handler, typename Context> FMT_CONSTEXPR void handle_dynamic_spec(int& value, arg_ref<typename Context::char_type> ref, Context& ctx) { switch (ref.kind) { case arg_id_kind::none: break; case arg_id_kind::index: value = detail::get_dynamic_spec<Handler>(ctx.arg(ref.val.index), ctx.error_handler()); break; case arg_id_kind::name: value = detail::get_dynamic_spec<Handler>(ctx.arg(ref.val.name), ctx.error_handler()); break; } } using format_func = void (*)(detail::buffer<char>&, int, string_view); FMT_API void format_error_code(buffer<char>& out, int error_code, string_view message) FMT_NOEXCEPT; FMT_API void report_error(format_func func, int error_code, string_view message) FMT_NOEXCEPT; } // namespace detail template <typename OutputIt, typename Char> using arg_formatter FMT_DEPRECATED_ALIAS = detail::arg_formatter<OutputIt, Char>; /** An error returned by an operating system or a language runtime, for example a file opening error. */ FMT_CLASS_API class FMT_API system_error : public std::runtime_error { private: void init(int err_code, string_view format_str, format_args args); protected: int error_code_; system_error() : std::runtime_error(""), error_code_(0) {} public: /** \rst Constructs a :class:`fmt::system_error` object with a description formatted with `fmt::format_system_error`. *message* and additional arguments passed into the constructor are formatted similarly to `fmt::format`. **Example**:: // This throws a system_error with the description // cannot open file 'madeup': No such file or directory // or similar (system message may vary). const char *filename = "madeup"; std::FILE *file = std::fopen(filename, "r"); if (!file) throw fmt::system_error(errno, "cannot open file '{}'", filename); \endrst */ template <typename... Args> system_error(int error_code, string_view message, const Args&... args) : std::runtime_error("") { init(error_code, message, make_format_args(args...)); } system_error(const system_error&) = default; system_error& operator=(const system_error&) = default; system_error(system_error&&) = default; system_error& operator=(system_error&&) = default; ~system_error() FMT_NOEXCEPT FMT_OVERRIDE; int error_code() const { return error_code_; } }; /** \rst Formats an error returned by an operating system or a language runtime, for example a file opening error, and writes it to *out* in the following form: .. parsed-literal:: *<message>*: *<system-message>* where *<message>* is the passed message and *<system-message>* is the system message corresponding to the error code. *error_code* is a system error code as given by ``errno``. If *error_code* is not a valid error code such as -1, the system message may look like "Unknown error -1" and is platform-dependent. \endrst */ FMT_API void format_system_error(detail::buffer<char>& out, int error_code, string_view message) FMT_NOEXCEPT; // Reports a system error without throwing an exception. // Can be used to report errors from destructors. FMT_API void report_system_error(int error_code, string_view message) FMT_NOEXCEPT; /** Fast integer formatter. */ class format_int { private: // Buffer should be large enough to hold all digits (digits10 + 1), // a sign and a null character. enum { buffer_size = std::numeric_limits<unsigned long long>::digits10 + 3 }; mutable char buffer_[buffer_size]; char* str_; template <typename UInt> char* format_unsigned(UInt value) { auto n = static_cast<detail::uint32_or_64_or_128_t<UInt>>(value); return detail::format_decimal(buffer_, n, buffer_size - 1).begin; } template <typename Int> char* format_signed(Int value) { auto abs_value = static_cast<detail::uint32_or_64_or_128_t<Int>>(value); bool negative = value < 0; if (negative) abs_value = 0 - abs_value; auto begin = format_unsigned(abs_value); if (negative) *--begin = '-'; return begin; } public: explicit format_int(int value) : str_(format_signed(value)) {} explicit format_int(long value) : str_(format_signed(value)) {} explicit format_int(long long value) : str_(format_signed(value)) {} explicit format_int(unsigned value) : str_(format_unsigned(value)) {} explicit format_int(unsigned long value) : str_(format_unsigned(value)) {} explicit format_int(unsigned long long value) : str_(format_unsigned(value)) {} /** Returns the number of characters written to the output buffer. */ size_t size() const { return detail::to_unsigned(buffer_ - str_ + buffer_size - 1); } /** Returns a pointer to the output buffer content. No terminating null character is appended. */ const char* data() const { return str_; } /** Returns a pointer to the output buffer content with terminating null character appended. */ const char* c_str() const { buffer_[buffer_size - 1] = '\0'; return str_; } /** \rst Returns the content of the output buffer as an ``std::string``. \endrst */ std::string str() const { return std::string(str_, size()); } }; // A formatter specialization for the core types corresponding to detail::type // constants. template <typename T, typename Char> struct formatter<T, Char, enable_if_t<detail::type_constant<T, Char>::value != detail::type::custom_type>> { FMT_CONSTEXPR formatter() = default; // Parses format specifiers stopping either at the end of the range or at the // terminating '}'. template <typename ParseContext> FMT_CONSTEXPR auto parse(ParseContext& ctx) -> decltype(ctx.begin()) { using handler_type = detail::dynamic_specs_handler<ParseContext>; auto type = detail::type_constant<T, Char>::value; detail::specs_checker<handler_type> handler(handler_type(specs_, ctx), type); auto it = parse_format_specs(ctx.begin(), ctx.end(), handler); auto eh = ctx.error_handler(); switch (type) { case detail::type::none_type: FMT_ASSERT(false, "invalid argument type"); break; case detail::type::int_type: case detail::type::uint_type: case detail::type::long_long_type: case detail::type::ulong_long_type: case detail::type::int128_type: case detail::type::uint128_type: handle_int_type_spec(specs_.type, detail::int_type_checker<decltype(eh)>(eh)); break; case detail::type::bool_type: handle_bool_type_spec( &specs_, detail::bool_type_checker<decltype(eh)>(specs_.type, eh)); break; case detail::type::char_type: handle_char_specs( &specs_, detail::char_specs_checker<decltype(eh)>(specs_.type, eh)); break; case detail::type::float_type: if (detail::const_check(FMT_USE_FLOAT)) detail::parse_float_type_spec(specs_, eh); else FMT_ASSERT(false, "float support disabled"); break; case detail::type::double_type: if (detail::const_check(FMT_USE_DOUBLE)) detail::parse_float_type_spec(specs_, eh); else FMT_ASSERT(false, "double support disabled"); break; case detail::type::long_double_type: if (detail::const_check(FMT_USE_LONG_DOUBLE)) detail::parse_float_type_spec(specs_, eh); else FMT_ASSERT(false, "long double support disabled"); break; case detail::type::cstring_type: detail::handle_cstring_type_spec( specs_.type, detail::cstring_type_checker<decltype(eh)>(eh)); break; case detail::type::string_type: detail::check_string_type_spec(specs_.type, eh); break; case detail::type::pointer_type: detail::check_pointer_type_spec(specs_.type, eh); break; case detail::type::custom_type: // Custom format specifiers should be checked in parse functions of // formatter specializations. break; } return it; } template <typename FormatContext> FMT_CONSTEXPR auto format(const T& val, FormatContext& ctx) const -> decltype(ctx.out()) { auto specs = specs_; detail::handle_dynamic_spec<detail::width_checker>(specs.width, specs.width_ref, ctx); detail::handle_dynamic_spec<detail::precision_checker>( specs.precision, specs.precision_ref, ctx); using af = detail::arg_formatter<typename FormatContext::iterator, typename FormatContext::char_type>; return visit_format_arg(af(ctx, &specs), detail::make_arg<FormatContext>(val)); } private: detail::dynamic_format_specs<Char> specs_; }; #define FMT_FORMAT_AS(Type, Base) \ template <typename Char> \ struct formatter<Type, Char> : formatter<Base, Char> { \ template <typename FormatContext> \ auto format(Type const& val, FormatContext& ctx) const \ -> decltype(ctx.out()) { \ return formatter<Base, Char>::format(static_cast<Base>(val), ctx); \ } \ } FMT_FORMAT_AS(signed char, int); FMT_FORMAT_AS(unsigned char, unsigned); FMT_FORMAT_AS(short, int); FMT_FORMAT_AS(unsigned short, unsigned); FMT_FORMAT_AS(long, long long); FMT_FORMAT_AS(unsigned long, unsigned long long); FMT_FORMAT_AS(Char*, const Char*); FMT_FORMAT_AS(std::basic_string<Char>, basic_string_view<Char>); FMT_FORMAT_AS(std::nullptr_t, const void*); FMT_FORMAT_AS(detail::std_string_view<Char>, basic_string_view<Char>); #ifdef __cpp_lib_byte FMT_FORMAT_AS(std::byte, unsigned); #endif template <typename Char> struct formatter<void*, Char> : formatter<const void*, Char> { template <typename FormatContext> auto format(void* val, FormatContext& ctx) const -> decltype(ctx.out()) { return formatter<const void*, Char>::format(val, ctx); } }; template <typename Char, size_t N> struct formatter<Char[N], Char> : formatter<basic_string_view<Char>, Char> { template <typename FormatContext> FMT_CONSTEXPR auto format(const Char* val, FormatContext& ctx) const -> decltype(ctx.out()) { return formatter<basic_string_view<Char>, Char>::format(val, ctx); } }; // A formatter for types known only at run time such as variant alternatives. // // Usage: // using variant = std::variant<int, std::string>; // template <> // struct formatter<variant>: dynamic_formatter<> { // auto format(const variant& v, format_context& ctx) { // return visit([&](const auto& val) { // return dynamic_formatter<>::format(val, ctx); // }, v); // } // }; template <typename Char = char> class dynamic_formatter { private: struct null_handler : detail::error_handler { void on_align(align_t) {} void on_plus() {} void on_minus() {} void on_space() {} void on_hash() {} }; public: template <typename ParseContext> FMT_CONSTEXPR auto parse(ParseContext& ctx) -> decltype(ctx.begin()) { format_str_ = ctx.begin(); // Checks are deferred to formatting time when the argument type is known. detail::dynamic_specs_handler<ParseContext> handler(specs_, ctx); return parse_format_specs(ctx.begin(), ctx.end(), handler); } template <typename T, typename FormatContext> auto format(const T& val, FormatContext& ctx) -> decltype(ctx.out()) { handle_specs(ctx); detail::specs_checker<null_handler> checker( null_handler(), detail::mapped_type_constant<T, FormatContext>::value); checker.on_align(specs_.align); switch (specs_.sign) { case sign::none: break; case sign::plus: checker.on_plus(); break; case sign::minus: checker.on_minus(); break; case sign::space: checker.on_space(); break; } if (specs_.alt) checker.on_hash(); if (specs_.precision >= 0) checker.end_precision(); using af = detail::arg_formatter<typename FormatContext::iterator, typename FormatContext::char_type>; visit_format_arg(af(ctx, &specs_), detail::make_arg<FormatContext>(val)); return ctx.out(); } private: template <typename Context> void handle_specs(Context& ctx) { detail::handle_dynamic_spec<detail::width_checker>(specs_.width, specs_.width_ref, ctx); detail::handle_dynamic_spec<detail::precision_checker>( specs_.precision, specs_.precision_ref, ctx); } detail::dynamic_format_specs<Char> specs_; const Char* format_str_; }; template <typename Char, typename ErrorHandler> FMT_CONSTEXPR void advance_to( basic_format_parse_context<Char, ErrorHandler>& ctx, const Char* p) { ctx.advance_to(ctx.begin() + (p - &*ctx.begin())); } /** \rst Converts ``p`` to ``const void*`` for pointer formatting. **Example**:: auto s = fmt::format("{}", fmt::ptr(p)); \endrst */ template <typename T> const void* ptr(T p) { static_assert(std::is_pointer<T>::value, ""); return detail::bit_cast<const void*>(p); } template <typename T> const void* ptr(const std::unique_ptr<T>& p) { return p.get(); } template <typename T> const void* ptr(const std::shared_ptr<T>& p) { return p.get(); } class bytes { private: string_view data_; friend struct formatter<bytes>; public: explicit bytes(string_view data) : data_(data) {} }; template <> struct formatter<bytes> { private: detail::dynamic_format_specs<char> specs_; public: template <typename ParseContext> FMT_CONSTEXPR auto parse(ParseContext& ctx) -> decltype(ctx.begin()) { using handler_type = detail::dynamic_specs_handler<ParseContext>; detail::specs_checker<handler_type> handler(handler_type(specs_, ctx), detail::type::string_type); auto it = parse_format_specs(ctx.begin(), ctx.end(), handler); detail::check_string_type_spec(specs_.type, ctx.error_handler()); return it; } template <typename FormatContext> auto format(bytes b, FormatContext& ctx) -> decltype(ctx.out()) { detail::handle_dynamic_spec<detail::width_checker>(specs_.width, specs_.width_ref, ctx); detail::handle_dynamic_spec<detail::precision_checker>( specs_.precision, specs_.precision_ref, ctx); return detail::write_bytes(ctx.out(), b.data_, specs_); } }; template <typename It, typename Sentinel, typename Char> struct arg_join : detail::view { It begin; Sentinel end; basic_string_view<Char> sep; arg_join(It b, Sentinel e, basic_string_view<Char> s) : begin(b), end(e), sep(s) {} }; template <typename It, typename Sentinel, typename Char> struct formatter<arg_join<It, Sentinel, Char>, Char> { private: using value_type = typename std::iterator_traits<It>::value_type; using formatter_type = conditional_t<has_formatter<value_type, format_context>::value, formatter<value_type, Char>, detail::fallback_formatter<value_type, Char>>; formatter_type value_formatter_; public: template <typename ParseContext> FMT_CONSTEXPR auto parse(ParseContext& ctx) -> decltype(ctx.begin()) { return value_formatter_.parse(ctx); } template <typename FormatContext> auto format(const arg_join<It, Sentinel, Char>& value, FormatContext& ctx) -> decltype(ctx.out()) { auto it = value.begin; auto out = ctx.out(); if (it != value.end) { out = value_formatter_.format(*it++, ctx); while (it != value.end) { out = detail::copy_str<Char>(value.sep.begin(), value.sep.end(), out); ctx.advance_to(out); out = value_formatter_.format(*it++, ctx); } } return out; } }; /** Returns an object that formats the iterator range `[begin, end)` with elements separated by `sep`. */ template <typename It, typename Sentinel> arg_join<It, Sentinel, char> join(It begin, Sentinel end, string_view sep) { return {begin, end, sep}; } template <typename It, typename Sentinel> arg_join<It, Sentinel, wchar_t> join(It begin, Sentinel end, wstring_view sep) { return {begin, end, sep}; } /** \rst Returns an object that formats `range` with elements separated by `sep`. **Example**:: std::vector<int> v = {1, 2, 3}; fmt::print("{}", fmt::join(v, ", ")); // Output: "1, 2, 3" ``fmt::join`` applies passed format specifiers to the range elements:: fmt::print("{:02}", fmt::join(v, ", ")); // Output: "01, 02, 03" \endrst */ template <typename Range> arg_join<detail::iterator_t<Range>, detail::sentinel_t<Range>, char> join( Range&& range, string_view sep) { return join(std::begin(range), std::end(range), sep); } template <typename Range> arg_join<detail::iterator_t<Range>, detail::sentinel_t<Range>, wchar_t> join( Range&& range, wstring_view sep) { return join(std::begin(range), std::end(range), sep); } /** \rst Converts *value* to ``std::string`` using the default format for type *T*. **Example**:: #include <fmt/format.h> std::string answer = fmt::to_string(42); \endrst */ template <typename T, FMT_ENABLE_IF(!std::is_integral<T>::value)> inline std::string to_string(const T& value) { std::string result; detail::write<char>(std::back_inserter(result), value); return result; } template <typename T, FMT_ENABLE_IF(std::is_integral<T>::value)> inline std::string to_string(T value) { // The buffer should be large enough to store the number including the sign or // "false" for bool. constexpr int max_size = detail::digits10<T>() + 2; char buffer[max_size > 5 ? static_cast<unsigned>(max_size) : 5]; char* begin = buffer; return std::string(begin, detail::write<char>(begin, value)); } /** Converts *value* to ``std::wstring`` using the default format for type *T*. */ template <typename T> inline std::wstring to_wstring(const T& value) { return format(FMT_STRING(L"{}"), value); } template <typename Char, size_t SIZE> std::basic_string<Char> to_string(const basic_memory_buffer<Char, SIZE>& buf) { auto size = buf.size(); detail::assume(size < std::basic_string<Char>().max_size()); return std::basic_string<Char>(buf.data(), size); } template <typename Char> void detail::vformat_to( detail::buffer<Char>& buf, basic_string_view<Char> format_str, basic_format_args<buffer_context<type_identity_t<Char>>> args, detail::locale_ref loc) { using iterator = typename buffer_context<Char>::iterator; auto out = buffer_appender<Char>(buf); if (format_str.size() == 2 && equal2(format_str.data(), "{}")) { auto arg = args.get(0); if (!arg) error_handler().on_error("argument not found"); visit_format_arg(default_arg_formatter<iterator, Char>{out, args, loc}, arg); return; } format_handler<iterator, Char, buffer_context<Char>> h(out, format_str, args, loc); parse_format_string<false>(format_str, h); } #ifndef FMT_HEADER_ONLY extern template void detail::vformat_to(detail::buffer<char>&, string_view, basic_format_args<format_context>, detail::locale_ref); namespace detail { extern template FMT_API std::string grouping_impl<char>(locale_ref loc); extern template FMT_API std::string grouping_impl<wchar_t>(locale_ref loc); extern template FMT_API char thousands_sep_impl<char>(locale_ref loc); extern template FMT_API wchar_t thousands_sep_impl<wchar_t>(locale_ref loc); extern template FMT_API char decimal_point_impl(locale_ref loc); extern template FMT_API wchar_t decimal_point_impl(locale_ref loc); extern template int format_float<double>(double value, int precision, float_specs specs, buffer<char>& buf); extern template int format_float<long double>(long double value, int precision, float_specs specs, buffer<char>& buf); int snprintf_float(float value, int precision, float_specs specs, buffer<char>& buf) = delete; extern template int snprintf_float<double>(double value, int precision, float_specs specs, buffer<char>& buf); extern template int snprintf_float<long double>(long double value, int precision, float_specs specs, buffer<char>& buf); } // namespace detail #endif template <typename S, typename Char = char_t<S>, FMT_ENABLE_IF(detail::is_string<S>::value)> inline void vformat_to( detail::buffer<Char>& buf, const S& format_str, basic_format_args<FMT_BUFFER_CONTEXT(type_identity_t<Char>)> args) { return detail::vformat_to(buf, to_string_view(format_str), args); } template <typename S, typename... Args, size_t SIZE = inline_buffer_size, typename Char = enable_if_t<detail::is_string<S>::value, char_t<S>>> inline typename buffer_context<Char>::iterator format_to( basic_memory_buffer<Char, SIZE>& buf, const S& format_str, Args&&... args) { const auto& vargs = fmt::make_args_checked<Args...>(format_str, args...); detail::vformat_to(buf, to_string_view(format_str), vargs); return detail::buffer_appender<Char>(buf); } template <typename OutputIt, typename Char = char> using format_context_t = basic_format_context<OutputIt, Char>; template <typename OutputIt, typename Char = char> using format_args_t = basic_format_args<format_context_t<OutputIt, Char>>; template <typename OutputIt, typename Char = typename OutputIt::value_type> using format_to_n_context FMT_DEPRECATED_ALIAS = buffer_context<Char>; template <typename OutputIt, typename Char = typename OutputIt::value_type> using format_to_n_args FMT_DEPRECATED_ALIAS = basic_format_args<buffer_context<Char>>; template <typename OutputIt, typename Char, typename... Args> FMT_DEPRECATED format_arg_store<buffer_context<Char>, Args...> make_format_to_n_args(const Args&... args) { return format_arg_store<buffer_context<Char>, Args...>(args...); } #if FMT_COMPILE_TIME_CHECKS template <typename... Args> struct format_string { string_view str; template <size_t N> consteval format_string(const char (&s)[N]) : str(s) { if constexpr (detail::count_named_args<Args...>() == 0) { using checker = detail::format_string_checker<char, detail::error_handler, remove_cvref_t<Args>...>; detail::parse_format_string<true>(string_view(s, N), checker(s, {})); } } template <typename T, FMT_ENABLE_IF(std::is_constructible_v<string_view, const T&>)> format_string(const T& s) : str(s) {} }; template <typename... Args> FMT_INLINE std::string format( format_string<std::type_identity_t<Args>...> format_str, Args&&... args) { return detail::vformat(format_str.str, make_format_args(args...)); } #endif template <typename Char, enable_if_t<(!std::is_same<Char, char>::value), int>> std::basic_string<Char> detail::vformat( basic_string_view<Char> format_str, basic_format_args<buffer_context<type_identity_t<Char>>> args) { basic_memory_buffer<Char> buffer; detail::vformat_to(buffer, format_str, args); return to_string(buffer); } template <typename Char, FMT_ENABLE_IF(std::is_same<Char, wchar_t>::value)> void vprint(std::FILE* f, basic_string_view<Char> format_str, wformat_args args) { wmemory_buffer buffer; detail::vformat_to(buffer, format_str, args); buffer.push_back(L'\0'); if (std::fputws(buffer.data(), f) == -1) FMT_THROW(system_error(errno, "cannot write to file")); } template <typename Char, FMT_ENABLE_IF(std::is_same<Char, wchar_t>::value)> void vprint(basic_string_view<Char> format_str, wformat_args args) { vprint(stdout, format_str, args); } #if FMT_USE_USER_DEFINED_LITERALS namespace detail { # if FMT_USE_UDL_TEMPLATE template <typename Char, Char... CHARS> class udl_formatter { public: template <typename... Args> std::basic_string<Char> operator()(Args&&... args) const { static FMT_CONSTEXPR_DECL Char s[] = {CHARS..., '\0'}; return format(FMT_STRING(s), std::forward<Args>(args)...); } }; # else template <typename Char> struct udl_formatter { basic_string_view<Char> str; template <typename... Args> std::basic_string<Char> operator()(Args&&... args) const { return format(str, std::forward<Args>(args)...); } }; # endif // FMT_USE_UDL_TEMPLATE template <typename Char> struct udl_arg { const Char* str; template <typename T> named_arg<Char, T> operator=(T&& value) const { return {str, std::forward<T>(value)}; } }; } // namespace detail inline namespace literals { # if FMT_USE_UDL_TEMPLATE # pragma GCC diagnostic push # pragma GCC diagnostic ignored "-Wpedantic" # if FMT_CLANG_VERSION # pragma GCC diagnostic ignored "-Wgnu-string-literal-operator-template" # endif template <typename Char, Char... CHARS> FMT_CONSTEXPR detail::udl_formatter<Char, CHARS...> operator""_format() { return {}; } # pragma GCC diagnostic pop # else /** \rst User-defined literal equivalent of :func:`fmt::format`. **Example**:: using namespace fmt::literals; std::string message = "The answer is {}"_format(42); \endrst */ FMT_CONSTEXPR inline detail::udl_formatter<char> operator"" _format( const char* s, size_t n) { return {{s, n}}; } FMT_CONSTEXPR inline detail::udl_formatter<wchar_t> operator"" _format( const wchar_t* s, size_t n) { return {{s, n}}; } # endif // FMT_USE_UDL_TEMPLATE /** \rst User-defined literal equivalent of :func:`fmt::arg`. **Example**:: using namespace fmt::literals; fmt::print("Elapsed time: {s:.2f} seconds", "s"_a=1.23); \endrst */ FMT_CONSTEXPR inline detail::udl_arg<char> operator"" _a(const char* s, size_t) { return {s}; } FMT_CONSTEXPR inline detail::udl_arg<wchar_t> operator"" _a(const wchar_t* s, size_t) { return {s}; } } // namespace literals #endif // FMT_USE_USER_DEFINED_LITERALS FMT_END_NAMESPACE #ifdef FMT_HEADER_ONLY # define FMT_FUNC inline // Formatting library for C++ - implementation // // Copyright (c) 2012 - 2016, Victor Zverovich // All rights reserved. // // For the license information refer to format.h. #ifndef FMT_FORMAT_INL_H_ #define FMT_FORMAT_INL_H_ #include <algorithm> #include <cctype> #include <climits> #include <cmath> #include <cstdarg> #include <cstring> // std::memmove #include <cwchar> #include <exception> #ifndef FMT_STATIC_THOUSANDS_SEPARATOR # include <locale> #endif #ifdef _WIN32 # include <io.h> // _isatty #endif // Dummy implementations of strerror_r and strerror_s called if corresponding // system functions are not available. inline fmt::detail::null<> strerror_r(int, char*, ...) { return {}; } inline fmt::detail::null<> strerror_s(char*, size_t, ...) { return {}; } FMT_BEGIN_NAMESPACE namespace detail { FMT_FUNC void assert_fail(const char* file, int line, const char* message) { // Use unchecked std::fprintf to avoid triggering another assertion when // writing to stderr fails std::fprintf(stderr, "%s:%d: assertion failed: %s", file, line, message); // Chosen instead of std::abort to satisfy Clang in CUDA mode during device // code pass. std::terminate(); } #ifndef _MSC_VER # define FMT_SNPRINTF snprintf #else // _MSC_VER inline int fmt_snprintf(char* buffer, size_t size, const char* format, ...) { va_list args; va_start(args, format); int result = vsnprintf_s(buffer, size, _TRUNCATE, format, args); va_end(args); return result; } # define FMT_SNPRINTF fmt_snprintf #endif // _MSC_VER // A portable thread-safe version of strerror. // Sets buffer to point to a string describing the error code. // This can be either a pointer to a string stored in buffer, // or a pointer to some static immutable string. // Returns one of the following values: // 0 - success // ERANGE - buffer is not large enough to store the error message // other - failure // Buffer should be at least of size 1. inline int safe_strerror(int error_code, char*& buffer, size_t buffer_size) FMT_NOEXCEPT { FMT_ASSERT(buffer != nullptr && buffer_size != 0, "invalid buffer"); class dispatcher { private: int error_code_; char*& buffer_; size_t buffer_size_; // A noop assignment operator to avoid bogus warnings. void operator=(const dispatcher&) {} // Handle the result of XSI-compliant version of strerror_r. int handle(int result) { // glibc versions before 2.13 return result in errno. return result == -1 ? errno : result; } // Handle the result of GNU-specific version of strerror_r. FMT_MAYBE_UNUSED int handle(char* message) { // If the buffer is full then the message is probably truncated. if (message == buffer_ && strlen(buffer_) == buffer_size_ - 1) return ERANGE; buffer_ = message; return 0; } // Handle the case when strerror_r is not available. FMT_MAYBE_UNUSED int handle(detail::null<>) { return fallback(strerror_s(buffer_, buffer_size_, error_code_)); } // Fallback to strerror_s when strerror_r is not available. FMT_MAYBE_UNUSED int fallback(int result) { // If the buffer is full then the message is probably truncated. return result == 0 && strlen(buffer_) == buffer_size_ - 1 ? ERANGE : result; } #if !FMT_MSC_VER // Fallback to strerror if strerror_r and strerror_s are not available. int fallback(detail::null<>) { errno = 0; buffer_ = strerror(error_code_); return errno; } #endif public: dispatcher(int err_code, char*& buf, size_t buf_size) : error_code_(err_code), buffer_(buf), buffer_size_(buf_size) {} int run() { return handle(strerror_r(error_code_, buffer_, buffer_size_)); } }; return dispatcher(error_code, buffer, buffer_size).run(); } FMT_FUNC void format_error_code(detail::buffer<char>& out, int error_code, string_view message) FMT_NOEXCEPT { // Report error code making sure that the output fits into // inline_buffer_size to avoid dynamic memory allocation and potential // bad_alloc. out.try_resize(0); static const char SEP[] = ": "; static const char ERROR_STR[] = "error "; // Subtract 2 to account for terminating null characters in SEP and ERROR_STR. size_t error_code_size = sizeof(SEP) + sizeof(ERROR_STR) - 2; auto abs_value = static_cast<uint32_or_64_or_128_t<int>>(error_code); if (detail::is_negative(error_code)) { abs_value = 0 - abs_value; ++error_code_size; } error_code_size += detail::to_unsigned(detail::count_digits(abs_value)); auto it = buffer_appender<char>(out); if (message.size() <= inline_buffer_size - error_code_size) format_to(it, FMT_STRING("{}{}"), message, SEP); format_to(it, FMT_STRING("{}{}"), ERROR_STR, error_code); FMT_ASSERT(out.size() <= inline_buffer_size, ""); } FMT_FUNC void report_error(format_func func, int error_code, string_view message) FMT_NOEXCEPT { memory_buffer full_message; func(full_message, error_code, message); // Don't use fwrite_fully because the latter may throw. (void)std::fwrite(full_message.data(), full_message.size(), 1, stderr); std::fputc('\n', stderr); } // A wrapper around fwrite that throws on error. inline void fwrite_fully(const void* ptr, size_t size, size_t count, FILE* stream) { size_t written = std::fwrite(ptr, size, count, stream); if (written < count) FMT_THROW(system_error(errno, "cannot write to file")); } #ifndef FMT_STATIC_THOUSANDS_SEPARATOR template <typename Locale> locale_ref::locale_ref(const Locale& loc) : locale_(&loc) { static_assert(std::is_same<Locale, std::locale>::value, ""); } template <typename Locale> Locale locale_ref::get() const { static_assert(std::is_same<Locale, std::locale>::value, ""); return locale_ ? *static_cast<const std::locale*>(locale_) : std::locale(); } template <typename Char> FMT_FUNC std::string grouping_impl(locale_ref loc) { return std::use_facet<std::numpunct<Char>>(loc.get<std::locale>()).grouping(); } template <typename Char> FMT_FUNC Char thousands_sep_impl(locale_ref loc) { return std::use_facet<std::numpunct<Char>>(loc.get<std::locale>()) .thousands_sep(); } template <typename Char> FMT_FUNC Char decimal_point_impl(locale_ref loc) { return std::use_facet<std::numpunct<Char>>(loc.get<std::locale>()) .decimal_point(); } #else template <typename Char> FMT_FUNC std::string grouping_impl(locale_ref) { return "\03"; } template <typename Char> FMT_FUNC Char thousands_sep_impl(locale_ref) { return FMT_STATIC_THOUSANDS_SEPARATOR; } template <typename Char> FMT_FUNC Char decimal_point_impl(locale_ref) { return '.'; } #endif } // namespace detail FMT_API FMT_FUNC format_error::~format_error() FMT_NOEXCEPT = default; FMT_API FMT_FUNC system_error::~system_error() FMT_NOEXCEPT = default; FMT_FUNC void system_error::init(int err_code, string_view format_str, format_args args) { error_code_ = err_code; memory_buffer buffer; format_system_error(buffer, err_code, vformat(format_str, args)); std::runtime_error& base = *this; base = std::runtime_error(to_string(buffer)); } namespace detail { template <> FMT_FUNC int count_digits<4>(detail::fallback_uintptr n) { // fallback_uintptr is always stored in little endian. int i = static_cast<int>(sizeof(void*)) - 1; while (i > 0 && n.value[i] == 0) --i; auto char_digits = std::numeric_limits<unsigned char>::digits / 4; return i >= 0 ? i * char_digits + count_digits<4, unsigned>(n.value[i]) : 1; } template <typename T> const typename basic_data<T>::digit_pair basic_data<T>::digits[] = { {'0', '0'}, {'0', '1'}, {'0', '2'}, {'0', '3'}, {'0', '4'}, {'0', '5'}, {'0', '6'}, {'0', '7'}, {'0', '8'}, {'0', '9'}, {'1', '0'}, {'1', '1'}, {'1', '2'}, {'1', '3'}, {'1', '4'}, {'1', '5'}, {'1', '6'}, {'1', '7'}, {'1', '8'}, {'1', '9'}, {'2', '0'}, {'2', '1'}, {'2', '2'}, {'2', '3'}, {'2', '4'}, {'2', '5'}, {'2', '6'}, {'2', '7'}, {'2', '8'}, {'2', '9'}, {'3', '0'}, {'3', '1'}, {'3', '2'}, {'3', '3'}, {'3', '4'}, {'3', '5'}, {'3', '6'}, {'3', '7'}, {'3', '8'}, {'3', '9'}, {'4', '0'}, {'4', '1'}, {'4', '2'}, {'4', '3'}, {'4', '4'}, {'4', '5'}, {'4', '6'}, {'4', '7'}, {'4', '8'}, {'4', '9'}, {'5', '0'}, {'5', '1'}, {'5', '2'}, {'5', '3'}, {'5', '4'}, {'5', '5'}, {'5', '6'}, {'5', '7'}, {'5', '8'}, {'5', '9'}, {'6', '0'}, {'6', '1'}, {'6', '2'}, {'6', '3'}, {'6', '4'}, {'6', '5'}, {'6', '6'}, {'6', '7'}, {'6', '8'}, {'6', '9'}, {'7', '0'}, {'7', '1'}, {'7', '2'}, {'7', '3'}, {'7', '4'}, {'7', '5'}, {'7', '6'}, {'7', '7'}, {'7', '8'}, {'7', '9'}, {'8', '0'}, {'8', '1'}, {'8', '2'}, {'8', '3'}, {'8', '4'}, {'8', '5'}, {'8', '6'}, {'8', '7'}, {'8', '8'}, {'8', '9'}, {'9', '0'}, {'9', '1'}, {'9', '2'}, {'9', '3'}, {'9', '4'}, {'9', '5'}, {'9', '6'}, {'9', '7'}, {'9', '8'}, {'9', '9'}}; #define FMT_POWERS_OF_10(factor) \ factor * 10, (factor)*100, (factor)*1000, (factor)*10000, (factor)*100000, \ (factor)*1000000, (factor)*10000000, (factor)*100000000, \ (factor)*1000000000 template <typename T> const uint64_t basic_data<T>::powers_of_10_64[] = { 1, FMT_POWERS_OF_10(1), FMT_POWERS_OF_10(1000000000ULL), 10000000000000000000ULL}; template <typename T> const uint32_t basic_data<T>::zero_or_powers_of_10_32[] = {0, FMT_POWERS_OF_10(1)}; template <typename T> const uint64_t basic_data<T>::zero_or_powers_of_10_64[] = { 0, FMT_POWERS_OF_10(1), FMT_POWERS_OF_10(1000000000ULL), 10000000000000000000ULL}; template <typename T> const uint32_t basic_data<T>::zero_or_powers_of_10_32_new[] = { 0, 0, FMT_POWERS_OF_10(1)}; template <typename T> const uint64_t basic_data<T>::zero_or_powers_of_10_64_new[] = { 0, 0, FMT_POWERS_OF_10(1), FMT_POWERS_OF_10(1000000000ULL), 10000000000000000000ULL}; // Normalized 64-bit significands of pow(10, k), for k = -348, -340, ..., 340. // These are generated by support/compute-powers.py. template <typename T> const uint64_t basic_data<T>::grisu_pow10_significands[] = { 0xfa8fd5a0081c0288, 0xbaaee17fa23ebf76, 0x8b16fb203055ac76, 0xcf42894a5dce35ea, 0x9a6bb0aa55653b2d, 0xe61acf033d1a45df, 0xab70fe17c79ac6ca, 0xff77b1fcbebcdc4f, 0xbe5691ef416bd60c, 0x8dd01fad907ffc3c, 0xd3515c2831559a83, 0x9d71ac8fada6c9b5, 0xea9c227723ee8bcb, 0xaecc49914078536d, 0x823c12795db6ce57, 0xc21094364dfb5637, 0x9096ea6f3848984f, 0xd77485cb25823ac7, 0xa086cfcd97bf97f4, 0xef340a98172aace5, 0xb23867fb2a35b28e, 0x84c8d4dfd2c63f3b, 0xc5dd44271ad3cdba, 0x936b9fcebb25c996, 0xdbac6c247d62a584, 0xa3ab66580d5fdaf6, 0xf3e2f893dec3f126, 0xb5b5ada8aaff80b8, 0x87625f056c7c4a8b, 0xc9bcff6034c13053, 0x964e858c91ba2655, 0xdff9772470297ebd, 0xa6dfbd9fb8e5b88f, 0xf8a95fcf88747d94, 0xb94470938fa89bcf, 0x8a08f0f8bf0f156b, 0xcdb02555653131b6, 0x993fe2c6d07b7fac, 0xe45c10c42a2b3b06, 0xaa242499697392d3, 0xfd87b5f28300ca0e, 0xbce5086492111aeb, 0x8cbccc096f5088cc, 0xd1b71758e219652c, 0x9c40000000000000, 0xe8d4a51000000000, 0xad78ebc5ac620000, 0x813f3978f8940984, 0xc097ce7bc90715b3, 0x8f7e32ce7bea5c70, 0xd5d238a4abe98068, 0x9f4f2726179a2245, 0xed63a231d4c4fb27, 0xb0de65388cc8ada8, 0x83c7088e1aab65db, 0xc45d1df942711d9a, 0x924d692ca61be758, 0xda01ee641a708dea, 0xa26da3999aef774a, 0xf209787bb47d6b85, 0xb454e4a179dd1877, 0x865b86925b9bc5c2, 0xc83553c5c8965d3d, 0x952ab45cfa97a0b3, 0xde469fbd99a05fe3, 0xa59bc234db398c25, 0xf6c69a72a3989f5c, 0xb7dcbf5354e9bece, 0x88fcf317f22241e2, 0xcc20ce9bd35c78a5, 0x98165af37b2153df, 0xe2a0b5dc971f303a, 0xa8d9d1535ce3b396, 0xfb9b7cd9a4a7443c, 0xbb764c4ca7a44410, 0x8bab8eefb6409c1a, 0xd01fef10a657842c, 0x9b10a4e5e9913129, 0xe7109bfba19c0c9d, 0xac2820d9623bf429, 0x80444b5e7aa7cf85, 0xbf21e44003acdd2d, 0x8e679c2f5e44ff8f, 0xd433179d9c8cb841, 0x9e19db92b4e31ba9, 0xeb96bf6ebadf77d9, 0xaf87023b9bf0ee6b, }; // Binary exponents of pow(10, k), for k = -348, -340, ..., 340, corresponding // to significands above. template <typename T> const int16_t basic_data<T>::grisu_pow10_exponents[] = { -1220, -1193, -1166, -1140, -1113, -1087, -1060, -1034, -1007, -980, -954, -927, -901, -874, -847, -821, -794, -768, -741, -715, -688, -661, -635, -608, -582, -555, -529, -502, -475, -449, -422, -396, -369, -343, -316, -289, -263, -236, -210, -183, -157, -130, -103, -77, -50, -24, 3, 30, 56, 83, 109, 136, 162, 189, 216, 242, 269, 295, 322, 348, 375, 402, 428, 455, 481, 508, 534, 561, 588, 614, 641, 667, 694, 720, 747, 774, 800, 827, 853, 880, 907, 933, 960, 986, 1013, 1039, 1066}; template <typename T> const divtest_table_entry<uint32_t> basic_data<T>::divtest_table_for_pow5_32[] = {{0x00000001, 0xffffffff}, {0xcccccccd, 0x33333333}, {0xc28f5c29, 0x0a3d70a3}, {0x26e978d5, 0x020c49ba}, {0x3afb7e91, 0x0068db8b}, {0x0bcbe61d, 0x0014f8b5}, {0x68c26139, 0x000431bd}, {0xae8d46a5, 0x0000d6bf}, {0x22e90e21, 0x00002af3}, {0x3a2e9c6d, 0x00000897}, {0x3ed61f49, 0x000001b7}}; template <typename T> const divtest_table_entry<uint64_t> basic_data<T>::divtest_table_for_pow5_64[] = {{0x0000000000000001, 0xffffffffffffffff}, {0xcccccccccccccccd, 0x3333333333333333}, {0x8f5c28f5c28f5c29, 0x0a3d70a3d70a3d70}, {0x1cac083126e978d5, 0x020c49ba5e353f7c}, {0xd288ce703afb7e91, 0x0068db8bac710cb2}, {0x5d4e8fb00bcbe61d, 0x0014f8b588e368f0}, {0x790fb65668c26139, 0x000431bde82d7b63}, {0xe5032477ae8d46a5, 0x0000d6bf94d5e57a}, {0xc767074b22e90e21, 0x00002af31dc46118}, {0x8e47ce423a2e9c6d, 0x0000089705f4136b}, {0x4fa7f60d3ed61f49, 0x000001b7cdfd9d7b}, {0x0fee64690c913975, 0x00000057f5ff85e5}, {0x3662e0e1cf503eb1, 0x000000119799812d}, {0xa47a2cf9f6433fbd, 0x0000000384b84d09}, {0x54186f653140a659, 0x00000000b424dc35}, {0x7738164770402145, 0x0000000024075f3d}, {0xe4a4d1417cd9a041, 0x000000000734aca5}, {0xc75429d9e5c5200d, 0x000000000170ef54}, {0xc1773b91fac10669, 0x000000000049c977}, {0x26b172506559ce15, 0x00000000000ec1e4}, {0xd489e3a9addec2d1, 0x000000000002f394}, {0x90e860bb892c8d5d, 0x000000000000971d}, {0x502e79bf1b6f4f79, 0x0000000000001e39}, {0xdcd618596be30fe5, 0x000000000000060b}}; template <typename T> const uint64_t basic_data<T>::dragonbox_pow10_significands_64[] = { 0x81ceb32c4b43fcf5, 0xa2425ff75e14fc32, 0xcad2f7f5359a3b3f, 0xfd87b5f28300ca0e, 0x9e74d1b791e07e49, 0xc612062576589ddb, 0xf79687aed3eec552, 0x9abe14cd44753b53, 0xc16d9a0095928a28, 0xf1c90080baf72cb2, 0x971da05074da7bef, 0xbce5086492111aeb, 0xec1e4a7db69561a6, 0x9392ee8e921d5d08, 0xb877aa3236a4b44a, 0xe69594bec44de15c, 0x901d7cf73ab0acda, 0xb424dc35095cd810, 0xe12e13424bb40e14, 0x8cbccc096f5088cc, 0xafebff0bcb24aaff, 0xdbe6fecebdedd5bf, 0x89705f4136b4a598, 0xabcc77118461cefd, 0xd6bf94d5e57a42bd, 0x8637bd05af6c69b6, 0xa7c5ac471b478424, 0xd1b71758e219652c, 0x83126e978d4fdf3c, 0xa3d70a3d70a3d70b, 0xcccccccccccccccd, 0x8000000000000000, 0xa000000000000000, 0xc800000000000000, 0xfa00000000000000, 0x9c40000000000000, 0xc350000000000000, 0xf424000000000000, 0x9896800000000000, 0xbebc200000000000, 0xee6b280000000000, 0x9502f90000000000, 0xba43b74000000000, 0xe8d4a51000000000, 0x9184e72a00000000, 0xb5e620f480000000, 0xe35fa931a0000000, 0x8e1bc9bf04000000, 0xb1a2bc2ec5000000, 0xde0b6b3a76400000, 0x8ac7230489e80000, 0xad78ebc5ac620000, 0xd8d726b7177a8000, 0x878678326eac9000, 0xa968163f0a57b400, 0xd3c21bcecceda100, 0x84595161401484a0, 0xa56fa5b99019a5c8, 0xcecb8f27f4200f3a, 0x813f3978f8940984, 0xa18f07d736b90be5, 0xc9f2c9cd04674ede, 0xfc6f7c4045812296, 0x9dc5ada82b70b59d, 0xc5371912364ce305, 0xf684df56c3e01bc6, 0x9a130b963a6c115c, 0xc097ce7bc90715b3, 0xf0bdc21abb48db20, 0x96769950b50d88f4, 0xbc143fa4e250eb31, 0xeb194f8e1ae525fd, 0x92efd1b8d0cf37be, 0xb7abc627050305ad, 0xe596b7b0c643c719, 0x8f7e32ce7bea5c6f, 0xb35dbf821ae4f38b, 0xe0352f62a19e306e}; template <typename T> const uint128_wrapper basic_data<T>::dragonbox_pow10_significands_128[] = { #if FMT_USE_FULL_CACHE_DRAGONBOX {0xff77b1fcbebcdc4f, 0x25e8e89c13bb0f7b}, {0x9faacf3df73609b1, 0x77b191618c54e9ad}, {0xc795830d75038c1d, 0xd59df5b9ef6a2418}, {0xf97ae3d0d2446f25, 0x4b0573286b44ad1e}, {0x9becce62836ac577, 0x4ee367f9430aec33}, {0xc2e801fb244576d5, 0x229c41f793cda740}, {0xf3a20279ed56d48a, 0x6b43527578c11110}, {0x9845418c345644d6, 0x830a13896b78aaaa}, {0xbe5691ef416bd60c, 0x23cc986bc656d554}, {0xedec366b11c6cb8f, 0x2cbfbe86b7ec8aa9}, {0x94b3a202eb1c3f39, 0x7bf7d71432f3d6aa}, {0xb9e08a83a5e34f07, 0xdaf5ccd93fb0cc54}, {0xe858ad248f5c22c9, 0xd1b3400f8f9cff69}, {0x91376c36d99995be, 0x23100809b9c21fa2}, {0xb58547448ffffb2d, 0xabd40a0c2832a78b}, {0xe2e69915b3fff9f9, 0x16c90c8f323f516d}, {0x8dd01fad907ffc3b, 0xae3da7d97f6792e4}, {0xb1442798f49ffb4a, 0x99cd11cfdf41779d}, {0xdd95317f31c7fa1d, 0x40405643d711d584}, {0x8a7d3eef7f1cfc52, 0x482835ea666b2573}, {0xad1c8eab5ee43b66, 0xda3243650005eed0}, {0xd863b256369d4a40, 0x90bed43e40076a83}, {0x873e4f75e2224e68, 0x5a7744a6e804a292}, {0xa90de3535aaae202, 0x711515d0a205cb37}, {0xd3515c2831559a83, 0x0d5a5b44ca873e04}, {0x8412d9991ed58091, 0xe858790afe9486c3}, {0xa5178fff668ae0b6, 0x626e974dbe39a873}, {0xce5d73ff402d98e3, 0xfb0a3d212dc81290}, {0x80fa687f881c7f8e, 0x7ce66634bc9d0b9a}, {0xa139029f6a239f72, 0x1c1fffc1ebc44e81}, {0xc987434744ac874e, 0xa327ffb266b56221}, {0xfbe9141915d7a922, 0x4bf1ff9f0062baa9}, {0x9d71ac8fada6c9b5, 0x6f773fc3603db4aa}, {0xc4ce17b399107c22, 0xcb550fb4384d21d4}, {0xf6019da07f549b2b, 0x7e2a53a146606a49}, {0x99c102844f94e0fb, 0x2eda7444cbfc426e}, {0xc0314325637a1939, 0xfa911155fefb5309}, {0xf03d93eebc589f88, 0x793555ab7eba27cb}, {0x96267c7535b763b5, 0x4bc1558b2f3458df}, {0xbbb01b9283253ca2, 0x9eb1aaedfb016f17}, {0xea9c227723ee8bcb, 0x465e15a979c1cadd}, {0x92a1958a7675175f, 0x0bfacd89ec191eca}, {0xb749faed14125d36, 0xcef980ec671f667c}, {0xe51c79a85916f484, 0x82b7e12780e7401b}, {0x8f31cc0937ae58d2, 0xd1b2ecb8b0908811}, {0xb2fe3f0b8599ef07, 0x861fa7e6dcb4aa16}, {0xdfbdcece67006ac9, 0x67a791e093e1d49b}, {0x8bd6a141006042bd, 0xe0c8bb2c5c6d24e1}, {0xaecc49914078536d, 0x58fae9f773886e19}, {0xda7f5bf590966848, 0xaf39a475506a899f}, {0x888f99797a5e012d, 0x6d8406c952429604}, {0xaab37fd7d8f58178, 0xc8e5087ba6d33b84}, {0xd5605fcdcf32e1d6, 0xfb1e4a9a90880a65}, {0x855c3be0a17fcd26, 0x5cf2eea09a550680}, {0xa6b34ad8c9dfc06f, 0xf42faa48c0ea481f}, {0xd0601d8efc57b08b, 0xf13b94daf124da27}, {0x823c12795db6ce57, 0x76c53d08d6b70859}, {0xa2cb1717b52481ed, 0x54768c4b0c64ca6f}, {0xcb7ddcdda26da268, 0xa9942f5dcf7dfd0a}, {0xfe5d54150b090b02, 0xd3f93b35435d7c4d}, {0x9efa548d26e5a6e1, 0xc47bc5014a1a6db0}, {0xc6b8e9b0709f109a, 0x359ab6419ca1091c}, {0xf867241c8cc6d4c0, 0xc30163d203c94b63}, {0x9b407691d7fc44f8, 0x79e0de63425dcf1e}, {0xc21094364dfb5636, 0x985915fc12f542e5}, {0xf294b943e17a2bc4, 0x3e6f5b7b17b2939e}, {0x979cf3ca6cec5b5a, 0xa705992ceecf9c43}, {0xbd8430bd08277231, 0x50c6ff782a838354}, {0xece53cec4a314ebd, 0xa4f8bf5635246429}, {0x940f4613ae5ed136, 0x871b7795e136be9a}, {0xb913179899f68584, 0x28e2557b59846e40}, {0xe757dd7ec07426e5, 0x331aeada2fe589d0}, {0x9096ea6f3848984f, 0x3ff0d2c85def7622}, {0xb4bca50b065abe63, 0x0fed077a756b53aa}, {0xe1ebce4dc7f16dfb, 0xd3e8495912c62895}, {0x8d3360f09cf6e4bd, 0x64712dd7abbbd95d}, {0xb080392cc4349dec, 0xbd8d794d96aacfb4}, {0xdca04777f541c567, 0xecf0d7a0fc5583a1}, {0x89e42caaf9491b60, 0xf41686c49db57245}, {0xac5d37d5b79b6239, 0x311c2875c522ced6}, {0xd77485cb25823ac7, 0x7d633293366b828c}, {0x86a8d39ef77164bc, 0xae5dff9c02033198}, {0xa8530886b54dbdeb, 0xd9f57f830283fdfd}, {0xd267caa862a12d66, 0xd072df63c324fd7c}, {0x8380dea93da4bc60, 0x4247cb9e59f71e6e}, {0xa46116538d0deb78, 0x52d9be85f074e609}, {0xcd795be870516656, 0x67902e276c921f8c}, {0x806bd9714632dff6, 0x00ba1cd8a3db53b7}, {0xa086cfcd97bf97f3, 0x80e8a40eccd228a5}, {0xc8a883c0fdaf7df0, 0x6122cd128006b2ce}, {0xfad2a4b13d1b5d6c, 0x796b805720085f82}, {0x9cc3a6eec6311a63, 0xcbe3303674053bb1}, {0xc3f490aa77bd60fc, 0xbedbfc4411068a9d}, {0xf4f1b4d515acb93b, 0xee92fb5515482d45}, {0x991711052d8bf3c5, 0x751bdd152d4d1c4b}, {0xbf5cd54678eef0b6, 0xd262d45a78a0635e}, {0xef340a98172aace4, 0x86fb897116c87c35}, {0x9580869f0e7aac0e, 0xd45d35e6ae3d4da1}, {0xbae0a846d2195712, 0x8974836059cca10a}, {0xe998d258869facd7, 0x2bd1a438703fc94c}, {0x91ff83775423cc06, 0x7b6306a34627ddd0}, {0xb67f6455292cbf08, 0x1a3bc84c17b1d543}, {0xe41f3d6a7377eeca, 0x20caba5f1d9e4a94}, {0x8e938662882af53e, 0x547eb47b7282ee9d}, {0xb23867fb2a35b28d, 0xe99e619a4f23aa44}, {0xdec681f9f4c31f31, 0x6405fa00e2ec94d5}, {0x8b3c113c38f9f37e, 0xde83bc408dd3dd05}, {0xae0b158b4738705e, 0x9624ab50b148d446}, {0xd98ddaee19068c76, 0x3badd624dd9b0958}, {0x87f8a8d4cfa417c9, 0xe54ca5d70a80e5d7}, {0xa9f6d30a038d1dbc, 0x5e9fcf4ccd211f4d}, {0xd47487cc8470652b, 0x7647c32000696720}, {0x84c8d4dfd2c63f3b, 0x29ecd9f40041e074}, {0xa5fb0a17c777cf09, 0xf468107100525891}, {0xcf79cc9db955c2cc, 0x7182148d4066eeb5}, {0x81ac1fe293d599bf, 0xc6f14cd848405531}, {0xa21727db38cb002f, 0xb8ada00e5a506a7d}, {0xca9cf1d206fdc03b, 0xa6d90811f0e4851d}, {0xfd442e4688bd304a, 0x908f4a166d1da664}, {0x9e4a9cec15763e2e, 0x9a598e4e043287ff}, {0xc5dd44271ad3cdba, 0x40eff1e1853f29fe}, {0xf7549530e188c128, 0xd12bee59e68ef47d}, {0x9a94dd3e8cf578b9, 0x82bb74f8301958cf}, {0xc13a148e3032d6e7, 0xe36a52363c1faf02}, {0xf18899b1bc3f8ca1, 0xdc44e6c3cb279ac2}, {0x96f5600f15a7b7e5, 0x29ab103a5ef8c0ba}, {0xbcb2b812db11a5de, 0x7415d448f6b6f0e8}, {0xebdf661791d60f56, 0x111b495b3464ad22}, {0x936b9fcebb25c995, 0xcab10dd900beec35}, {0xb84687c269ef3bfb, 0x3d5d514f40eea743}, {0xe65829b3046b0afa, 0x0cb4a5a3112a5113}, {0x8ff71a0fe2c2e6dc, 0x47f0e785eaba72ac}, {0xb3f4e093db73a093, 0x59ed216765690f57}, {0xe0f218b8d25088b8, 0x306869c13ec3532d}, {0x8c974f7383725573, 0x1e414218c73a13fc}, {0xafbd2350644eeacf, 0xe5d1929ef90898fb}, {0xdbac6c247d62a583, 0xdf45f746b74abf3a}, {0x894bc396ce5da772, 0x6b8bba8c328eb784}, {0xab9eb47c81f5114f, 0x066ea92f3f326565}, {0xd686619ba27255a2, 0xc80a537b0efefebe}, {0x8613fd0145877585, 0xbd06742ce95f5f37}, {0xa798fc4196e952e7, 0x2c48113823b73705}, {0xd17f3b51fca3a7a0, 0xf75a15862ca504c6}, {0x82ef85133de648c4, 0x9a984d73dbe722fc}, {0xa3ab66580d5fdaf5, 0xc13e60d0d2e0ebbb}, {0xcc963fee10b7d1b3, 0x318df905079926a9}, {0xffbbcfe994e5c61f, 0xfdf17746497f7053}, {0x9fd561f1fd0f9bd3, 0xfeb6ea8bedefa634}, {0xc7caba6e7c5382c8, 0xfe64a52ee96b8fc1}, {0xf9bd690a1b68637b, 0x3dfdce7aa3c673b1}, {0x9c1661a651213e2d, 0x06bea10ca65c084f}, {0xc31bfa0fe5698db8, 0x486e494fcff30a63}, {0xf3e2f893dec3f126, 0x5a89dba3c3efccfb}, {0x986ddb5c6b3a76b7, 0xf89629465a75e01d}, {0xbe89523386091465, 0xf6bbb397f1135824}, {0xee2ba6c0678b597f, 0x746aa07ded582e2d}, {0x94db483840b717ef, 0xa8c2a44eb4571cdd}, {0xba121a4650e4ddeb, 0x92f34d62616ce414}, {0xe896a0d7e51e1566, 0x77b020baf9c81d18}, {0x915e2486ef32cd60, 0x0ace1474dc1d122f}, {0xb5b5ada8aaff80b8, 0x0d819992132456bb}, {0xe3231912d5bf60e6, 0x10e1fff697ed6c6a}, {0x8df5efabc5979c8f, 0xca8d3ffa1ef463c2}, {0xb1736b96b6fd83b3, 0xbd308ff8a6b17cb3}, {0xddd0467c64bce4a0, 0xac7cb3f6d05ddbdf}, {0x8aa22c0dbef60ee4, 0x6bcdf07a423aa96c}, {0xad4ab7112eb3929d, 0x86c16c98d2c953c7}, {0xd89d64d57a607744, 0xe871c7bf077ba8b8}, {0x87625f056c7c4a8b, 0x11471cd764ad4973}, {0xa93af6c6c79b5d2d, 0xd598e40d3dd89bd0}, {0xd389b47879823479, 0x4aff1d108d4ec2c4}, {0x843610cb4bf160cb, 0xcedf722a585139bb}, {0xa54394fe1eedb8fe, 0xc2974eb4ee658829}, {0xce947a3da6a9273e, 0x733d226229feea33}, {0x811ccc668829b887, 0x0806357d5a3f5260}, {0xa163ff802a3426a8, 0xca07c2dcb0cf26f8}, {0xc9bcff6034c13052, 0xfc89b393dd02f0b6}, {0xfc2c3f3841f17c67, 0xbbac2078d443ace3}, {0x9d9ba7832936edc0, 0xd54b944b84aa4c0e}, {0xc5029163f384a931, 0x0a9e795e65d4df12}, {0xf64335bcf065d37d, 0x4d4617b5ff4a16d6}, {0x99ea0196163fa42e, 0x504bced1bf8e4e46}, {0xc06481fb9bcf8d39, 0xe45ec2862f71e1d7}, {0xf07da27a82c37088, 0x5d767327bb4e5a4d}, {0x964e858c91ba2655, 0x3a6a07f8d510f870}, {0xbbe226efb628afea, 0x890489f70a55368c}, {0xeadab0aba3b2dbe5, 0x2b45ac74ccea842f}, {0x92c8ae6b464fc96f, 0x3b0b8bc90012929e}, {0xb77ada0617e3bbcb, 0x09ce6ebb40173745}, {0xe55990879ddcaabd, 0xcc420a6a101d0516}, {0x8f57fa54c2a9eab6, 0x9fa946824a12232e}, {0xb32df8e9f3546564, 0x47939822dc96abfa}, {0xdff9772470297ebd, 0x59787e2b93bc56f8}, {0x8bfbea76c619ef36, 0x57eb4edb3c55b65b}, {0xaefae51477a06b03, 0xede622920b6b23f2}, {0xdab99e59958885c4, 0xe95fab368e45ecee}, {0x88b402f7fd75539b, 0x11dbcb0218ebb415}, {0xaae103b5fcd2a881, 0xd652bdc29f26a11a}, {0xd59944a37c0752a2, 0x4be76d3346f04960}, {0x857fcae62d8493a5, 0x6f70a4400c562ddc}, {0xa6dfbd9fb8e5b88e, 0xcb4ccd500f6bb953}, {0xd097ad07a71f26b2, 0x7e2000a41346a7a8}, {0x825ecc24c873782f, 0x8ed400668c0c28c9}, {0xa2f67f2dfa90563b, 0x728900802f0f32fb}, {0xcbb41ef979346bca, 0x4f2b40a03ad2ffba}, {0xfea126b7d78186bc, 0xe2f610c84987bfa9}, {0x9f24b832e6b0f436, 0x0dd9ca7d2df4d7ca}, {0xc6ede63fa05d3143, 0x91503d1c79720dbc}, {0xf8a95fcf88747d94, 0x75a44c6397ce912b}, {0x9b69dbe1b548ce7c, 0xc986afbe3ee11abb}, {0xc24452da229b021b, 0xfbe85badce996169}, {0xf2d56790ab41c2a2, 0xfae27299423fb9c4}, {0x97c560ba6b0919a5, 0xdccd879fc967d41b}, {0xbdb6b8e905cb600f, 0x5400e987bbc1c921}, {0xed246723473e3813, 0x290123e9aab23b69}, {0x9436c0760c86e30b, 0xf9a0b6720aaf6522}, {0xb94470938fa89bce, 0xf808e40e8d5b3e6a}, {0xe7958cb87392c2c2, 0xb60b1d1230b20e05}, {0x90bd77f3483bb9b9, 0xb1c6f22b5e6f48c3}, {0xb4ecd5f01a4aa828, 0x1e38aeb6360b1af4}, {0xe2280b6c20dd5232, 0x25c6da63c38de1b1}, {0x8d590723948a535f, 0x579c487e5a38ad0f}, {0xb0af48ec79ace837, 0x2d835a9df0c6d852}, {0xdcdb1b2798182244, 0xf8e431456cf88e66}, {0x8a08f0f8bf0f156b, 0x1b8e9ecb641b5900}, {0xac8b2d36eed2dac5, 0xe272467e3d222f40}, {0xd7adf884aa879177, 0x5b0ed81dcc6abb10}, {0x86ccbb52ea94baea, 0x98e947129fc2b4ea}, {0xa87fea27a539e9a5, 0x3f2398d747b36225}, {0xd29fe4b18e88640e, 0x8eec7f0d19a03aae}, {0x83a3eeeef9153e89, 0x1953cf68300424ad}, {0xa48ceaaab75a8e2b, 0x5fa8c3423c052dd8}, {0xcdb02555653131b6, 0x3792f412cb06794e}, {0x808e17555f3ebf11, 0xe2bbd88bbee40bd1}, {0xa0b19d2ab70e6ed6, 0x5b6aceaeae9d0ec5}, {0xc8de047564d20a8b, 0xf245825a5a445276}, {0xfb158592be068d2e, 0xeed6e2f0f0d56713}, {0x9ced737bb6c4183d, 0x55464dd69685606c}, {0xc428d05aa4751e4c, 0xaa97e14c3c26b887}, {0xf53304714d9265df, 0xd53dd99f4b3066a9}, {0x993fe2c6d07b7fab, 0xe546a8038efe402a}, {0xbf8fdb78849a5f96, 0xde98520472bdd034}, {0xef73d256a5c0f77c, 0x963e66858f6d4441}, {0x95a8637627989aad, 0xdde7001379a44aa9}, {0xbb127c53b17ec159, 0x5560c018580d5d53}, {0xe9d71b689dde71af, 0xaab8f01e6e10b4a7}, {0x9226712162ab070d, 0xcab3961304ca70e9}, {0xb6b00d69bb55c8d1, 0x3d607b97c5fd0d23}, {0xe45c10c42a2b3b05, 0x8cb89a7db77c506b}, {0x8eb98a7a9a5b04e3, 0x77f3608e92adb243}, {0xb267ed1940f1c61c, 0x55f038b237591ed4}, {0xdf01e85f912e37a3, 0x6b6c46dec52f6689}, {0x8b61313bbabce2c6, 0x2323ac4b3b3da016}, {0xae397d8aa96c1b77, 0xabec975e0a0d081b}, {0xd9c7dced53c72255, 0x96e7bd358c904a22}, {0x881cea14545c7575, 0x7e50d64177da2e55}, {0xaa242499697392d2, 0xdde50bd1d5d0b9ea}, {0xd4ad2dbfc3d07787, 0x955e4ec64b44e865}, {0x84ec3c97da624ab4, 0xbd5af13bef0b113f}, {0xa6274bbdd0fadd61, 0xecb1ad8aeacdd58f}, {0xcfb11ead453994ba, 0x67de18eda5814af3}, {0x81ceb32c4b43fcf4, 0x80eacf948770ced8}, {0xa2425ff75e14fc31, 0xa1258379a94d028e}, {0xcad2f7f5359a3b3e, 0x096ee45813a04331}, {0xfd87b5f28300ca0d, 0x8bca9d6e188853fd}, {0x9e74d1b791e07e48, 0x775ea264cf55347e}, {0xc612062576589dda, 0x95364afe032a819e}, {0xf79687aed3eec551, 0x3a83ddbd83f52205}, {0x9abe14cd44753b52, 0xc4926a9672793543}, {0xc16d9a0095928a27, 0x75b7053c0f178294}, {0xf1c90080baf72cb1, 0x5324c68b12dd6339}, {0x971da05074da7bee, 0xd3f6fc16ebca5e04}, {0xbce5086492111aea, 0x88f4bb1ca6bcf585}, {0xec1e4a7db69561a5, 0x2b31e9e3d06c32e6}, {0x9392ee8e921d5d07, 0x3aff322e62439fd0}, {0xb877aa3236a4b449, 0x09befeb9fad487c3}, {0xe69594bec44de15b, 0x4c2ebe687989a9b4}, {0x901d7cf73ab0acd9, 0x0f9d37014bf60a11}, {0xb424dc35095cd80f, 0x538484c19ef38c95}, {0xe12e13424bb40e13, 0x2865a5f206b06fba}, {0x8cbccc096f5088cb, 0xf93f87b7442e45d4}, {0xafebff0bcb24aafe, 0xf78f69a51539d749}, {0xdbe6fecebdedd5be, 0xb573440e5a884d1c}, {0x89705f4136b4a597, 0x31680a88f8953031}, {0xabcc77118461cefc, 0xfdc20d2b36ba7c3e}, {0xd6bf94d5e57a42bc, 0x3d32907604691b4d}, {0x8637bd05af6c69b5, 0xa63f9a49c2c1b110}, {0xa7c5ac471b478423, 0x0fcf80dc33721d54}, {0xd1b71758e219652b, 0xd3c36113404ea4a9}, {0x83126e978d4fdf3b, 0x645a1cac083126ea}, {0xa3d70a3d70a3d70a, 0x3d70a3d70a3d70a4}, {0xcccccccccccccccc, 0xcccccccccccccccd}, {0x8000000000000000, 0x0000000000000000}, {0xa000000000000000, 0x0000000000000000}, {0xc800000000000000, 0x0000000000000000}, {0xfa00000000000000, 0x0000000000000000}, {0x9c40000000000000, 0x0000000000000000}, {0xc350000000000000, 0x0000000000000000}, {0xf424000000000000, 0x0000000000000000}, {0x9896800000000000, 0x0000000000000000}, {0xbebc200000000000, 0x0000000000000000}, {0xee6b280000000000, 0x0000000000000000}, {0x9502f90000000000, 0x0000000000000000}, {0xba43b74000000000, 0x0000000000000000}, {0xe8d4a51000000000, 0x0000000000000000}, {0x9184e72a00000000, 0x0000000000000000}, {0xb5e620f480000000, 0x0000000000000000}, {0xe35fa931a0000000, 0x0000000000000000}, {0x8e1bc9bf04000000, 0x0000000000000000}, {0xb1a2bc2ec5000000, 0x0000000000000000}, {0xde0b6b3a76400000, 0x0000000000000000}, {0x8ac7230489e80000, 0x0000000000000000}, {0xad78ebc5ac620000, 0x0000000000000000}, {0xd8d726b7177a8000, 0x0000000000000000}, {0x878678326eac9000, 0x0000000000000000}, {0xa968163f0a57b400, 0x0000000000000000}, {0xd3c21bcecceda100, 0x0000000000000000}, {0x84595161401484a0, 0x0000000000000000}, {0xa56fa5b99019a5c8, 0x0000000000000000}, {0xcecb8f27f4200f3a, 0x0000000000000000}, {0x813f3978f8940984, 0x4000000000000000}, {0xa18f07d736b90be5, 0x5000000000000000}, {0xc9f2c9cd04674ede, 0xa400000000000000}, {0xfc6f7c4045812296, 0x4d00000000000000}, {0x9dc5ada82b70b59d, 0xf020000000000000}, {0xc5371912364ce305, 0x6c28000000000000}, {0xf684df56c3e01bc6, 0xc732000000000000}, {0x9a130b963a6c115c, 0x3c7f400000000000}, {0xc097ce7bc90715b3, 0x4b9f100000000000}, {0xf0bdc21abb48db20, 0x1e86d40000000000}, {0x96769950b50d88f4, 0x1314448000000000}, {0xbc143fa4e250eb31, 0x17d955a000000000}, {0xeb194f8e1ae525fd, 0x5dcfab0800000000}, {0x92efd1b8d0cf37be, 0x5aa1cae500000000}, {0xb7abc627050305ad, 0xf14a3d9e40000000}, {0xe596b7b0c643c719, 0x6d9ccd05d0000000}, {0x8f7e32ce7bea5c6f, 0xe4820023a2000000}, {0xb35dbf821ae4f38b, 0xdda2802c8a800000}, {0xe0352f62a19e306e, 0xd50b2037ad200000}, {0x8c213d9da502de45, 0x4526f422cc340000}, {0xaf298d050e4395d6, 0x9670b12b7f410000}, {0xdaf3f04651d47b4c, 0x3c0cdd765f114000}, {0x88d8762bf324cd0f, 0xa5880a69fb6ac800}, {0xab0e93b6efee0053, 0x8eea0d047a457a00}, {0xd5d238a4abe98068, 0x72a4904598d6d880}, {0x85a36366eb71f041, 0x47a6da2b7f864750}, {0xa70c3c40a64e6c51, 0x999090b65f67d924}, {0xd0cf4b50cfe20765, 0xfff4b4e3f741cf6d}, {0x82818f1281ed449f, 0xbff8f10e7a8921a4}, {0xa321f2d7226895c7, 0xaff72d52192b6a0d}, {0xcbea6f8ceb02bb39, 0x9bf4f8a69f764490}, {0xfee50b7025c36a08, 0x02f236d04753d5b4}, {0x9f4f2726179a2245, 0x01d762422c946590}, {0xc722f0ef9d80aad6, 0x424d3ad2b7b97ef5}, {0xf8ebad2b84e0d58b, 0xd2e0898765a7deb2}, {0x9b934c3b330c8577, 0x63cc55f49f88eb2f}, {0xc2781f49ffcfa6d5, 0x3cbf6b71c76b25fb}, {0xf316271c7fc3908a, 0x8bef464e3945ef7a}, {0x97edd871cfda3a56, 0x97758bf0e3cbb5ac}, {0xbde94e8e43d0c8ec, 0x3d52eeed1cbea317}, {0xed63a231d4c4fb27, 0x4ca7aaa863ee4bdd}, {0x945e455f24fb1cf8, 0x8fe8caa93e74ef6a}, {0xb975d6b6ee39e436, 0xb3e2fd538e122b44}, {0xe7d34c64a9c85d44, 0x60dbbca87196b616}, {0x90e40fbeea1d3a4a, 0xbc8955e946fe31cd}, {0xb51d13aea4a488dd, 0x6babab6398bdbe41}, {0xe264589a4dcdab14, 0xc696963c7eed2dd1}, {0x8d7eb76070a08aec, 0xfc1e1de5cf543ca2}, {0xb0de65388cc8ada8, 0x3b25a55f43294bcb}, {0xdd15fe86affad912, 0x49ef0eb713f39ebe}, {0x8a2dbf142dfcc7ab, 0x6e3569326c784337}, {0xacb92ed9397bf996, 0x49c2c37f07965404}, {0xd7e77a8f87daf7fb, 0xdc33745ec97be906}, {0x86f0ac99b4e8dafd, 0x69a028bb3ded71a3}, {0xa8acd7c0222311bc, 0xc40832ea0d68ce0c}, {0xd2d80db02aabd62b, 0xf50a3fa490c30190}, {0x83c7088e1aab65db, 0x792667c6da79e0fa}, {0xa4b8cab1a1563f52, 0x577001b891185938}, {0xcde6fd5e09abcf26, 0xed4c0226b55e6f86}, {0x80b05e5ac60b6178, 0x544f8158315b05b4}, {0xa0dc75f1778e39d6, 0x696361ae3db1c721}, {0xc913936dd571c84c, 0x03bc3a19cd1e38e9}, {0xfb5878494ace3a5f, 0x04ab48a04065c723}, {0x9d174b2dcec0e47b, 0x62eb0d64283f9c76}, {0xc45d1df942711d9a, 0x3ba5d0bd324f8394}, {0xf5746577930d6500, 0xca8f44ec7ee36479}, {0x9968bf6abbe85f20, 0x7e998b13cf4e1ecb}, {0xbfc2ef456ae276e8, 0x9e3fedd8c321a67e}, {0xefb3ab16c59b14a2, 0xc5cfe94ef3ea101e}, {0x95d04aee3b80ece5, 0xbba1f1d158724a12}, {0xbb445da9ca61281f, 0x2a8a6e45ae8edc97}, {0xea1575143cf97226, 0xf52d09d71a3293bd}, {0x924d692ca61be758, 0x593c2626705f9c56}, {0xb6e0c377cfa2e12e, 0x6f8b2fb00c77836c}, {0xe498f455c38b997a, 0x0b6dfb9c0f956447}, {0x8edf98b59a373fec, 0x4724bd4189bd5eac}, {0xb2977ee300c50fe7, 0x58edec91ec2cb657}, {0xdf3d5e9bc0f653e1, 0x2f2967b66737e3ed}, {0x8b865b215899f46c, 0xbd79e0d20082ee74}, {0xae67f1e9aec07187, 0xecd8590680a3aa11}, {0xda01ee641a708de9, 0xe80e6f4820cc9495}, {0x884134fe908658b2, 0x3109058d147fdcdd}, {0xaa51823e34a7eede, 0xbd4b46f0599fd415}, {0xd4e5e2cdc1d1ea96, 0x6c9e18ac7007c91a}, {0x850fadc09923329e, 0x03e2cf6bc604ddb0}, {0xa6539930bf6bff45, 0x84db8346b786151c}, {0xcfe87f7cef46ff16, 0xe612641865679a63}, {0x81f14fae158c5f6e, 0x4fcb7e8f3f60c07e}, {0xa26da3999aef7749, 0xe3be5e330f38f09d}, {0xcb090c8001ab551c, 0x5cadf5bfd3072cc5}, {0xfdcb4fa002162a63, 0x73d9732fc7c8f7f6}, {0x9e9f11c4014dda7e, 0x2867e7fddcdd9afa}, {0xc646d63501a1511d, 0xb281e1fd541501b8}, {0xf7d88bc24209a565, 0x1f225a7ca91a4226}, {0x9ae757596946075f, 0x3375788de9b06958}, {0xc1a12d2fc3978937, 0x0052d6b1641c83ae}, {0xf209787bb47d6b84, 0xc0678c5dbd23a49a}, {0x9745eb4d50ce6332, 0xf840b7ba963646e0}, {0xbd176620a501fbff, 0xb650e5a93bc3d898}, {0xec5d3fa8ce427aff, 0xa3e51f138ab4cebe}, {0x93ba47c980e98cdf, 0xc66f336c36b10137}, {0xb8a8d9bbe123f017, 0xb80b0047445d4184}, {0xe6d3102ad96cec1d, 0xa60dc059157491e5}, {0x9043ea1ac7e41392, 0x87c89837ad68db2f}, {0xb454e4a179dd1877, 0x29babe4598c311fb}, {0xe16a1dc9d8545e94, 0xf4296dd6fef3d67a}, {0x8ce2529e2734bb1d, 0x1899e4a65f58660c}, {0xb01ae745b101e9e4, 0x5ec05dcff72e7f8f}, {0xdc21a1171d42645d, 0x76707543f4fa1f73}, {0x899504ae72497eba, 0x6a06494a791c53a8}, {0xabfa45da0edbde69, 0x0487db9d17636892}, {0xd6f8d7509292d603, 0x45a9d2845d3c42b6}, {0x865b86925b9bc5c2, 0x0b8a2392ba45a9b2}, {0xa7f26836f282b732, 0x8e6cac7768d7141e}, {0xd1ef0244af2364ff, 0x3207d795430cd926}, {0x8335616aed761f1f, 0x7f44e6bd49e807b8}, {0xa402b9c5a8d3a6e7, 0x5f16206c9c6209a6}, {0xcd036837130890a1, 0x36dba887c37a8c0f}, {0x802221226be55a64, 0xc2494954da2c9789}, {0xa02aa96b06deb0fd, 0xf2db9baa10b7bd6c}, {0xc83553c5c8965d3d, 0x6f92829494e5acc7}, {0xfa42a8b73abbf48c, 0xcb772339ba1f17f9}, {0x9c69a97284b578d7, 0xff2a760414536efb}, {0xc38413cf25e2d70d, 0xfef5138519684aba}, {0xf46518c2ef5b8cd1, 0x7eb258665fc25d69}, {0x98bf2f79d5993802, 0xef2f773ffbd97a61}, {0xbeeefb584aff8603, 0xaafb550ffacfd8fa}, {0xeeaaba2e5dbf6784, 0x95ba2a53f983cf38}, {0x952ab45cfa97a0b2, 0xdd945a747bf26183}, {0xba756174393d88df, 0x94f971119aeef9e4}, {0xe912b9d1478ceb17, 0x7a37cd5601aab85d}, {0x91abb422ccb812ee, 0xac62e055c10ab33a}, {0xb616a12b7fe617aa, 0x577b986b314d6009}, {0xe39c49765fdf9d94, 0xed5a7e85fda0b80b}, {0x8e41ade9fbebc27d, 0x14588f13be847307}, {0xb1d219647ae6b31c, 0x596eb2d8ae258fc8}, {0xde469fbd99a05fe3, 0x6fca5f8ed9aef3bb}, {0x8aec23d680043bee, 0x25de7bb9480d5854}, {0xada72ccc20054ae9, 0xaf561aa79a10ae6a}, {0xd910f7ff28069da4, 0x1b2ba1518094da04}, {0x87aa9aff79042286, 0x90fb44d2f05d0842}, {0xa99541bf57452b28, 0x353a1607ac744a53}, {0xd3fa922f2d1675f2, 0x42889b8997915ce8}, {0x847c9b5d7c2e09b7, 0x69956135febada11}, {0xa59bc234db398c25, 0x43fab9837e699095}, {0xcf02b2c21207ef2e, 0x94f967e45e03f4bb}, {0x8161afb94b44f57d, 0x1d1be0eebac278f5}, {0xa1ba1ba79e1632dc, 0x6462d92a69731732}, {0xca28a291859bbf93, 0x7d7b8f7503cfdcfe}, {0xfcb2cb35e702af78, 0x5cda735244c3d43e}, {0x9defbf01b061adab, 0x3a0888136afa64a7}, {0xc56baec21c7a1916, 0x088aaa1845b8fdd0}, {0xf6c69a72a3989f5b, 0x8aad549e57273d45}, {0x9a3c2087a63f6399, 0x36ac54e2f678864b}, {0xc0cb28a98fcf3c7f, 0x84576a1bb416a7dd}, {0xf0fdf2d3f3c30b9f, 0x656d44a2a11c51d5}, {0x969eb7c47859e743, 0x9f644ae5a4b1b325}, {0xbc4665b596706114, 0x873d5d9f0dde1fee}, {0xeb57ff22fc0c7959, 0xa90cb506d155a7ea}, {0x9316ff75dd87cbd8, 0x09a7f12442d588f2}, {0xb7dcbf5354e9bece, 0x0c11ed6d538aeb2f}, {0xe5d3ef282a242e81, 0x8f1668c8a86da5fa}, {0x8fa475791a569d10, 0xf96e017d694487bc}, {0xb38d92d760ec4455, 0x37c981dcc395a9ac}, {0xe070f78d3927556a, 0x85bbe253f47b1417}, {0x8c469ab843b89562, 0x93956d7478ccec8e}, {0xaf58416654a6babb, 0x387ac8d1970027b2}, {0xdb2e51bfe9d0696a, 0x06997b05fcc0319e}, {0x88fcf317f22241e2, 0x441fece3bdf81f03}, {0xab3c2fddeeaad25a, 0xd527e81cad7626c3}, {0xd60b3bd56a5586f1, 0x8a71e223d8d3b074}, {0x85c7056562757456, 0xf6872d5667844e49}, {0xa738c6bebb12d16c, 0xb428f8ac016561db}, {0xd106f86e69d785c7, 0xe13336d701beba52}, {0x82a45b450226b39c, 0xecc0024661173473}, {0xa34d721642b06084, 0x27f002d7f95d0190}, {0xcc20ce9bd35c78a5, 0x31ec038df7b441f4}, {0xff290242c83396ce, 0x7e67047175a15271}, {0x9f79a169bd203e41, 0x0f0062c6e984d386}, {0xc75809c42c684dd1, 0x52c07b78a3e60868}, {0xf92e0c3537826145, 0xa7709a56ccdf8a82}, {0x9bbcc7a142b17ccb, 0x88a66076400bb691}, {0xc2abf989935ddbfe, 0x6acff893d00ea435}, {0xf356f7ebf83552fe, 0x0583f6b8c4124d43}, {0x98165af37b2153de, 0xc3727a337a8b704a}, {0xbe1bf1b059e9a8d6, 0x744f18c0592e4c5c}, {0xeda2ee1c7064130c, 0x1162def06f79df73}, {0x9485d4d1c63e8be7, 0x8addcb5645ac2ba8}, {0xb9a74a0637ce2ee1, 0x6d953e2bd7173692}, {0xe8111c87c5c1ba99, 0xc8fa8db6ccdd0437}, {0x910ab1d4db9914a0, 0x1d9c9892400a22a2}, {0xb54d5e4a127f59c8, 0x2503beb6d00cab4b}, {0xe2a0b5dc971f303a, 0x2e44ae64840fd61d}, {0x8da471a9de737e24, 0x5ceaecfed289e5d2}, {0xb10d8e1456105dad, 0x7425a83e872c5f47}, {0xdd50f1996b947518, 0xd12f124e28f77719}, {0x8a5296ffe33cc92f, 0x82bd6b70d99aaa6f}, {0xace73cbfdc0bfb7b, 0x636cc64d1001550b}, {0xd8210befd30efa5a, 0x3c47f7e05401aa4e}, {0x8714a775e3e95c78, 0x65acfaec34810a71}, {0xa8d9d1535ce3b396, 0x7f1839a741a14d0d}, {0xd31045a8341ca07c, 0x1ede48111209a050}, {0x83ea2b892091e44d, 0x934aed0aab460432}, {0xa4e4b66b68b65d60, 0xf81da84d5617853f}, {0xce1de40642e3f4b9, 0x36251260ab9d668e}, {0x80d2ae83e9ce78f3, 0xc1d72b7c6b426019}, {0xa1075a24e4421730, 0xb24cf65b8612f81f}, {0xc94930ae1d529cfc, 0xdee033f26797b627}, {0xfb9b7cd9a4a7443c, 0x169840ef017da3b1}, {0x9d412e0806e88aa5, 0x8e1f289560ee864e}, {0xc491798a08a2ad4e, 0xf1a6f2bab92a27e2}, {0xf5b5d7ec8acb58a2, 0xae10af696774b1db}, {0x9991a6f3d6bf1765, 0xacca6da1e0a8ef29}, {0xbff610b0cc6edd3f, 0x17fd090a58d32af3}, {0xeff394dcff8a948e, 0xddfc4b4cef07f5b0}, {0x95f83d0a1fb69cd9, 0x4abdaf101564f98e}, {0xbb764c4ca7a4440f, 0x9d6d1ad41abe37f1}, {0xea53df5fd18d5513, 0x84c86189216dc5ed}, {0x92746b9be2f8552c, 0x32fd3cf5b4e49bb4}, {0xb7118682dbb66a77, 0x3fbc8c33221dc2a1}, {0xe4d5e82392a40515, 0x0fabaf3feaa5334a}, {0x8f05b1163ba6832d, 0x29cb4d87f2a7400e}, {0xb2c71d5bca9023f8, 0x743e20e9ef511012}, {0xdf78e4b2bd342cf6, 0x914da9246b255416}, {0x8bab8eefb6409c1a, 0x1ad089b6c2f7548e}, {0xae9672aba3d0c320, 0xa184ac2473b529b1}, {0xda3c0f568cc4f3e8, 0xc9e5d72d90a2741e}, {0x8865899617fb1871, 0x7e2fa67c7a658892}, {0xaa7eebfb9df9de8d, 0xddbb901b98feeab7}, {0xd51ea6fa85785631, 0x552a74227f3ea565}, {0x8533285c936b35de, 0xd53a88958f87275f}, {0xa67ff273b8460356, 0x8a892abaf368f137}, {0xd01fef10a657842c, 0x2d2b7569b0432d85}, {0x8213f56a67f6b29b, 0x9c3b29620e29fc73}, {0xa298f2c501f45f42, 0x8349f3ba91b47b8f}, {0xcb3f2f7642717713, 0x241c70a936219a73}, {0xfe0efb53d30dd4d7, 0xed238cd383aa0110}, {0x9ec95d1463e8a506, 0xf4363804324a40aa}, {0xc67bb4597ce2ce48, 0xb143c6053edcd0d5}, {0xf81aa16fdc1b81da, 0xdd94b7868e94050a}, {0x9b10a4e5e9913128, 0xca7cf2b4191c8326}, {0xc1d4ce1f63f57d72, 0xfd1c2f611f63a3f0}, {0xf24a01a73cf2dccf, 0xbc633b39673c8cec}, {0x976e41088617ca01, 0xd5be0503e085d813}, {0xbd49d14aa79dbc82, 0x4b2d8644d8a74e18}, {0xec9c459d51852ba2, 0xddf8e7d60ed1219e}, {0x93e1ab8252f33b45, 0xcabb90e5c942b503}, {0xb8da1662e7b00a17, 0x3d6a751f3b936243}, {0xe7109bfba19c0c9d, 0x0cc512670a783ad4}, {0x906a617d450187e2, 0x27fb2b80668b24c5}, {0xb484f9dc9641e9da, 0xb1f9f660802dedf6}, {0xe1a63853bbd26451, 0x5e7873f8a0396973}, {0x8d07e33455637eb2, 0xdb0b487b6423e1e8}, {0xb049dc016abc5e5f, 0x91ce1a9a3d2cda62}, {0xdc5c5301c56b75f7, 0x7641a140cc7810fb}, {0x89b9b3e11b6329ba, 0xa9e904c87fcb0a9d}, {0xac2820d9623bf429, 0x546345fa9fbdcd44}, {0xd732290fbacaf133, 0xa97c177947ad4095}, {0x867f59a9d4bed6c0, 0x49ed8eabcccc485d}, {0xa81f301449ee8c70, 0x5c68f256bfff5a74}, {0xd226fc195c6a2f8c, 0x73832eec6fff3111}, {0x83585d8fd9c25db7, 0xc831fd53c5ff7eab}, {0xa42e74f3d032f525, 0xba3e7ca8b77f5e55}, {0xcd3a1230c43fb26f, 0x28ce1bd2e55f35eb}, {0x80444b5e7aa7cf85, 0x7980d163cf5b81b3}, {0xa0555e361951c366, 0xd7e105bcc332621f}, {0xc86ab5c39fa63440, 0x8dd9472bf3fefaa7}, {0xfa856334878fc150, 0xb14f98f6f0feb951}, {0x9c935e00d4b9d8d2, 0x6ed1bf9a569f33d3}, {0xc3b8358109e84f07, 0x0a862f80ec4700c8}, {0xf4a642e14c6262c8, 0xcd27bb612758c0fa}, {0x98e7e9cccfbd7dbd, 0x8038d51cb897789c}, {0xbf21e44003acdd2c, 0xe0470a63e6bd56c3}, {0xeeea5d5004981478, 0x1858ccfce06cac74}, {0x95527a5202df0ccb, 0x0f37801e0c43ebc8}, {0xbaa718e68396cffd, 0xd30560258f54e6ba}, {0xe950df20247c83fd, 0x47c6b82ef32a2069}, {0x91d28b7416cdd27e, 0x4cdc331d57fa5441}, {0xb6472e511c81471d, 0xe0133fe4adf8e952}, {0xe3d8f9e563a198e5, 0x58180fddd97723a6}, {0x8e679c2f5e44ff8f, 0x570f09eaa7ea7648}, {0xb201833b35d63f73, 0x2cd2cc6551e513da}, {0xde81e40a034bcf4f, 0xf8077f7ea65e58d1}, {0x8b112e86420f6191, 0xfb04afaf27faf782}, {0xadd57a27d29339f6, 0x79c5db9af1f9b563}, {0xd94ad8b1c7380874, 0x18375281ae7822bc}, {0x87cec76f1c830548, 0x8f2293910d0b15b5}, {0xa9c2794ae3a3c69a, 0xb2eb3875504ddb22}, {0xd433179d9c8cb841, 0x5fa60692a46151eb}, {0x849feec281d7f328, 0xdbc7c41ba6bcd333}, {0xa5c7ea73224deff3, 0x12b9b522906c0800}, {0xcf39e50feae16bef, 0xd768226b34870a00}, {0x81842f29f2cce375, 0xe6a1158300d46640}, {0xa1e53af46f801c53, 0x60495ae3c1097fd0}, {0xca5e89b18b602368, 0x385bb19cb14bdfc4}, {0xfcf62c1dee382c42, 0x46729e03dd9ed7b5}, {0x9e19db92b4e31ba9, 0x6c07a2c26a8346d1}, {0xc5a05277621be293, 0xc7098b7305241885}, {0xf70867153aa2db38, 0xb8cbee4fc66d1ea7} #else {0xff77b1fcbebcdc4f, 0x25e8e89c13bb0f7b}, {0xce5d73ff402d98e3, 0xfb0a3d212dc81290}, {0xa6b34ad8c9dfc06f, 0xf42faa48c0ea481f}, {0x86a8d39ef77164bc, 0xae5dff9c02033198}, {0xd98ddaee19068c76, 0x3badd624dd9b0958}, {0xafbd2350644eeacf, 0xe5d1929ef90898fb}, {0x8df5efabc5979c8f, 0xca8d3ffa1ef463c2}, {0xe55990879ddcaabd, 0xcc420a6a101d0516}, {0xb94470938fa89bce, 0xf808e40e8d5b3e6a}, {0x95a8637627989aad, 0xdde7001379a44aa9}, {0xf1c90080baf72cb1, 0x5324c68b12dd6339}, {0xc350000000000000, 0x0000000000000000}, {0x9dc5ada82b70b59d, 0xf020000000000000}, {0xfee50b7025c36a08, 0x02f236d04753d5b4}, {0xcde6fd5e09abcf26, 0xed4c0226b55e6f86}, {0xa6539930bf6bff45, 0x84db8346b786151c}, {0x865b86925b9bc5c2, 0x0b8a2392ba45a9b2}, {0xd910f7ff28069da4, 0x1b2ba1518094da04}, {0xaf58416654a6babb, 0x387ac8d1970027b2}, {0x8da471a9de737e24, 0x5ceaecfed289e5d2}, {0xe4d5e82392a40515, 0x0fabaf3feaa5334a}, {0xb8da1662e7b00a17, 0x3d6a751f3b936243}, {0x95527a5202df0ccb, 0x0f37801e0c43ebc8} #endif }; #if !FMT_USE_FULL_CACHE_DRAGONBOX template <typename T> const uint64_t basic_data<T>::powers_of_5_64[] = { 0x0000000000000001, 0x0000000000000005, 0x0000000000000019, 0x000000000000007d, 0x0000000000000271, 0x0000000000000c35, 0x0000000000003d09, 0x000000000001312d, 0x000000000005f5e1, 0x00000000001dcd65, 0x00000000009502f9, 0x0000000002e90edd, 0x000000000e8d4a51, 0x0000000048c27395, 0x000000016bcc41e9, 0x000000071afd498d, 0x0000002386f26fc1, 0x000000b1a2bc2ec5, 0x000003782dace9d9, 0x00001158e460913d, 0x000056bc75e2d631, 0x0001b1ae4d6e2ef5, 0x000878678326eac9, 0x002a5a058fc295ed, 0x00d3c21bcecceda1, 0x0422ca8b0a00a425, 0x14adf4b7320334b9}; template <typename T> const uint32_t basic_data<T>::dragonbox_pow10_recovery_errors[] = { 0x50001400, 0x54044100, 0x54014555, 0x55954415, 0x54115555, 0x00000001, 0x50000000, 0x00104000, 0x54010004, 0x05004001, 0x55555544, 0x41545555, 0x54040551, 0x15445545, 0x51555514, 0x10000015, 0x00101100, 0x01100015, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x04450514, 0x45414110, 0x55555145, 0x50544050, 0x15040155, 0x11054140, 0x50111514, 0x11451454, 0x00400541, 0x00000000, 0x55555450, 0x10056551, 0x10054011, 0x55551014, 0x69514555, 0x05151109, 0x00155555}; #endif template <typename T> const char basic_data<T>::foreground_color[] = "\x1b[38;2;"; template <typename T> const char basic_data<T>::background_color[] = "\x1b[48;2;"; template <typename T> const char basic_data<T>::reset_color[] = "\x1b[0m"; template <typename T> const wchar_t basic_data<T>::wreset_color[] = L"\x1b[0m"; template <typename T> const char basic_data<T>::signs[] = {0, '-', '+', ' '}; #if __cplusplus < 201703L template <typename T> constexpr const char basic_data<T>::hex_digits[]; template <typename T> constexpr const char basic_data<T>::left_padding_shifts[]; template <typename T> constexpr const char basic_data<T>::right_padding_shifts[]; #endif template <typename T> struct bits { static FMT_CONSTEXPR_DECL const int value = static_cast<int>(sizeof(T) * std::numeric_limits<unsigned char>::digits); }; class fp; template <int SHIFT = 0> fp normalize(fp value); // Lower (upper) boundary is a value half way between a floating-point value // and its predecessor (successor). Boundaries have the same exponent as the // value so only significands are stored. struct boundaries { uint64_t lower; uint64_t upper; }; // A handmade floating-point number f * pow(2, e). class fp { private: using significand_type = uint64_t; template <typename Float> using is_supported_float = bool_constant<sizeof(Float) == sizeof(uint64_t) || sizeof(Float) == sizeof(uint32_t)>; public: significand_type f; int e; // All sizes are in bits. // Subtract 1 to account for an implicit most significant bit in the // normalized form. static FMT_CONSTEXPR_DECL const int double_significand_size = std::numeric_limits<double>::digits - 1; static FMT_CONSTEXPR_DECL const uint64_t implicit_bit = 1ULL << double_significand_size; static FMT_CONSTEXPR_DECL const int significand_size = bits<significand_type>::value; fp() : f(0), e(0) {} fp(uint64_t f_val, int e_val) : f(f_val), e(e_val) {} // Constructs fp from an IEEE754 double. It is a template to prevent compile // errors on platforms where double is not IEEE754. template <typename Double> explicit fp(Double d) { assign(d); } // Assigns d to this and return true iff predecessor is closer than successor. template <typename Float, FMT_ENABLE_IF(is_supported_float<Float>::value)> bool assign(Float d) { // Assume float is in the format [sign][exponent][significand]. using limits = std::numeric_limits<Float>; const int float_significand_size = limits::digits - 1; const int exponent_size = bits<Float>::value - float_significand_size - 1; // -1 for sign const uint64_t float_implicit_bit = 1ULL << float_significand_size; const uint64_t significand_mask = float_implicit_bit - 1; const uint64_t exponent_mask = (~0ULL >> 1) & ~significand_mask; const int exponent_bias = (1 << exponent_size) - limits::max_exponent - 1; constexpr bool is_double = sizeof(Float) == sizeof(uint64_t); auto u = bit_cast<conditional_t<is_double, uint64_t, uint32_t>>(d); f = u & significand_mask; int biased_e = static_cast<int>((u & exponent_mask) >> float_significand_size); // Predecessor is closer if d is a normalized power of 2 (f == 0) other than // the smallest normalized number (biased_e > 1). bool is_predecessor_closer = f == 0 && biased_e > 1; if (biased_e != 0) f += float_implicit_bit; else biased_e = 1; // Subnormals use biased exponent 1 (min exponent). e = biased_e - exponent_bias - float_significand_size; return is_predecessor_closer; } template <typename Float, FMT_ENABLE_IF(!is_supported_float<Float>::value)> bool assign(Float) { *this = fp(); return false; } }; // Normalizes the value converted from double and multiplied by (1 << SHIFT). template <int SHIFT> fp normalize(fp value) { // Handle subnormals. const auto shifted_implicit_bit = fp::implicit_bit << SHIFT; while ((value.f & shifted_implicit_bit) == 0) { value.f <<= 1; --value.e; } // Subtract 1 to account for hidden bit. const auto offset = fp::significand_size - fp::double_significand_size - SHIFT - 1; value.f <<= offset; value.e -= offset; return value; } inline bool operator==(fp x, fp y) { return x.f == y.f && x.e == y.e; } // Computes lhs * rhs / pow(2, 64) rounded to nearest with half-up tie breaking. inline uint64_t multiply(uint64_t lhs, uint64_t rhs) { #if FMT_USE_INT128 auto product = static_cast<__uint128_t>(lhs) * rhs; auto f = static_cast<uint64_t>(product >> 64); return (static_cast<uint64_t>(product) & (1ULL << 63)) != 0 ? f + 1 : f; #else // Multiply 32-bit parts of significands. uint64_t mask = (1ULL << 32) - 1; uint64_t a = lhs >> 32, b = lhs & mask; uint64_t c = rhs >> 32, d = rhs & mask; uint64_t ac = a * c, bc = b * c, ad = a * d, bd = b * d; // Compute mid 64-bit of result and round. uint64_t mid = (bd >> 32) + (ad & mask) + (bc & mask) + (1U << 31); return ac + (ad >> 32) + (bc >> 32) + (mid >> 32); #endif } inline fp operator*(fp x, fp y) { return {multiply(x.f, y.f), x.e + y.e + 64}; } // Returns a cached power of 10 `c_k = c_k.f * pow(2, c_k.e)` such that its // (binary) exponent satisfies `min_exponent <= c_k.e <= min_exponent + 28`. inline fp get_cached_power(int min_exponent, int& pow10_exponent) { const int shift = 32; const auto significand = static_cast<int64_t>(data::log10_2_significand); int index = static_cast<int>( ((min_exponent + fp::significand_size - 1) * (significand >> shift) + ((int64_t(1) << shift) - 1)) // ceil >> 32 // arithmetic shift ); // Decimal exponent of the first (smallest) cached power of 10. const int first_dec_exp = -348; // Difference between 2 consecutive decimal exponents in cached powers of 10. const int dec_exp_step = 8; index = (index - first_dec_exp - 1) / dec_exp_step + 1; pow10_exponent = first_dec_exp + index * dec_exp_step; return {data::grisu_pow10_significands[index], data::grisu_pow10_exponents[index]}; } // A simple accumulator to hold the sums of terms in bigint::square if uint128_t // is not available. struct accumulator { uint64_t lower; uint64_t upper; accumulator() : lower(0), upper(0) {} explicit operator uint32_t() const { return static_cast<uint32_t>(lower); } void operator+=(uint64_t n) { lower += n; if (lower < n) ++upper; } void operator>>=(int shift) { FMT_ASSERT(shift == 32, ""); (void)shift; lower = (upper << 32) | (lower >> 32); upper >>= 32; } }; class bigint { private: // A bigint is stored as an array of bigits (big digits), with bigit at index // 0 being the least significant one. using bigit = uint32_t; using double_bigit = uint64_t; enum { bigits_capacity = 32 }; basic_memory_buffer<bigit, bigits_capacity> bigits_; int exp_; bigit operator[](int index) const { return bigits_[to_unsigned(index)]; } bigit& operator[](int index) { return bigits_[to_unsigned(index)]; } static FMT_CONSTEXPR_DECL const int bigit_bits = bits<bigit>::value; friend struct formatter<bigint>; void subtract_bigits(int index, bigit other, bigit& borrow) { auto result = static_cast<double_bigit>((*this)[index]) - other - borrow; (*this)[index] = static_cast<bigit>(result); borrow = static_cast<bigit>(result >> (bigit_bits * 2 - 1)); } void remove_leading_zeros() { int num_bigits = static_cast<int>(bigits_.size()) - 1; while (num_bigits > 0 && (*this)[num_bigits] == 0) --num_bigits; bigits_.resize(to_unsigned(num_bigits + 1)); } // Computes *this -= other assuming aligned bigints and *this >= other. void subtract_aligned(const bigint& other) { FMT_ASSERT(other.exp_ >= exp_, "unaligned bigints"); FMT_ASSERT(compare(*this, other) >= 0, ""); bigit borrow = 0; int i = other.exp_ - exp_; for (size_t j = 0, n = other.bigits_.size(); j != n; ++i, ++j) subtract_bigits(i, other.bigits_[j], borrow); while (borrow > 0) subtract_bigits(i, 0, borrow); remove_leading_zeros(); } void multiply(uint32_t value) { const double_bigit wide_value = value; bigit carry = 0; for (size_t i = 0, n = bigits_.size(); i < n; ++i) { double_bigit result = bigits_[i] * wide_value + carry; bigits_[i] = static_cast<bigit>(result); carry = static_cast<bigit>(result >> bigit_bits); } if (carry != 0) bigits_.push_back(carry); } void multiply(uint64_t value) { const bigit mask = ~bigit(0); const double_bigit lower = value & mask; const double_bigit upper = value >> bigit_bits; double_bigit carry = 0; for (size_t i = 0, n = bigits_.size(); i < n; ++i) { double_bigit result = bigits_[i] * lower + (carry & mask); carry = bigits_[i] * upper + (result >> bigit_bits) + (carry >> bigit_bits); bigits_[i] = static_cast<bigit>(result); } while (carry != 0) { bigits_.push_back(carry & mask); carry >>= bigit_bits; } } public: bigint() : exp_(0) {} explicit bigint(uint64_t n) { assign(n); } ~bigint() { FMT_ASSERT(bigits_.capacity() <= bigits_capacity, ""); } bigint(const bigint&) = delete; void operator=(const bigint&) = delete; void assign(const bigint& other) { auto size = other.bigits_.size(); bigits_.resize(size); auto data = other.bigits_.data(); std::copy(data, data + size, make_checked(bigits_.data(), size)); exp_ = other.exp_; } void assign(uint64_t n) { size_t num_bigits = 0; do { bigits_[num_bigits++] = n & ~bigit(0); n >>= bigit_bits; } while (n != 0); bigits_.resize(num_bigits); exp_ = 0; } int num_bigits() const { return static_cast<int>(bigits_.size()) + exp_; } FMT_NOINLINE bigint& operator<<=(int shift) { FMT_ASSERT(shift >= 0, ""); exp_ += shift / bigit_bits; shift %= bigit_bits; if (shift == 0) return *this; bigit carry = 0; for (size_t i = 0, n = bigits_.size(); i < n; ++i) { bigit c = bigits_[i] >> (bigit_bits - shift); bigits_[i] = (bigits_[i] << shift) + carry; carry = c; } if (carry != 0) bigits_.push_back(carry); return *this; } template <typename Int> bigint& operator*=(Int value) { FMT_ASSERT(value > 0, ""); multiply(uint32_or_64_or_128_t<Int>(value)); return *this; } friend int compare(const bigint& lhs, const bigint& rhs) { int num_lhs_bigits = lhs.num_bigits(), num_rhs_bigits = rhs.num_bigits(); if (num_lhs_bigits != num_rhs_bigits) return num_lhs_bigits > num_rhs_bigits ? 1 : -1; int i = static_cast<int>(lhs.bigits_.size()) - 1; int j = static_cast<int>(rhs.bigits_.size()) - 1; int end = i - j; if (end < 0) end = 0; for (; i >= end; --i, --j) { bigit lhs_bigit = lhs[i], rhs_bigit = rhs[j]; if (lhs_bigit != rhs_bigit) return lhs_bigit > rhs_bigit ? 1 : -1; } if (i != j) return i > j ? 1 : -1; return 0; } // Returns compare(lhs1 + lhs2, rhs). friend int add_compare(const bigint& lhs1, const bigint& lhs2, const bigint& rhs) { int max_lhs_bigits = (std::max)(lhs1.num_bigits(), lhs2.num_bigits()); int num_rhs_bigits = rhs.num_bigits(); if (max_lhs_bigits + 1 < num_rhs_bigits) return -1; if (max_lhs_bigits > num_rhs_bigits) return 1; auto get_bigit = [](const bigint& n, int i) -> bigit { return i >= n.exp_ && i < n.num_bigits() ? n[i - n.exp_] : 0; }; double_bigit borrow = 0; int min_exp = (std::min)((std::min)(lhs1.exp_, lhs2.exp_), rhs.exp_); for (int i = num_rhs_bigits - 1; i >= min_exp; --i) { double_bigit sum = static_cast<double_bigit>(get_bigit(lhs1, i)) + get_bigit(lhs2, i); bigit rhs_bigit = get_bigit(rhs, i); if (sum > rhs_bigit + borrow) return 1; borrow = rhs_bigit + borrow - sum; if (borrow > 1) return -1; borrow <<= bigit_bits; } return borrow != 0 ? -1 : 0; } // Assigns pow(10, exp) to this bigint. void assign_pow10(int exp) { FMT_ASSERT(exp >= 0, ""); if (exp == 0) return assign(1); // Find the top bit. int bitmask = 1; while (exp >= bitmask) bitmask <<= 1; bitmask >>= 1; // pow(10, exp) = pow(5, exp) * pow(2, exp). First compute pow(5, exp) by // repeated squaring and multiplication. assign(5); bitmask >>= 1; while (bitmask != 0) { square(); if ((exp & bitmask) != 0) *this *= 5; bitmask >>= 1; } *this <<= exp; // Multiply by pow(2, exp) by shifting. } void square() { basic_memory_buffer<bigit, bigits_capacity> n(std::move(bigits_)); int num_bigits = static_cast<int>(bigits_.size()); int num_result_bigits = 2 * num_bigits; bigits_.resize(to_unsigned(num_result_bigits)); using accumulator_t = conditional_t<FMT_USE_INT128, uint128_t, accumulator>; auto sum = accumulator_t(); for (int bigit_index = 0; bigit_index < num_bigits; ++bigit_index) { // Compute bigit at position bigit_index of the result by adding // cross-product terms n[i] * n[j] such that i + j == bigit_index. for (int i = 0, j = bigit_index; j >= 0; ++i, --j) { // Most terms are multiplied twice which can be optimized in the future. sum += static_cast<double_bigit>(n[i]) * n[j]; } (*this)[bigit_index] = static_cast<bigit>(sum); sum >>= bits<bigit>::value; // Compute the carry. } // Do the same for the top half. for (int bigit_index = num_bigits; bigit_index < num_result_bigits; ++bigit_index) { for (int j = num_bigits - 1, i = bigit_index - j; i < num_bigits;) sum += static_cast<double_bigit>(n[i++]) * n[j--]; (*this)[bigit_index] = static_cast<bigit>(sum); sum >>= bits<bigit>::value; } --num_result_bigits; remove_leading_zeros(); exp_ *= 2; } // If this bigint has a bigger exponent than other, adds trailing zero to make // exponents equal. This simplifies some operations such as subtraction. void align(const bigint& other) { int exp_difference = exp_ - other.exp_; if (exp_difference <= 0) return; int num_bigits = static_cast<int>(bigits_.size()); bigits_.resize(to_unsigned(num_bigits + exp_difference)); for (int i = num_bigits - 1, j = i + exp_difference; i >= 0; --i, --j) bigits_[j] = bigits_[i]; std::uninitialized_fill_n(bigits_.data(), exp_difference, 0); exp_ -= exp_difference; } // Divides this bignum by divisor, assigning the remainder to this and // returning the quotient. int divmod_assign(const bigint& divisor) { FMT_ASSERT(this != &divisor, ""); if (compare(*this, divisor) < 0) return 0; FMT_ASSERT(divisor.bigits_[divisor.bigits_.size() - 1u] != 0, ""); align(divisor); int quotient = 0; do { subtract_aligned(divisor); ++quotient; } while (compare(*this, divisor) >= 0); return quotient; } }; enum class round_direction { unknown, up, down }; // Given the divisor (normally a power of 10), the remainder = v % divisor for // some number v and the error, returns whether v should be rounded up, down, or // whether the rounding direction can't be determined due to error. // error should be less than divisor / 2. inline round_direction get_round_direction(uint64_t divisor, uint64_t remainder, uint64_t error) { FMT_ASSERT(remainder < divisor, ""); // divisor - remainder won't overflow. FMT_ASSERT(error < divisor, ""); // divisor - error won't overflow. FMT_ASSERT(error < divisor - error, ""); // error * 2 won't overflow. // Round down if (remainder + error) * 2 <= divisor. if (remainder <= divisor - remainder && error * 2 <= divisor - remainder * 2) return round_direction::down; // Round up if (remainder - error) * 2 >= divisor. if (remainder >= error && remainder - error >= divisor - (remainder - error)) { return round_direction::up; } return round_direction::unknown; } namespace digits { enum result { more, // Generate more digits. done, // Done generating digits. error // Digit generation cancelled due to an error. }; } // Generates output using the Grisu digit-gen algorithm. // error: the size of the region (lower, upper) outside of which numbers // definitely do not round to value (Delta in Grisu3). template <typename Handler> FMT_ALWAYS_INLINE digits::result grisu_gen_digits(fp value, uint64_t error, int& exp, Handler& handler) { const fp one(1ULL << -value.e, value.e); // The integral part of scaled value (p1 in Grisu) = value / one. It cannot be // zero because it contains a product of two 64-bit numbers with MSB set (due // to normalization) - 1, shifted right by at most 60 bits. auto integral = static_cast<uint32_t>(value.f >> -one.e); FMT_ASSERT(integral != 0, ""); FMT_ASSERT(integral == value.f >> -one.e, ""); // The fractional part of scaled value (p2 in Grisu) c = value % one. uint64_t fractional = value.f & (one.f - 1); exp = count_digits(integral); // kappa in Grisu. // Divide by 10 to prevent overflow. auto result = handler.on_start(data::powers_of_10_64[exp - 1] << -one.e, value.f / 10, error * 10, exp); if (result != digits::more) return result; // Generate digits for the integral part. This can produce up to 10 digits. do { uint32_t digit = 0; auto divmod_integral = [&](uint32_t divisor) { digit = integral / divisor; integral %= divisor; }; // This optimization by Milo Yip reduces the number of integer divisions by // one per iteration. switch (exp) { case 10: divmod_integral(1000000000); break; case 9: divmod_integral(100000000); break; case 8: divmod_integral(10000000); break; case 7: divmod_integral(1000000); break; case 6: divmod_integral(100000); break; case 5: divmod_integral(10000); break; case 4: divmod_integral(1000); break; case 3: divmod_integral(100); break; case 2: divmod_integral(10); break; case 1: digit = integral; integral = 0; break; default: FMT_ASSERT(false, "invalid number of digits"); } --exp; auto remainder = (static_cast<uint64_t>(integral) << -one.e) + fractional; result = handler.on_digit(static_cast<char>('0' + digit), data::powers_of_10_64[exp] << -one.e, remainder, error, exp, true); if (result != digits::more) return result; } while (exp > 0); // Generate digits for the fractional part. for (;;) { fractional *= 10; error *= 10; char digit = static_cast<char>('0' + (fractional >> -one.e)); fractional &= one.f - 1; --exp; result = handler.on_digit(digit, one.f, fractional, error, exp, false); if (result != digits::more) return result; } } // The fixed precision digit handler. struct fixed_handler { char* buf; int size; int precision; int exp10; bool fixed; digits::result on_start(uint64_t divisor, uint64_t remainder, uint64_t error, int& exp) { // Non-fixed formats require at least one digit and no precision adjustment. if (!fixed) return digits::more; // Adjust fixed precision by exponent because it is relative to decimal // point. precision += exp + exp10; // Check if precision is satisfied just by leading zeros, e.g. // format("{:.2f}", 0.001) gives "0.00" without generating any digits. if (precision > 0) return digits::more; if (precision < 0) return digits::done; auto dir = get_round_direction(divisor, remainder, error); if (dir == round_direction::unknown) return digits::error; buf[size++] = dir == round_direction::up ? '1' : '0'; return digits::done; } digits::result on_digit(char digit, uint64_t divisor, uint64_t remainder, uint64_t error, int, bool integral) { FMT_ASSERT(remainder < divisor, ""); buf[size++] = digit; if (!integral && error >= remainder) return digits::error; if (size < precision) return digits::more; if (!integral) { // Check if error * 2 < divisor with overflow prevention. // The check is not needed for the integral part because error = 1 // and divisor > (1 << 32) there. if (error >= divisor || error >= divisor - error) return digits::error; } else { FMT_ASSERT(error == 1 && divisor > 2, ""); } auto dir = get_round_direction(divisor, remainder, error); if (dir != round_direction::up) return dir == round_direction::down ? digits::done : digits::error; ++buf[size - 1]; for (int i = size - 1; i > 0 && buf[i] > '9'; --i) { buf[i] = '0'; ++buf[i - 1]; } if (buf[0] > '9') { buf[0] = '1'; if (fixed) buf[size++] = '0'; else ++exp10; } return digits::done; } }; // Implementation of Dragonbox algorithm: https://github.com/jk-jeon/dragonbox. namespace dragonbox { // Computes 128-bit result of multiplication of two 64-bit unsigned integers. inline uint128_wrapper umul128(uint64_t x, uint64_t y) FMT_NOEXCEPT { #if FMT_USE_INT128 return static_cast<uint128_t>(x) * static_cast<uint128_t>(y); #elif defined(_MSC_VER) && defined(_M_X64) uint128_wrapper result; result.low_ = _umul128(x, y, &result.high_); return result; #else const uint64_t mask = (uint64_t(1) << 32) - uint64_t(1); uint64_t a = x >> 32; uint64_t b = x & mask; uint64_t c = y >> 32; uint64_t d = y & mask; uint64_t ac = a * c; uint64_t bc = b * c; uint64_t ad = a * d; uint64_t bd = b * d; uint64_t intermediate = (bd >> 32) + (ad & mask) + (bc & mask); return {ac + (intermediate >> 32) + (ad >> 32) + (bc >> 32), (intermediate << 32) + (bd & mask)}; #endif } // Computes upper 64 bits of multiplication of two 64-bit unsigned integers. inline uint64_t umul128_upper64(uint64_t x, uint64_t y) FMT_NOEXCEPT { #if FMT_USE_INT128 auto p = static_cast<uint128_t>(x) * static_cast<uint128_t>(y); return static_cast<uint64_t>(p >> 64); #elif defined(_MSC_VER) && defined(_M_X64) return __umulh(x, y); #else return umul128(x, y).high(); #endif } // Computes upper 64 bits of multiplication of a 64-bit unsigned integer and a // 128-bit unsigned integer. inline uint64_t umul192_upper64(uint64_t x, uint128_wrapper y) FMT_NOEXCEPT { uint128_wrapper g0 = umul128(x, y.high()); g0 += umul128_upper64(x, y.low()); return g0.high(); } // Computes upper 32 bits of multiplication of a 32-bit unsigned integer and a // 64-bit unsigned integer. inline uint32_t umul96_upper32(uint32_t x, uint64_t y) FMT_NOEXCEPT { return static_cast<uint32_t>(umul128_upper64(x, y)); } // Computes middle 64 bits of multiplication of a 64-bit unsigned integer and a // 128-bit unsigned integer. inline uint64_t umul192_middle64(uint64_t x, uint128_wrapper y) FMT_NOEXCEPT { uint64_t g01 = x * y.high(); uint64_t g10 = umul128_upper64(x, y.low()); return g01 + g10; } // Computes lower 64 bits of multiplication of a 32-bit unsigned integer and a // 64-bit unsigned integer. inline uint64_t umul96_lower64(uint32_t x, uint64_t y) FMT_NOEXCEPT { return x * y; } // Computes floor(log10(pow(2, e))) for e in [-1700, 1700] using the method from // https://fmt.dev/papers/Grisu-Exact.pdf#page=5, section 3.4. inline int floor_log10_pow2(int e) FMT_NOEXCEPT { FMT_ASSERT(e <= 1700 && e >= -1700, "too large exponent"); const int shift = 22; return (e * static_cast<int>(data::log10_2_significand >> (64 - shift))) >> shift; } // Various fast log computations. inline int floor_log2_pow10(int e) FMT_NOEXCEPT { FMT_ASSERT(e <= 1233 && e >= -1233, "too large exponent"); const uint64_t log2_10_integer_part = 3; const uint64_t log2_10_fractional_digits = 0x5269e12f346e2bf9; const int shift_amount = 19; return (e * static_cast<int>( (log2_10_integer_part << shift_amount) | (log2_10_fractional_digits >> (64 - shift_amount)))) >> shift_amount; } inline int floor_log10_pow2_minus_log10_4_over_3(int e) FMT_NOEXCEPT { FMT_ASSERT(e <= 1700 && e >= -1700, "too large exponent"); const uint64_t log10_4_over_3_fractional_digits = 0x1ffbfc2bbc780375; const int shift_amount = 22; return (e * static_cast<int>(data::log10_2_significand >> (64 - shift_amount)) - static_cast<int>(log10_4_over_3_fractional_digits >> (64 - shift_amount))) >> shift_amount; } // Returns true iff x is divisible by pow(2, exp). inline bool divisible_by_power_of_2(uint32_t x, int exp) FMT_NOEXCEPT { FMT_ASSERT(exp >= 1, ""); FMT_ASSERT(x != 0, ""); #ifdef FMT_BUILTIN_CTZ return FMT_BUILTIN_CTZ(x) >= exp; #else return exp < num_bits<uint32_t>() && x == ((x >> exp) << exp); #endif } inline bool divisible_by_power_of_2(uint64_t x, int exp) FMT_NOEXCEPT { FMT_ASSERT(exp >= 1, ""); FMT_ASSERT(x != 0, ""); #ifdef FMT_BUILTIN_CTZLL return FMT_BUILTIN_CTZLL(x) >= exp; #else return exp < num_bits<uint64_t>() && x == ((x >> exp) << exp); #endif } // Returns true iff x is divisible by pow(5, exp). inline bool divisible_by_power_of_5(uint32_t x, int exp) FMT_NOEXCEPT { FMT_ASSERT(exp <= 10, "too large exponent"); return x * data::divtest_table_for_pow5_32[exp].mod_inv <= data::divtest_table_for_pow5_32[exp].max_quotient; } inline bool divisible_by_power_of_5(uint64_t x, int exp) FMT_NOEXCEPT { FMT_ASSERT(exp <= 23, "too large exponent"); return x * data::divtest_table_for_pow5_64[exp].mod_inv <= data::divtest_table_for_pow5_64[exp].max_quotient; } // Replaces n by floor(n / pow(5, N)) returning true if and only if n is // divisible by pow(5, N). // Precondition: n <= 2 * pow(5, N + 1). template <int N> bool check_divisibility_and_divide_by_pow5(uint32_t& n) FMT_NOEXCEPT { static constexpr struct { uint32_t magic_number; int bits_for_comparison; uint32_t threshold; int shift_amount; } infos[] = {{0xcccd, 16, 0x3333, 18}, {0xa429, 8, 0x0a, 20}}; constexpr auto info = infos[N - 1]; n *= info.magic_number; const uint32_t comparison_mask = (1u << info.bits_for_comparison) - 1; bool result = (n & comparison_mask) <= info.threshold; n >>= info.shift_amount; return result; } // Computes floor(n / pow(10, N)) for small n and N. // Precondition: n <= pow(10, N + 1). template <int N> uint32_t small_division_by_pow10(uint32_t n) FMT_NOEXCEPT { static constexpr struct { uint32_t magic_number; int shift_amount; uint32_t divisor_times_10; } infos[] = {{0xcccd, 19, 100}, {0xa3d8, 22, 1000}}; constexpr auto info = infos[N - 1]; FMT_ASSERT(n <= info.divisor_times_10, "n is too large"); return n * info.magic_number >> info.shift_amount; } // Computes floor(n / 10^(kappa + 1)) (float) inline uint32_t divide_by_10_to_kappa_plus_1(uint32_t n) FMT_NOEXCEPT { return n / float_info<float>::big_divisor; } // Computes floor(n / 10^(kappa + 1)) (double) inline uint64_t divide_by_10_to_kappa_plus_1(uint64_t n) FMT_NOEXCEPT { return umul128_upper64(n, 0x83126e978d4fdf3c) >> 9; } // Various subroutines using pow10 cache template <class T> struct cache_accessor; template <> struct cache_accessor<float> { using carrier_uint = float_info<float>::carrier_uint; using cache_entry_type = uint64_t; static uint64_t get_cached_power(int k) FMT_NOEXCEPT { FMT_ASSERT(k >= float_info<float>::min_k && k <= float_info<float>::max_k, "k is out of range"); return data::dragonbox_pow10_significands_64[k - float_info<float>::min_k]; } static carrier_uint compute_mul(carrier_uint u, const cache_entry_type& cache) FMT_NOEXCEPT { return umul96_upper32(u, cache); } static uint32_t compute_delta(const cache_entry_type& cache, int beta_minus_1) FMT_NOEXCEPT { return static_cast<uint32_t>(cache >> (64 - 1 - beta_minus_1)); } static bool compute_mul_parity(carrier_uint two_f, const cache_entry_type& cache, int beta_minus_1) FMT_NOEXCEPT { FMT_ASSERT(beta_minus_1 >= 1, ""); FMT_ASSERT(beta_minus_1 < 64, ""); return ((umul96_lower64(two_f, cache) >> (64 - beta_minus_1)) & 1) != 0; } static carrier_uint compute_left_endpoint_for_shorter_interval_case( const cache_entry_type& cache, int beta_minus_1) FMT_NOEXCEPT { return static_cast<carrier_uint>( (cache - (cache >> (float_info<float>::significand_bits + 2))) >> (64 - float_info<float>::significand_bits - 1 - beta_minus_1)); } static carrier_uint compute_right_endpoint_for_shorter_interval_case( const cache_entry_type& cache, int beta_minus_1) FMT_NOEXCEPT { return static_cast<carrier_uint>( (cache + (cache >> (float_info<float>::significand_bits + 1))) >> (64 - float_info<float>::significand_bits - 1 - beta_minus_1)); } static carrier_uint compute_round_up_for_shorter_interval_case( const cache_entry_type& cache, int beta_minus_1) FMT_NOEXCEPT { return (static_cast<carrier_uint>( cache >> (64 - float_info<float>::significand_bits - 2 - beta_minus_1)) + 1) / 2; } }; template <> struct cache_accessor<double> { using carrier_uint = float_info<double>::carrier_uint; using cache_entry_type = uint128_wrapper; static uint128_wrapper get_cached_power(int k) FMT_NOEXCEPT { FMT_ASSERT(k >= float_info<double>::min_k && k <= float_info<double>::max_k, "k is out of range"); #if FMT_USE_FULL_CACHE_DRAGONBOX return data::dragonbox_pow10_significands_128[k - float_info<double>::min_k]; #else static const int compression_ratio = 27; // Compute base index. int cache_index = (k - float_info<double>::min_k) / compression_ratio; int kb = cache_index * compression_ratio + float_info<double>::min_k; int offset = k - kb; // Get base cache. uint128_wrapper base_cache = data::dragonbox_pow10_significands_128[cache_index]; if (offset == 0) return base_cache; // Compute the required amount of bit-shift. int alpha = floor_log2_pow10(kb + offset) - floor_log2_pow10(kb) - offset; FMT_ASSERT(alpha > 0 && alpha < 64, "shifting error detected"); // Try to recover the real cache. uint64_t pow5 = data::powers_of_5_64[offset]; uint128_wrapper recovered_cache = umul128(base_cache.high(), pow5); uint128_wrapper middle_low = umul128(base_cache.low() - (kb < 0 ? 1u : 0u), pow5); recovered_cache += middle_low.high(); uint64_t high_to_middle = recovered_cache.high() << (64 - alpha); uint64_t middle_to_low = recovered_cache.low() << (64 - alpha); recovered_cache = uint128_wrapper{(recovered_cache.low() >> alpha) | high_to_middle, ((middle_low.low() >> alpha) | middle_to_low)}; if (kb < 0) recovered_cache += 1; // Get error. int error_idx = (k - float_info<double>::min_k) / 16; uint32_t error = (data::dragonbox_pow10_recovery_errors[error_idx] >> ((k - float_info<double>::min_k) % 16) * 2) & 0x3; // Add the error back. FMT_ASSERT(recovered_cache.low() + error >= recovered_cache.low(), ""); return {recovered_cache.high(), recovered_cache.low() + error}; #endif } static carrier_uint compute_mul(carrier_uint u, const cache_entry_type& cache) FMT_NOEXCEPT { return umul192_upper64(u, cache); } static uint32_t compute_delta(cache_entry_type const& cache, int beta_minus_1) FMT_NOEXCEPT { return static_cast<uint32_t>(cache.high() >> (64 - 1 - beta_minus_1)); } static bool compute_mul_parity(carrier_uint two_f, const cache_entry_type& cache, int beta_minus_1) FMT_NOEXCEPT { FMT_ASSERT(beta_minus_1 >= 1, ""); FMT_ASSERT(beta_minus_1 < 64, ""); return ((umul192_middle64(two_f, cache) >> (64 - beta_minus_1)) & 1) != 0; } static carrier_uint compute_left_endpoint_for_shorter_interval_case( const cache_entry_type& cache, int beta_minus_1) FMT_NOEXCEPT { return (cache.high() - (cache.high() >> (float_info<double>::significand_bits + 2))) >> (64 - float_info<double>::significand_bits - 1 - beta_minus_1); } static carrier_uint compute_right_endpoint_for_shorter_interval_case( const cache_entry_type& cache, int beta_minus_1) FMT_NOEXCEPT { return (cache.high() + (cache.high() >> (float_info<double>::significand_bits + 1))) >> (64 - float_info<double>::significand_bits - 1 - beta_minus_1); } static carrier_uint compute_round_up_for_shorter_interval_case( const cache_entry_type& cache, int beta_minus_1) FMT_NOEXCEPT { return ((cache.high() >> (64 - float_info<double>::significand_bits - 2 - beta_minus_1)) + 1) / 2; } }; // Various integer checks template <class T> bool is_left_endpoint_integer_shorter_interval(int exponent) FMT_NOEXCEPT { return exponent >= float_info< T>::case_shorter_interval_left_endpoint_lower_threshold && exponent <= float_info<T>::case_shorter_interval_left_endpoint_upper_threshold; } template <class T> bool is_endpoint_integer(typename float_info<T>::carrier_uint two_f, int exponent, int minus_k) FMT_NOEXCEPT { if (exponent < float_info<T>::case_fc_pm_half_lower_threshold) return false; // For k >= 0. if (exponent <= float_info<T>::case_fc_pm_half_upper_threshold) return true; // For k < 0. if (exponent > float_info<T>::divisibility_check_by_5_threshold) return false; return divisible_by_power_of_5(two_f, minus_k); } template <class T> bool is_center_integer(typename float_info<T>::carrier_uint two_f, int exponent, int minus_k) FMT_NOEXCEPT { // Exponent for 5 is negative. if (exponent > float_info<T>::divisibility_check_by_5_threshold) return false; if (exponent > float_info<T>::case_fc_upper_threshold) return divisible_by_power_of_5(two_f, minus_k); // Both exponents are nonnegative. if (exponent >= float_info<T>::case_fc_lower_threshold) return true; // Exponent for 2 is negative. return divisible_by_power_of_2(two_f, minus_k - exponent + 1); } // Remove trailing zeros from n and return the number of zeros removed (float) FMT_ALWAYS_INLINE int remove_trailing_zeros(uint32_t& n) FMT_NOEXCEPT { #ifdef FMT_BUILTIN_CTZ int t = FMT_BUILTIN_CTZ(n); #else int t = ctz(n); #endif if (t > float_info<float>::max_trailing_zeros) t = float_info<float>::max_trailing_zeros; const uint32_t mod_inv1 = 0xcccccccd; const uint32_t max_quotient1 = 0x33333333; const uint32_t mod_inv2 = 0xc28f5c29; const uint32_t max_quotient2 = 0x0a3d70a3; int s = 0; for (; s < t - 1; s += 2) { if (n * mod_inv2 > max_quotient2) break; n *= mod_inv2; } if (s < t && n * mod_inv1 <= max_quotient1) { n *= mod_inv1; ++s; } n >>= s; return s; } // Removes trailing zeros and returns the number of zeros removed (double) FMT_ALWAYS_INLINE int remove_trailing_zeros(uint64_t& n) FMT_NOEXCEPT { #ifdef FMT_BUILTIN_CTZLL int t = FMT_BUILTIN_CTZLL(n); #else int t = ctzll(n); #endif if (t > float_info<double>::max_trailing_zeros) t = float_info<double>::max_trailing_zeros; // Divide by 10^8 and reduce to 32-bits // Since ret_value.significand <= (2^64 - 1) / 1000 < 10^17, // both of the quotient and the r should fit in 32-bits const uint32_t mod_inv1 = 0xcccccccd; const uint32_t max_quotient1 = 0x33333333; const uint64_t mod_inv8 = 0xc767074b22e90e21; const uint64_t max_quotient8 = 0x00002af31dc46118; // If the number is divisible by 1'0000'0000, work with the quotient if (t >= 8) { auto quotient_candidate = n * mod_inv8; if (quotient_candidate <= max_quotient8) { auto quotient = static_cast<uint32_t>(quotient_candidate >> 8); int s = 8; for (; s < t; ++s) { if (quotient * mod_inv1 > max_quotient1) break; quotient *= mod_inv1; } quotient >>= (s - 8); n = quotient; return s; } } // Otherwise, work with the remainder auto quotient = static_cast<uint32_t>(n / 100000000); auto remainder = static_cast<uint32_t>(n - 100000000 * quotient); if (t == 0 || remainder * mod_inv1 > max_quotient1) { return 0; } remainder *= mod_inv1; if (t == 1 || remainder * mod_inv1 > max_quotient1) { n = (remainder >> 1) + quotient * 10000000ull; return 1; } remainder *= mod_inv1; if (t == 2 || remainder * mod_inv1 > max_quotient1) { n = (remainder >> 2) + quotient * 1000000ull; return 2; } remainder *= mod_inv1; if (t == 3 || remainder * mod_inv1 > max_quotient1) { n = (remainder >> 3) + quotient * 100000ull; return 3; } remainder *= mod_inv1; if (t == 4 || remainder * mod_inv1 > max_quotient1) { n = (remainder >> 4) + quotient * 10000ull; return 4; } remainder *= mod_inv1; if (t == 5 || remainder * mod_inv1 > max_quotient1) { n = (remainder >> 5) + quotient * 1000ull; return 5; } remainder *= mod_inv1; if (t == 6 || remainder * mod_inv1 > max_quotient1) { n = (remainder >> 6) + quotient * 100ull; return 6; } remainder *= mod_inv1; n = (remainder >> 7) + quotient * 10ull; return 7; } // The main algorithm for shorter interval case template <class T> FMT_ALWAYS_INLINE decimal_fp<T> shorter_interval_case(int exponent) FMT_NOEXCEPT { decimal_fp<T> ret_value; // Compute k and beta const int minus_k = floor_log10_pow2_minus_log10_4_over_3(exponent); const int beta_minus_1 = exponent + floor_log2_pow10(-minus_k); // Compute xi and zi using cache_entry_type = typename cache_accessor<T>::cache_entry_type; const cache_entry_type cache = cache_accessor<T>::get_cached_power(-minus_k); auto xi = cache_accessor<T>::compute_left_endpoint_for_shorter_interval_case( cache, beta_minus_1); auto zi = cache_accessor<T>::compute_right_endpoint_for_shorter_interval_case( cache, beta_minus_1); // If the left endpoint is not an integer, increase it if (!is_left_endpoint_integer_shorter_interval<T>(exponent)) ++xi; // Try bigger divisor ret_value.significand = zi / 10; // If succeed, remove trailing zeros if necessary and return if (ret_value.significand * 10 >= xi) { ret_value.exponent = minus_k + 1; ret_value.exponent += remove_trailing_zeros(ret_value.significand); return ret_value; } // Otherwise, compute the round-up of y ret_value.significand = cache_accessor<T>::compute_round_up_for_shorter_interval_case( cache, beta_minus_1); ret_value.exponent = minus_k; // When tie occurs, choose one of them according to the rule if (exponent >= float_info<T>::shorter_interval_tie_lower_threshold && exponent <= float_info<T>::shorter_interval_tie_upper_threshold) { ret_value.significand = ret_value.significand % 2 == 0 ? ret_value.significand : ret_value.significand - 1; } else if (ret_value.significand < xi) { ++ret_value.significand; } return ret_value; } template <typename T> decimal_fp<T> to_decimal(T x) FMT_NOEXCEPT { // Step 1: integer promotion & Schubfach multiplier calculation. using carrier_uint = typename float_info<T>::carrier_uint; using cache_entry_type = typename cache_accessor<T>::cache_entry_type; auto br = bit_cast<carrier_uint>(x); // Extract significand bits and exponent bits. const carrier_uint significand_mask = (static_cast<carrier_uint>(1) << float_info<T>::significand_bits) - 1; carrier_uint significand = (br & significand_mask); int exponent = static_cast<int>((br & exponent_mask<T>()) >> float_info<T>::significand_bits); if (exponent != 0) { // Check if normal. exponent += float_info<T>::exponent_bias - float_info<T>::significand_bits; // Shorter interval case; proceed like Schubfach. if (significand == 0) return shorter_interval_case<T>(exponent); significand |= (static_cast<carrier_uint>(1) << float_info<T>::significand_bits); } else { // Subnormal case; the interval is always regular. if (significand == 0) return {0, 0}; exponent = float_info<T>::min_exponent - float_info<T>::significand_bits; } const bool include_left_endpoint = (significand % 2 == 0); const bool include_right_endpoint = include_left_endpoint; // Compute k and beta. const int minus_k = floor_log10_pow2(exponent) - float_info<T>::kappa; const cache_entry_type cache = cache_accessor<T>::get_cached_power(-minus_k); const int beta_minus_1 = exponent + floor_log2_pow10(-minus_k); // Compute zi and deltai // 10^kappa <= deltai < 10^(kappa + 1) const uint32_t deltai = cache_accessor<T>::compute_delta(cache, beta_minus_1); const carrier_uint two_fc = significand << 1; const carrier_uint two_fr = two_fc | 1; const carrier_uint zi = cache_accessor<T>::compute_mul(two_fr << beta_minus_1, cache); // Step 2: Try larger divisor; remove trailing zeros if necessary // Using an upper bound on zi, we might be able to optimize the division // better than the compiler; we are computing zi / big_divisor here decimal_fp<T> ret_value; ret_value.significand = divide_by_10_to_kappa_plus_1(zi); uint32_t r = static_cast<uint32_t>(zi - float_info<T>::big_divisor * ret_value.significand); if (r > deltai) { goto small_divisor_case_label; } else if (r < deltai) { // Exclude the right endpoint if necessary if (r == 0 && !include_right_endpoint && is_endpoint_integer<T>(two_fr, exponent, minus_k)) { --ret_value.significand; r = float_info<T>::big_divisor; goto small_divisor_case_label; } } else { // r == deltai; compare fractional parts // Check conditions in the order different from the paper // to take advantage of short-circuiting const carrier_uint two_fl = two_fc - 1; if ((!include_left_endpoint || !is_endpoint_integer<T>(two_fl, exponent, minus_k)) && !cache_accessor<T>::compute_mul_parity(two_fl, cache, beta_minus_1)) { goto small_divisor_case_label; } } ret_value.exponent = minus_k + float_info<T>::kappa + 1; // We may need to remove trailing zeros ret_value.exponent += remove_trailing_zeros(ret_value.significand); return ret_value; // Step 3: Find the significand with the smaller divisor small_divisor_case_label: ret_value.significand *= 10; ret_value.exponent = minus_k + float_info<T>::kappa; const uint32_t mask = (1u << float_info<T>::kappa) - 1; auto dist = r - (deltai / 2) + (float_info<T>::small_divisor / 2); // Is dist divisible by 2^kappa? if ((dist & mask) == 0) { const bool approx_y_parity = ((dist ^ (float_info<T>::small_divisor / 2)) & 1) != 0; dist >>= float_info<T>::kappa; // Is dist divisible by 5^kappa? if (check_divisibility_and_divide_by_pow5<float_info<T>::kappa>(dist)) { ret_value.significand += dist; // Check z^(f) >= epsilon^(f) // We have either yi == zi - epsiloni or yi == (zi - epsiloni) - 1, // where yi == zi - epsiloni if and only if z^(f) >= epsilon^(f) // Since there are only 2 possibilities, we only need to care about the // parity. Also, zi and r should have the same parity since the divisor // is an even number if (cache_accessor<T>::compute_mul_parity(two_fc, cache, beta_minus_1) != approx_y_parity) { --ret_value.significand; } else { // If z^(f) >= epsilon^(f), we might have a tie // when z^(f) == epsilon^(f), or equivalently, when y is an integer if (is_center_integer<T>(two_fc, exponent, minus_k)) { ret_value.significand = ret_value.significand % 2 == 0 ? ret_value.significand : ret_value.significand - 1; } } } // Is dist not divisible by 5^kappa? else { ret_value.significand += dist; } } // Is dist not divisible by 2^kappa? else { // Since we know dist is small, we might be able to optimize the division // better than the compiler; we are computing dist / small_divisor here ret_value.significand += small_division_by_pow10<float_info<T>::kappa>(dist); } return ret_value; } } // namespace dragonbox // Formats value using a variation of the Fixed-Precision Positive // Floating-Point Printout ((FPP)^2) algorithm by Steele & White: // https://fmt.dev/p372-steele.pdf. template <typename Double> void fallback_format(Double d, int num_digits, bool binary32, buffer<char>& buf, int& exp10) { bigint numerator; // 2 * R in (FPP)^2. bigint denominator; // 2 * S in (FPP)^2. // lower and upper are differences between value and corresponding boundaries. bigint lower; // (M^- in (FPP)^2). bigint upper_store; // upper's value if different from lower. bigint* upper = nullptr; // (M^+ in (FPP)^2). fp value; // Shift numerator and denominator by an extra bit or two (if lower boundary // is closer) to make lower and upper integers. This eliminates multiplication // by 2 during later computations. const bool is_predecessor_closer = binary32 ? value.assign(static_cast<float>(d)) : value.assign(d); int shift = is_predecessor_closer ? 2 : 1; uint64_t significand = value.f << shift; if (value.e >= 0) { numerator.assign(significand); numerator <<= value.e; lower.assign(1); lower <<= value.e; if (shift != 1) { upper_store.assign(1); upper_store <<= value.e + 1; upper = &upper_store; } denominator.assign_pow10(exp10); denominator <<= shift; } else if (exp10 < 0) { numerator.assign_pow10(-exp10); lower.assign(numerator); if (shift != 1) { upper_store.assign(numerator); upper_store <<= 1; upper = &upper_store; } numerator *= significand; denominator.assign(1); denominator <<= shift - value.e; } else { numerator.assign(significand); denominator.assign_pow10(exp10); denominator <<= shift - value.e; lower.assign(1); if (shift != 1) { upper_store.assign(1ULL << 1); upper = &upper_store; } } // Invariant: value == (numerator / denominator) * pow(10, exp10). if (num_digits < 0) { // Generate the shortest representation. if (!upper) upper = &lower; bool even = (value.f & 1) == 0; num_digits = 0; char* data = buf.data(); for (;;) { int digit = numerator.divmod_assign(denominator); bool low = compare(numerator, lower) - even < 0; // numerator <[=] lower. // numerator + upper >[=] pow10: bool high = add_compare(numerator, *upper, denominator) + even > 0; data[num_digits++] = static_cast<char>('0' + digit); if (low || high) { if (!low) { ++data[num_digits - 1]; } else if (high) { int result = add_compare(numerator, numerator, denominator); // Round half to even. if (result > 0 || (result == 0 && (digit % 2) != 0)) ++data[num_digits - 1]; } buf.try_resize(to_unsigned(num_digits)); exp10 -= num_digits - 1; return; } numerator *= 10; lower *= 10; if (upper != &lower) *upper *= 10; } } // Generate the given number of digits. exp10 -= num_digits - 1; if (num_digits == 0) { buf.try_resize(1); denominator *= 10; buf[0] = add_compare(numerator, numerator, denominator) > 0 ? '1' : '0'; return; } buf.try_resize(to_unsigned(num_digits)); for (int i = 0; i < num_digits - 1; ++i) { int digit = numerator.divmod_assign(denominator); buf[i] = static_cast<char>('0' + digit); numerator *= 10; } int digit = numerator.divmod_assign(denominator); auto result = add_compare(numerator, numerator, denominator); if (result > 0 || (result == 0 && (digit % 2) != 0)) { if (digit == 9) { const auto overflow = '0' + 10; buf[num_digits - 1] = overflow; // Propagate the carry. for (int i = num_digits - 1; i > 0 && buf[i] == overflow; --i) { buf[i] = '0'; ++buf[i - 1]; } if (buf[0] == overflow) { buf[0] = '1'; ++exp10; } return; } ++digit; } buf[num_digits - 1] = static_cast<char>('0' + digit); } template <typename T> int format_float(T value, int precision, float_specs specs, buffer<char>& buf) { static_assert(!std::is_same<T, float>::value, ""); FMT_ASSERT(value >= 0, "value is negative"); const bool fixed = specs.format == float_format::fixed; if (value <= 0) { // <= instead of == to silence a warning. if (precision <= 0 || !fixed) { buf.push_back('0'); return 0; } buf.try_resize(to_unsigned(precision)); std::uninitialized_fill_n(buf.data(), precision, '0'); return -precision; } if (!specs.use_grisu) return snprintf_float(value, precision, specs, buf); if (precision < 0) { // Use Dragonbox for the shortest format. if (specs.binary32) { auto dec = dragonbox::to_decimal(static_cast<float>(value)); write<char>(buffer_appender<char>(buf), dec.significand); return dec.exponent; } auto dec = dragonbox::to_decimal(static_cast<double>(value)); write<char>(buffer_appender<char>(buf), dec.significand); return dec.exponent; } // Use Grisu + Dragon4 for the given precision: // https://www.cs.tufts.edu/~nr/cs257/archive/florian-loitsch/printf.pdf. int exp = 0; const int min_exp = -60; // alpha in Grisu. int cached_exp10 = 0; // K in Grisu. fp normalized = normalize(fp(value)); const auto cached_pow = get_cached_power( min_exp - (normalized.e + fp::significand_size), cached_exp10); normalized = normalized * cached_pow; // Limit precision to the maximum possible number of significant digits in an // IEEE754 double because we don't need to generate zeros. const int max_double_digits = 767; if (precision > max_double_digits) precision = max_double_digits; fixed_handler handler{buf.data(), 0, precision, -cached_exp10, fixed}; if (grisu_gen_digits(normalized, 1, exp, handler) == digits::error) { exp += handler.size - cached_exp10 - 1; fallback_format(value, handler.precision, specs.binary32, buf, exp); } else { exp += handler.exp10; buf.try_resize(to_unsigned(handler.size)); } if (!fixed && !specs.showpoint) { // Remove trailing zeros. auto num_digits = buf.size(); while (num_digits > 0 && buf[num_digits - 1] == '0') { --num_digits; ++exp; } buf.try_resize(num_digits); } return exp; } // namespace detail template <typename T> int snprintf_float(T value, int precision, float_specs specs, buffer<char>& buf) { // Buffer capacity must be non-zero, otherwise MSVC's vsnprintf_s will fail. FMT_ASSERT(buf.capacity() > buf.size(), "empty buffer"); static_assert(!std::is_same<T, float>::value, ""); // Subtract 1 to account for the difference in precision since we use %e for // both general and exponent format. if (specs.format == float_format::general || specs.format == float_format::exp) precision = (precision >= 0 ? precision : 6) - 1; // Build the format string. enum { max_format_size = 7 }; // The longest format is "%#.*Le". char format[max_format_size]; char* format_ptr = format; *format_ptr++ = '%'; if (specs.showpoint && specs.format == float_format::hex) *format_ptr++ = '#'; if (precision >= 0) { *format_ptr++ = '.'; *format_ptr++ = '*'; } if (std::is_same<T, long double>()) *format_ptr++ = 'L'; *format_ptr++ = specs.format != float_format::hex ? (specs.format == float_format::fixed ? 'f' : 'e') : (specs.upper ? 'A' : 'a'); *format_ptr = '\0'; // Format using snprintf. auto offset = buf.size(); for (;;) { auto begin = buf.data() + offset; auto capacity = buf.capacity() - offset; #ifdef FMT_FUZZ if (precision > 100000) throw std::runtime_error( "fuzz mode - avoid large allocation inside snprintf"); #endif // Suppress the warning about a nonliteral format string. // Cannot use auto because of a bug in MinGW (#1532). int (*snprintf_ptr)(char*, size_t, const char*, ...) = FMT_SNPRINTF; int result = precision >= 0 ? snprintf_ptr(begin, capacity, format, precision, value) : snprintf_ptr(begin, capacity, format, value); if (result < 0) { // The buffer will grow exponentially. buf.try_reserve(buf.capacity() + 1); continue; } auto size = to_unsigned(result); // Size equal to capacity means that the last character was truncated. if (size >= capacity) { buf.try_reserve(size + offset + 1); // Add 1 for the terminating '\0'. continue; } auto is_digit = [](char c) { return c >= '0' && c <= '9'; }; if (specs.format == float_format::fixed) { if (precision == 0) { buf.try_resize(size); return 0; } // Find and remove the decimal point. auto end = begin + size, p = end; do { --p; } while (is_digit(*p)); int fraction_size = static_cast<int>(end - p - 1); std::memmove(p, p + 1, to_unsigned(fraction_size)); buf.try_resize(size - 1); return -fraction_size; } if (specs.format == float_format::hex) { buf.try_resize(size + offset); return 0; } // Find and parse the exponent. auto end = begin + size, exp_pos = end; do { --exp_pos; } while (*exp_pos != 'e'); char sign = exp_pos[1]; FMT_ASSERT(sign == '+' || sign == '-', ""); int exp = 0; auto p = exp_pos + 2; // Skip 'e' and sign. do { FMT_ASSERT(is_digit(*p), ""); exp = exp * 10 + (*p++ - '0'); } while (p != end); if (sign == '-') exp = -exp; int fraction_size = 0; if (exp_pos != begin + 1) { // Remove trailing zeros. auto fraction_end = exp_pos - 1; while (*fraction_end == '0') --fraction_end; // Move the fractional part left to get rid of the decimal point. fraction_size = static_cast<int>(fraction_end - begin - 1); std::memmove(begin + 1, begin + 2, to_unsigned(fraction_size)); } buf.try_resize(to_unsigned(fraction_size) + offset + 1); return exp - fraction_size; } } struct stringifier { template <typename T> FMT_INLINE std::string operator()(T value) const { return to_string(value); } std::string operator()(basic_format_arg<format_context>::handle h) const { memory_buffer buf; format_parse_context parse_ctx({}); format_context format_ctx(buffer_appender<char>(buf), {}, {}); h.format(parse_ctx, format_ctx); return to_string(buf); } }; } // namespace detail template <> struct formatter<detail::bigint> { FMT_CONSTEXPR format_parse_context::iterator parse( format_parse_context& ctx) { return ctx.begin(); } format_context::iterator format(const detail::bigint& n, format_context& ctx) { auto out = ctx.out(); bool first = true; for (auto i = n.bigits_.size(); i > 0; --i) { auto value = n.bigits_[i - 1u]; if (first) { out = format_to(out, FMT_STRING("{:x}"), value); first = false; continue; } out = format_to(out, FMT_STRING("{:08x}"), value); } if (n.exp_ > 0) out = format_to(out, FMT_STRING("p{}"), n.exp_ * detail::bigint::bigit_bits); return out; } }; FMT_FUNC detail::utf8_to_utf16::utf8_to_utf16(string_view s) { for_each_codepoint(s, [this](uint32_t cp, int error) { if (error != 0) FMT_THROW(std::runtime_error("invalid utf8")); if (cp <= 0xFFFF) { buffer_.push_back(static_cast<wchar_t>(cp)); } else { cp -= 0x10000; buffer_.push_back(static_cast<wchar_t>(0xD800 + (cp >> 10))); buffer_.push_back(static_cast<wchar_t>(0xDC00 + (cp & 0x3FF))); } }); buffer_.push_back(0); } FMT_FUNC void format_system_error(detail::buffer<char>& out, int error_code, string_view message) FMT_NOEXCEPT { FMT_TRY { memory_buffer buf; buf.resize(inline_buffer_size); for (;;) { char* system_message = &buf[0]; int result = detail::safe_strerror(error_code, system_message, buf.size()); if (result == 0) { format_to(detail::buffer_appender<char>(out), FMT_STRING("{}: {}"), message, system_message); return; } if (result != ERANGE) break; // Can't get error message, report error code instead. buf.resize(buf.size() * 2); } } FMT_CATCH(...) {} format_error_code(out, error_code, message); } FMT_FUNC void detail::error_handler::on_error(const char* message) { FMT_THROW(format_error(message)); } FMT_FUNC void report_system_error(int error_code, fmt::string_view message) FMT_NOEXCEPT { report_error(format_system_error, error_code, message); } FMT_FUNC std::string detail::vformat(string_view format_str, format_args args) { if (format_str.size() == 2 && equal2(format_str.data(), "{}")) { auto arg = args.get(0); if (!arg) error_handler().on_error("argument not found"); return visit_format_arg(stringifier(), arg); } memory_buffer buffer; detail::vformat_to(buffer, format_str, args); return to_string(buffer); } #ifdef _WIN32 namespace detail { using dword = conditional_t<sizeof(long) == 4, unsigned long, unsigned>; extern "C" __declspec(dllimport) int __stdcall WriteConsoleW( // void*, const void*, dword, dword*, void*); } // namespace detail #endif FMT_FUNC void vprint(std::FILE* f, string_view format_str, format_args args) { memory_buffer buffer; detail::vformat_to(buffer, format_str, basic_format_args<buffer_context<char>>(args)); #ifdef _WIN32 auto fd = _fileno(f); if (_isatty(fd)) { detail::utf8_to_utf16 u16(string_view(buffer.data(), buffer.size())); auto written = detail::dword(); if (detail::WriteConsoleW(reinterpret_cast<void*>(_get_osfhandle(fd)), u16.c_str(), static_cast<uint32_t>(u16.size()), &written, nullptr)) { return; } // Fallback to fwrite on failure. It can happen if the output has been // redirected to NUL. } #endif detail::fwrite_fully(buffer.data(), 1, buffer.size(), f); } #ifdef _WIN32 // Print assuming legacy (non-Unicode) encoding. FMT_FUNC void detail::vprint_mojibake(std::FILE* f, string_view format_str, format_args args) { memory_buffer buffer; detail::vformat_to(buffer, format_str, basic_format_args<buffer_context<char>>(args)); fwrite_fully(buffer.data(), 1, buffer.size(), f); } #endif FMT_FUNC void vprint(string_view format_str, format_args args) { vprint(stdout, format_str, args); } FMT_END_NAMESPACE #endif // FMT_FORMAT_INL_H_ #else # define FMT_FUNC #endif #endif // FMT_FORMAT_H_ // Formatting library for C++ - experimental format string compilation // // Copyright (c) 2012 - present, Victor Zverovich and fmt contributors // All rights reserved. // // For the license information refer to format.h. #ifndef FMT_COMPILE_H_ #define FMT_COMPILE_H_ #include <algorithm> #include <vector> #ifndef FMT_USE_NONTYPE_TEMPLATE_PARAMETERS # if defined(__cpp_nontype_template_parameter_class) && \ (!FMT_GCC_VERSION || FMT_GCC_VERSION >= 903) # define FMT_USE_NONTYPE_TEMPLATE_PARAMETERS 1 # else # define FMT_USE_NONTYPE_TEMPLATE_PARAMETERS 0 # endif #endif FMT_BEGIN_NAMESPACE namespace detail { template <typename OutputIt> class truncating_iterator_base { protected: OutputIt out_; size_t limit_; size_t count_ = 0; truncating_iterator_base() : out_(), limit_(0) {} truncating_iterator_base(OutputIt out, size_t limit) : out_(out), limit_(limit) {} public: using iterator_category = std::output_iterator_tag; using value_type = typename std::iterator_traits<OutputIt>::value_type; using difference_type = std::ptrdiff_t; using pointer = void; using reference = void; using _Unchecked_type = truncating_iterator_base; // Mark iterator as checked. OutputIt base() const { return out_; } size_t count() const { return count_; } }; // An output iterator that truncates the output and counts the number of objects // written to it. template <typename OutputIt, typename Enable = typename std::is_void< typename std::iterator_traits<OutputIt>::value_type>::type> class truncating_iterator; template <typename OutputIt> class truncating_iterator<OutputIt, std::false_type> : public truncating_iterator_base<OutputIt> { mutable typename truncating_iterator_base<OutputIt>::value_type blackhole_; public: using value_type = typename truncating_iterator_base<OutputIt>::value_type; truncating_iterator() = default; truncating_iterator(OutputIt out, size_t limit) : truncating_iterator_base<OutputIt>(out, limit) {} truncating_iterator& operator++() { if (this->count_++ < this->limit_) ++this->out_; return *this; } truncating_iterator operator++(int) { auto it = *this; ++*this; return it; } value_type& operator*() const { return this->count_ < this->limit_ ? *this->out_ : blackhole_; } }; template <typename OutputIt> class truncating_iterator<OutputIt, std::true_type> : public truncating_iterator_base<OutputIt> { public: truncating_iterator() = default; truncating_iterator(OutputIt out, size_t limit) : truncating_iterator_base<OutputIt>(out, limit) {} template <typename T> truncating_iterator& operator=(T val) { if (this->count_++ < this->limit_) *this->out_++ = val; return *this; } truncating_iterator& operator++() { return *this; } truncating_iterator& operator++(int) { return *this; } truncating_iterator& operator*() { return *this; } }; // A compile-time string which is compiled into fast formatting code. class compiled_string {}; template <typename S> struct is_compiled_string : std::is_base_of<compiled_string, S> {}; /** \rst Converts a string literal *s* into a format string that will be parsed at compile time and converted into efficient formatting code. Requires C++17 ``constexpr if`` compiler support. **Example**:: // Converts 42 into std::string using the most efficient method and no // runtime format string processing. std::string s = fmt::format(FMT_COMPILE("{}"), 42); \endrst */ #define FMT_COMPILE(s) FMT_STRING_IMPL(s, fmt::detail::compiled_string) #if FMT_USE_NONTYPE_TEMPLATE_PARAMETERS template <typename Char, size_t N> struct fixed_string { constexpr fixed_string(const Char (&str)[N]) { copy_str<Char, const Char*, Char*>(static_cast<const Char*>(str), str + N, data); } Char data[N]{}; }; template <typename Char, size_t N, fixed_string<Char, N> Str> struct udl_compiled_string : compiled_string { using char_type = Char; constexpr operator basic_string_view<char_type>() const { return {Str.data, N - 1}; } }; #endif template <typename T, typename... Tail> const T& first(const T& value, const Tail&...) { return value; } // Part of a compiled format string. It can be either literal text or a // replacement field. template <typename Char> struct format_part { enum class kind { arg_index, arg_name, text, replacement }; struct replacement { arg_ref<Char> arg_id; dynamic_format_specs<Char> specs; }; kind part_kind; union value { int arg_index; basic_string_view<Char> str; replacement repl; FMT_CONSTEXPR value(int index = 0) : arg_index(index) {} FMT_CONSTEXPR value(basic_string_view<Char> s) : str(s) {} FMT_CONSTEXPR value(replacement r) : repl(r) {} } val; // Position past the end of the argument id. const Char* arg_id_end = nullptr; FMT_CONSTEXPR format_part(kind k = kind::arg_index, value v = {}) : part_kind(k), val(v) {} static FMT_CONSTEXPR format_part make_arg_index(int index) { return format_part(kind::arg_index, index); } static FMT_CONSTEXPR format_part make_arg_name(basic_string_view<Char> name) { return format_part(kind::arg_name, name); } static FMT_CONSTEXPR format_part make_text(basic_string_view<Char> text) { return format_part(kind::text, text); } static FMT_CONSTEXPR format_part make_replacement(replacement repl) { return format_part(kind::replacement, repl); } }; template <typename Char> struct part_counter { unsigned num_parts = 0; FMT_CONSTEXPR void on_text(const Char* begin, const Char* end) { if (begin != end) ++num_parts; } FMT_CONSTEXPR int on_arg_id() { return ++num_parts, 0; } FMT_CONSTEXPR int on_arg_id(int) { return ++num_parts, 0; } FMT_CONSTEXPR int on_arg_id(basic_string_view<Char>) { return ++num_parts, 0; } FMT_CONSTEXPR void on_replacement_field(int, const Char*) {} FMT_CONSTEXPR const Char* on_format_specs(int, const Char* begin, const Char* end) { // Find the matching brace. unsigned brace_counter = 0; for (; begin != end; ++begin) { if (*begin == '{') { ++brace_counter; } else if (*begin == '}') { if (brace_counter == 0u) break; --brace_counter; } } return begin; } FMT_CONSTEXPR void on_error(const char*) {} }; // Counts the number of parts in a format string. template <typename Char> FMT_CONSTEXPR unsigned count_parts(basic_string_view<Char> format_str) { part_counter<Char> counter; parse_format_string<true>(format_str, counter); return counter.num_parts; } template <typename Char, typename PartHandler> class format_string_compiler : public error_handler { private: using part = format_part<Char>; PartHandler handler_; part part_; basic_string_view<Char> format_str_; basic_format_parse_context<Char> parse_context_; public: FMT_CONSTEXPR format_string_compiler(basic_string_view<Char> format_str, PartHandler handler) : handler_(handler), format_str_(format_str), parse_context_(format_str) {} FMT_CONSTEXPR void on_text(const Char* begin, const Char* end) { if (begin != end) handler_(part::make_text({begin, to_unsigned(end - begin)})); } FMT_CONSTEXPR int on_arg_id() { part_ = part::make_arg_index(parse_context_.next_arg_id()); return 0; } FMT_CONSTEXPR int on_arg_id(int id) { parse_context_.check_arg_id(id); part_ = part::make_arg_index(id); return 0; } FMT_CONSTEXPR int on_arg_id(basic_string_view<Char> id) { part_ = part::make_arg_name(id); return 0; } FMT_CONSTEXPR void on_replacement_field(int, const Char* ptr) { part_.arg_id_end = ptr; handler_(part_); } FMT_CONSTEXPR const Char* on_format_specs(int, const Char* begin, const Char* end) { auto repl = typename part::replacement(); dynamic_specs_handler<basic_format_parse_context<Char>> handler( repl.specs, parse_context_); auto it = parse_format_specs(begin, end, handler); if (*it != '}') on_error("missing '}' in format string"); repl.arg_id = part_.part_kind == part::kind::arg_index ? arg_ref<Char>(part_.val.arg_index) : arg_ref<Char>(part_.val.str); auto replacement_part = part::make_replacement(repl); replacement_part.arg_id_end = begin; handler_(replacement_part); return it; } }; // Compiles a format string and invokes handler(part) for each parsed part. template <bool IS_CONSTEXPR, typename Char, typename PartHandler> FMT_CONSTEXPR void compile_format_string(basic_string_view<Char> format_str, PartHandler handler) { parse_format_string<IS_CONSTEXPR>( format_str, format_string_compiler<Char, PartHandler>(format_str, handler)); } template <typename OutputIt, typename Context, typename Id> void format_arg( basic_format_parse_context<typename Context::char_type>& parse_ctx, Context& ctx, Id arg_id) { auto arg = ctx.arg(arg_id); if (arg.type() == type::custom_type) { visit_format_arg(custom_formatter<Context>(parse_ctx, ctx), arg); } else { ctx.advance_to(visit_format_arg( arg_formatter<OutputIt, typename Context::char_type>(ctx), arg)); } } // vformat_to is defined in a subnamespace to prevent ADL. namespace cf { template <typename Context, typename OutputIt, typename CompiledFormat> auto vformat_to(OutputIt out, CompiledFormat& cf, basic_format_args<Context> args) -> typename Context::iterator { using char_type = typename Context::char_type; basic_format_parse_context<char_type> parse_ctx( to_string_view(cf.format_str_)); Context ctx(out, args); const auto& parts = cf.parts(); for (auto part_it = std::begin(parts); part_it != std::end(parts); ++part_it) { const auto& part = *part_it; const auto& value = part.val; using format_part_t = format_part<char_type>; switch (part.part_kind) { case format_part_t::kind::text: { const auto text = value.str; auto output = ctx.out(); auto&& it = reserve(output, text.size()); it = std::copy_n(text.begin(), text.size(), it); ctx.advance_to(output); break; } case format_part_t::kind::arg_index: advance_to(parse_ctx, part.arg_id_end); detail::format_arg<OutputIt>(parse_ctx, ctx, value.arg_index); break; case format_part_t::kind::arg_name: advance_to(parse_ctx, part.arg_id_end); detail::format_arg<OutputIt>(parse_ctx, ctx, value.str); break; case format_part_t::kind::replacement: { const auto& arg_id_value = value.repl.arg_id.val; const auto arg = value.repl.arg_id.kind == arg_id_kind::index ? ctx.arg(arg_id_value.index) : ctx.arg(arg_id_value.name); auto specs = value.repl.specs; handle_dynamic_spec<width_checker>(specs.width, specs.width_ref, ctx); handle_dynamic_spec<precision_checker>(specs.precision, specs.precision_ref, ctx); error_handler h; numeric_specs_checker<error_handler> checker(h, arg.type()); if (specs.align == align::numeric) checker.require_numeric_argument(); if (specs.sign != sign::none) checker.check_sign(); if (specs.alt) checker.require_numeric_argument(); if (specs.precision >= 0) checker.check_precision(); advance_to(parse_ctx, part.arg_id_end); ctx.advance_to( visit_format_arg(arg_formatter<OutputIt, typename Context::char_type>( ctx, &specs), arg)); break; } } } return ctx.out(); } } // namespace cf struct basic_compiled_format {}; template <typename S, typename = void> struct compiled_format_base : basic_compiled_format { using char_type = char_t<S>; using parts_container = std::vector<detail::format_part<char_type>>; parts_container compiled_parts; explicit compiled_format_base(basic_string_view<char_type> format_str) { compile_format_string<false>(format_str, [this](const format_part<char_type>& part) { compiled_parts.push_back(part); }); } const parts_container& parts() const { return compiled_parts; } }; template <typename Char, unsigned N> struct format_part_array { format_part<Char> data[N] = {}; FMT_CONSTEXPR format_part_array() = default; }; template <typename Char, unsigned N> FMT_CONSTEXPR format_part_array<Char, N> compile_to_parts( basic_string_view<Char> format_str) { format_part_array<Char, N> parts; unsigned counter = 0; // This is not a lambda for compatibility with older compilers. struct { format_part<Char>* parts; unsigned* counter; FMT_CONSTEXPR void operator()(const format_part<Char>& part) { parts[(*counter)++] = part; } } collector{parts.data, &counter}; compile_format_string<true>(format_str, collector); if (counter < N) { parts.data[counter] = format_part<Char>::make_text(basic_string_view<Char>()); } return parts; } template <typename T> constexpr const T& constexpr_max(const T& a, const T& b) { return (a < b) ? b : a; } template <typename S> struct compiled_format_base<S, enable_if_t<is_compile_string<S>::value>> : basic_compiled_format { using char_type = char_t<S>; FMT_CONSTEXPR explicit compiled_format_base(basic_string_view<char_type>) {} // Workaround for old compilers. Format string compilation will not be // performed there anyway. #if FMT_USE_CONSTEXPR static FMT_CONSTEXPR_DECL const unsigned num_format_parts = constexpr_max(count_parts(to_string_view(S())), 1u); #else static const unsigned num_format_parts = 1; #endif using parts_container = format_part<char_type>[num_format_parts]; const parts_container& parts() const { static FMT_CONSTEXPR_DECL const auto compiled_parts = compile_to_parts<char_type, num_format_parts>( detail::to_string_view(S())); return compiled_parts.data; } }; template <typename S, typename... Args> class compiled_format : private compiled_format_base<S> { public: using typename compiled_format_base<S>::char_type; private: basic_string_view<char_type> format_str_; template <typename Context, typename OutputIt, typename CompiledFormat> friend auto cf::vformat_to(OutputIt out, CompiledFormat& cf, basic_format_args<Context> args) -> typename Context::iterator; public: compiled_format() = delete; explicit constexpr compiled_format(basic_string_view<char_type> format_str) : compiled_format_base<S>(format_str), format_str_(format_str) {} }; #ifdef __cpp_if_constexpr template <typename... Args> struct type_list {}; // Returns a reference to the argument at index N from [first, rest...]. template <int N, typename T, typename... Args> constexpr const auto& get([[maybe_unused]] const T& first, [[maybe_unused]] const Args&... rest) { static_assert(N < 1 + sizeof...(Args), "index is out of bounds"); if constexpr (N == 0) return first; else return get<N - 1>(rest...); } template <int N, typename> struct get_type_impl; template <int N, typename... Args> struct get_type_impl<N, type_list<Args...>> { using type = remove_cvref_t<decltype(get<N>(std::declval<Args>()...))>; }; template <int N, typename T> using get_type = typename get_type_impl<N, T>::type; template <typename T> struct is_compiled_format : std::false_type {}; template <typename Char> struct text { basic_string_view<Char> data; using char_type = Char; template <typename OutputIt, typename... Args> constexpr OutputIt format(OutputIt out, const Args&...) const { return write<Char>(out, data); } }; template <typename Char> struct is_compiled_format<text<Char>> : std::true_type {}; template <typename Char> constexpr text<Char> make_text(basic_string_view<Char> s, size_t pos, size_t size) { return {{&s[pos], size}}; } template <typename Char> struct code_unit { Char value; using char_type = Char; template <typename OutputIt, typename... Args> constexpr OutputIt format(OutputIt out, const Args&...) const { return write<Char>(out, value); } }; template <typename Char> struct is_compiled_format<code_unit<Char>> : std::true_type {}; // A replacement field that refers to argument N. template <typename Char, typename T, int N> struct field { using char_type = Char; template <typename OutputIt, typename... Args> constexpr OutputIt format(OutputIt out, const Args&... args) const { if constexpr (is_named_arg<typename std::remove_cv<T>::type>::value) { const auto& arg = get<N>(args...).value; return write<Char>(out, arg); } else { // This ensures that the argument type is convertile to `const T&`. const T& arg = get<N>(args...); return write<Char>(out, arg); } } }; template <typename Char, typename T, int N> struct is_compiled_format<field<Char, T, N>> : std::true_type {}; // A replacement field that refers to argument with name. template <typename Char> struct runtime_named_field { using char_type = Char; basic_string_view<Char> name; template <typename OutputIt, typename T> constexpr static bool try_format_argument(OutputIt& out, basic_string_view<Char> arg_name, const T& arg) { if constexpr (is_named_arg<typename std::remove_cv<T>::type>::value) { if (arg_name == arg.name) { out = write<Char>(out, arg.value); return true; } } return false; } template <typename OutputIt, typename... Args> constexpr OutputIt format(OutputIt out, const Args&... args) const { bool found = (try_format_argument(out, name, args) || ...); if (!found) { throw format_error("argument with specified name is not found"); } return out; } }; template <typename Char> struct is_compiled_format<runtime_named_field<Char>> : std::true_type {}; // A replacement field that refers to argument N and has format specifiers. template <typename Char, typename T, int N> struct spec_field { using char_type = Char; formatter<T, Char> fmt; template <typename OutputIt, typename... Args> constexpr OutputIt format(OutputIt out, const Args&... args) const { // This ensures that the argument type is convertile to `const T&`. const T& arg = get<N>(args...); const auto& vargs = make_format_args<basic_format_context<OutputIt, Char>>(args...); basic_format_context<OutputIt, Char> ctx(out, vargs); return fmt.format(arg, ctx); } }; template <typename Char, typename T, int N> struct is_compiled_format<spec_field<Char, T, N>> : std::true_type {}; template <typename L, typename R> struct concat { L lhs; R rhs; using char_type = typename L::char_type; template <typename OutputIt, typename... Args> constexpr OutputIt format(OutputIt out, const Args&... args) const { out = lhs.format(out, args...); return rhs.format(out, args...); } }; template <typename L, typename R> struct is_compiled_format<concat<L, R>> : std::true_type {}; template <typename L, typename R> constexpr concat<L, R> make_concat(L lhs, R rhs) { return {lhs, rhs}; } struct unknown_format {}; template <typename Char> constexpr size_t parse_text(basic_string_view<Char> str, size_t pos) { for (size_t size = str.size(); pos != size; ++pos) { if (str[pos] == '{' || str[pos] == '}') break; } return pos; } template <typename Args, size_t POS, int ID, typename S> constexpr auto compile_format_string(S format_str); template <typename Args, size_t POS, int ID, typename T, typename S> constexpr auto parse_tail(T head, S format_str) { if constexpr (POS != basic_string_view<typename S::char_type>(format_str).size()) { constexpr auto tail = compile_format_string<Args, POS, ID>(format_str); if constexpr (std::is_same<remove_cvref_t<decltype(tail)>, unknown_format>()) return tail; else return make_concat(head, tail); } else { return head; } } template <typename T, typename Char> struct parse_specs_result { formatter<T, Char> fmt; size_t end; int next_arg_id; }; constexpr int manual_indexing_id = -1; template <typename T, typename Char> constexpr parse_specs_result<T, Char> parse_specs(basic_string_view<Char> str, size_t pos, int next_arg_id) { str.remove_prefix(pos); auto ctx = basic_format_parse_context<Char>(str, {}, next_arg_id); auto f = formatter<T, Char>(); auto end = f.parse(ctx); return {f, pos + fmt::detail::to_unsigned(end - str.data()) + 1, next_arg_id == 0 ? manual_indexing_id : ctx.next_arg_id()}; } template <typename Char> struct arg_id_handler { constexpr void on_error(const char* message) { throw format_error(message); } constexpr int on_arg_id() { FMT_ASSERT(false, "handler cannot be used with automatic indexing"); return 0; } constexpr int on_arg_id(int id) { arg_id = arg_ref<Char>(id); return 0; } constexpr int on_arg_id(basic_string_view<Char> id) { arg_id = arg_ref<Char>(id); return 0; } arg_ref<Char> arg_id; }; template <typename Char> struct parse_arg_id_result { arg_ref<Char> arg_id; const Char* arg_id_end; }; template <int ID, typename Char> constexpr auto parse_arg_id(const Char* begin, const Char* end) { auto handler = arg_id_handler<Char>{arg_ref<Char>{}}; auto adapter = id_adapter<arg_id_handler<Char>, Char>{handler, 0}; auto arg_id_end = parse_arg_id(begin, end, adapter); return parse_arg_id_result<Char>{handler.arg_id, arg_id_end}; } // Compiles a non-empty format string and returns the compiled representation // or unknown_format() on unrecognized input. template <typename Args, size_t POS, int ID, typename S> constexpr auto compile_format_string(S format_str) { using char_type = typename S::char_type; constexpr basic_string_view<char_type> str = format_str; if constexpr (str[POS] == '{') { if constexpr (POS + 1 == str.size()) throw format_error("unmatched '{' in format string"); if constexpr (str[POS + 1] == '{') { return parse_tail<Args, POS + 2, ID>(make_text(str, POS, 1), format_str); } else if constexpr (str[POS + 1] == '}' || str[POS + 1] == ':') { static_assert(ID != manual_indexing_id, "cannot switch from manual to automatic argument indexing"); using id_type = get_type<ID, Args>; if constexpr (str[POS + 1] == '}') { constexpr auto next_id = ID != manual_indexing_id ? ID + 1 : manual_indexing_id; return parse_tail<Args, POS + 2, next_id>( field<char_type, id_type, ID>(), format_str); } else { constexpr auto result = parse_specs<id_type>(str, POS + 2, ID + 1); return parse_tail<Args, result.end, result.next_arg_id>( spec_field<char_type, id_type, ID>{result.fmt}, format_str); } } else { constexpr auto arg_id_result = parse_arg_id<ID>(str.data() + POS + 1, str.data() + str.size()); constexpr auto arg_id_end_pos = arg_id_result.arg_id_end - str.data(); constexpr char_type c = arg_id_end_pos != str.size() ? str[arg_id_end_pos] : char_type(); static_assert(c == '}' || c == ':', "missing '}' in format string"); if constexpr (arg_id_result.arg_id.kind == arg_id_kind::index) { static_assert( ID == manual_indexing_id || ID == 0, "cannot switch from automatic to manual argument indexing"); constexpr auto arg_index = arg_id_result.arg_id.val.index; using id_type = get_type<arg_index, Args>; if constexpr (c == '}') { return parse_tail<Args, arg_id_end_pos + 1, manual_indexing_id>( field<char_type, id_type, arg_index>(), format_str); } else if constexpr (c == ':') { constexpr auto result = parse_specs<id_type>(str, arg_id_end_pos + 1, 0); return parse_tail<Args, result.end, result.next_arg_id>( spec_field<char_type, id_type, arg_index>{result.fmt}, format_str); } } else if constexpr (arg_id_result.arg_id.kind == arg_id_kind::name) { if constexpr (c == '}') { return parse_tail<Args, arg_id_end_pos + 1, ID>( runtime_named_field<char_type>{arg_id_result.arg_id.val.name}, format_str); } else if constexpr (c == ':') { return unknown_format(); // no type info for specs parsing } } } } else if constexpr (str[POS] == '}') { if constexpr (POS + 1 == str.size()) throw format_error("unmatched '}' in format string"); return parse_tail<Args, POS + 2, ID>(make_text(str, POS, 1), format_str); } else { constexpr auto end = parse_text(str, POS + 1); if constexpr (end - POS > 1) { return parse_tail<Args, end, ID>(make_text(str, POS, end - POS), format_str); } else { return parse_tail<Args, end, ID>(code_unit<char_type>{str[POS]}, format_str); } } } template <typename... Args, typename S, FMT_ENABLE_IF(is_compile_string<S>::value || detail::is_compiled_string<S>::value)> constexpr auto compile(S format_str) { constexpr basic_string_view<typename S::char_type> str = format_str; if constexpr (str.size() == 0) { return detail::make_text(str, 0, 0); } else { constexpr auto result = detail::compile_format_string<detail::type_list<Args...>, 0, 0>( format_str); return result; } } #else template <typename... Args, typename S, FMT_ENABLE_IF(is_compile_string<S>::value)> constexpr auto compile(S format_str) -> detail::compiled_format<S, Args...> { return detail::compiled_format<S, Args...>(to_string_view(format_str)); } #endif // __cpp_if_constexpr // Compiles the format string which must be a string literal. template <typename... Args, typename Char, size_t N> auto compile(const Char (&format_str)[N]) -> detail::compiled_format<const Char*, Args...> { return detail::compiled_format<const Char*, Args...>( basic_string_view<Char>(format_str, N - 1)); } } // namespace detail // DEPRECATED! use FMT_COMPILE instead. template <typename... Args> FMT_DEPRECATED auto compile(const Args&... args) -> decltype(detail::compile(args...)) { return detail::compile(args...); } #if FMT_USE_CONSTEXPR # ifdef __cpp_if_constexpr template <typename CompiledFormat, typename... Args, typename Char = typename CompiledFormat::char_type, FMT_ENABLE_IF(detail::is_compiled_format<CompiledFormat>::value)> FMT_INLINE std::basic_string<Char> format(const CompiledFormat& cf, const Args&... args) { basic_memory_buffer<Char> buffer; cf.format(detail::buffer_appender<Char>(buffer), args...); return to_string(buffer); } template <typename OutputIt, typename CompiledFormat, typename... Args, FMT_ENABLE_IF(detail::is_compiled_format<CompiledFormat>::value)> constexpr OutputIt format_to(OutputIt out, const CompiledFormat& cf, const Args&... args) { return cf.format(out, args...); } # endif // __cpp_if_constexpr #endif // FMT_USE_CONSTEXPR template <typename CompiledFormat, typename... Args, typename Char = typename CompiledFormat::char_type, FMT_ENABLE_IF(std::is_base_of<detail::basic_compiled_format, CompiledFormat>::value)> std::basic_string<Char> format(const CompiledFormat& cf, const Args&... args) { basic_memory_buffer<Char> buffer; using context = buffer_context<Char>; detail::cf::vformat_to<context>(detail::buffer_appender<Char>(buffer), cf, make_format_args<context>(args...)); return to_string(buffer); } template <typename S, typename... Args, FMT_ENABLE_IF(detail::is_compiled_string<S>::value)> FMT_INLINE std::basic_string<typename S::char_type> format(const S&, Args&&... args) { #ifdef __cpp_if_constexpr if constexpr (std::is_same<typename S::char_type, char>::value) { constexpr basic_string_view<typename S::char_type> str = S(); if constexpr (str.size() == 2 && str[0] == '{' && str[1] == '}') { const auto& first = detail::first(args...); if constexpr (detail::is_named_arg< remove_cvref_t<decltype(first)>>::value) { return fmt::to_string(first.value); } else { return fmt::to_string(first); } } } #endif constexpr auto compiled = detail::compile<Args...>(S()); #ifdef __cpp_if_constexpr if constexpr (std::is_same<remove_cvref_t<decltype(compiled)>, detail::unknown_format>()) { return format(static_cast<basic_string_view<typename S::char_type>>(S()), std::forward<Args>(args)...); } else { return format(compiled, std::forward<Args>(args)...); } #else return format(compiled, std::forward<Args>(args)...); #endif } template <typename OutputIt, typename CompiledFormat, typename... Args, FMT_ENABLE_IF(std::is_base_of<detail::basic_compiled_format, CompiledFormat>::value)> constexpr OutputIt format_to(OutputIt out, const CompiledFormat& cf, const Args&... args) { using char_type = typename CompiledFormat::char_type; using context = format_context_t<OutputIt, char_type>; return detail::cf::vformat_to<context>(out, cf, make_format_args<context>(args...)); } template <typename OutputIt, typename S, typename... Args, FMT_ENABLE_IF(detail::is_compiled_string<S>::value)> FMT_CONSTEXPR OutputIt format_to(OutputIt out, const S&, Args&&... args) { constexpr auto compiled = detail::compile<Args...>(S()); #ifdef __cpp_if_constexpr if constexpr (std::is_same<remove_cvref_t<decltype(compiled)>, detail::unknown_format>()) { return format_to(out, static_cast<basic_string_view<typename S::char_type>>(S()), std::forward<Args>(args)...); } else { return format_to(out, compiled, std::forward<Args>(args)...); } #else return format_to(out, compiled, std::forward<Args>(args)...); #endif } template <typename OutputIt, typename CompiledFormat, typename... Args> auto format_to_n(OutputIt out, size_t n, const CompiledFormat& cf, const Args&... args) -> typename std::enable_if< detail::is_output_iterator<OutputIt, typename CompiledFormat::char_type>::value && std::is_base_of<detail::basic_compiled_format, CompiledFormat>::value, format_to_n_result<OutputIt>>::type { auto it = format_to(detail::truncating_iterator<OutputIt>(out, n), cf, args...); return {it.base(), it.count()}; } template <typename OutputIt, typename S, typename... Args, FMT_ENABLE_IF(detail::is_compiled_string<S>::value)> format_to_n_result<OutputIt> format_to_n(OutputIt out, size_t n, const S&, Args&&... args) { auto it = format_to(detail::truncating_iterator<OutputIt>(out, n), S(), std::forward<Args>(args)...); return {it.base(), it.count()}; } template <typename CompiledFormat, typename... Args, FMT_ENABLE_IF(std::is_base_of<detail::basic_compiled_format, CompiledFormat>::value || detail::is_compiled_string<CompiledFormat>::value)> size_t formatted_size(const CompiledFormat& cf, const Args&... args) { return format_to(detail::counting_iterator(), cf, args...).count(); } #if FMT_USE_NONTYPE_TEMPLATE_PARAMETERS inline namespace literals { template <detail::fixed_string Str> constexpr detail::udl_compiled_string<remove_cvref_t<decltype(Str.data[0])>, sizeof(Str.data), Str> operator""_cf() { return {}; } } // namespace literals #endif FMT_END_NAMESPACE #endif // FMT_COMPILE_H_ char* test_fmt_compile_master(char* buffer, unsigned value) { return fmt::format_to(buffer, FMT_COMPILE("{:x}"), value); }
Become a Patron
Sponsor on GitHub
Donate via PayPal
Source on GitHub
Mailing list
Installed libraries
Wiki
Report an issue
How it works
Contact the author
CE on Mastodon
About the author
Statistics
Changelog
Version tree