Thanks for using Compiler Explorer
Sponsors
Jakt
C++
Ada
Algol68
Analysis
Android Java
Android Kotlin
Assembly
C
C3
Carbon
C with Coccinelle
C++ with Coccinelle
C++ (Circle)
CIRCT
Clean
CMake
CMakeScript
COBOL
C++ for OpenCL
MLIR
Cppx
Cppx-Blue
Cppx-Gold
Cpp2-cppfront
Crystal
C#
CUDA C++
D
Dart
Elixir
Erlang
Fortran
F#
GLSL
Go
Haskell
HLSL
Hook
Hylo
IL
ispc
Java
Julia
Kotlin
LLVM IR
LLVM MIR
Modula-2
Mojo
Nim
Numba
Nix
Objective-C
Objective-C++
OCaml
Odin
OpenCL C
Pascal
Pony
PTX
Python
Racket
Raku
Ruby
Rust
Sail
Snowball
Scala
Slang
Solidity
Spice
SPIR-V
Swift
LLVM TableGen
Toit
Triton
TypeScript Native
V
Vala
Visual Basic
Vyper
WASM
Zig
Javascript
GIMPLE
Ygen
sway
c++ source #1
Output
Compile to binary object
Link to binary
Execute the code
Intel asm syntax
Demangle identifiers
Verbose demangling
Filters
Unused labels
Library functions
Directives
Comments
Horizontal whitespace
Debug intrinsics
Compiler
6502-c++ 11.1.0
ARM GCC 10.2.0
ARM GCC 10.3.0
ARM GCC 10.4.0
ARM GCC 10.5.0
ARM GCC 11.1.0
ARM GCC 11.2.0
ARM GCC 11.3.0
ARM GCC 11.4.0
ARM GCC 12.1.0
ARM GCC 12.2.0
ARM GCC 12.3.0
ARM GCC 12.4.0
ARM GCC 12.5.0
ARM GCC 13.1.0
ARM GCC 13.2.0
ARM GCC 13.2.0 (unknown-eabi)
ARM GCC 13.3.0
ARM GCC 13.3.0 (unknown-eabi)
ARM GCC 13.4.0
ARM GCC 13.4.0 (unknown-eabi)
ARM GCC 14.1.0
ARM GCC 14.1.0 (unknown-eabi)
ARM GCC 14.2.0
ARM GCC 14.2.0 (unknown-eabi)
ARM GCC 14.3.0
ARM GCC 14.3.0 (unknown-eabi)
ARM GCC 15.1.0
ARM GCC 15.1.0 (unknown-eabi)
ARM GCC 15.2.0
ARM GCC 15.2.0 (unknown-eabi)
ARM GCC 4.5.4
ARM GCC 4.6.4
ARM GCC 5.4
ARM GCC 6.3.0
ARM GCC 6.4.0
ARM GCC 7.3.0
ARM GCC 7.5.0
ARM GCC 8.2.0
ARM GCC 8.5.0
ARM GCC 9.3.0
ARM GCC 9.4.0
ARM GCC 9.5.0
ARM GCC trunk
ARM gcc 10.2.1 (none)
ARM gcc 10.3.1 (2021.07 none)
ARM gcc 10.3.1 (2021.10 none)
ARM gcc 11.2.1 (none)
ARM gcc 5.4.1 (none)
ARM gcc 7.2.1 (none)
ARM gcc 8.2 (WinCE)
ARM gcc 8.3.1 (none)
ARM gcc 9.2.1 (none)
ARM msvc v19.0 (ex-WINE)
ARM msvc v19.10 (ex-WINE)
ARM msvc v19.14 (ex-WINE)
ARM64 Morello gcc 10.1 Alpha 2
ARM64 gcc 10.2
ARM64 gcc 10.3
ARM64 gcc 10.4
ARM64 gcc 10.5.0
ARM64 gcc 11.1
ARM64 gcc 11.2
ARM64 gcc 11.3
ARM64 gcc 11.4.0
ARM64 gcc 12.1
ARM64 gcc 12.2.0
ARM64 gcc 12.3.0
ARM64 gcc 12.4.0
ARM64 gcc 12.5.0
ARM64 gcc 13.1.0
ARM64 gcc 13.2.0
ARM64 gcc 13.3.0
ARM64 gcc 13.4.0
ARM64 gcc 14.1.0
ARM64 gcc 14.2.0
ARM64 gcc 14.3.0
ARM64 gcc 15.1.0
ARM64 gcc 15.2.0
ARM64 gcc 4.9.4
ARM64 gcc 5.4
ARM64 gcc 5.5.0
ARM64 gcc 6.3
ARM64 gcc 6.4
ARM64 gcc 7.3
ARM64 gcc 7.5
ARM64 gcc 8.2
ARM64 gcc 8.5
ARM64 gcc 9.3
ARM64 gcc 9.4
ARM64 gcc 9.5
ARM64 gcc trunk
ARM64 msvc v19.14 (ex-WINE)
AVR gcc 10.3.0
AVR gcc 11.1.0
AVR gcc 12.1.0
AVR gcc 12.2.0
AVR gcc 12.3.0
AVR gcc 12.4.0
AVR gcc 12.5.0
AVR gcc 13.1.0
AVR gcc 13.2.0
AVR gcc 13.3.0
AVR gcc 13.4.0
AVR gcc 14.1.0
AVR gcc 14.2.0
AVR gcc 14.3.0
AVR gcc 15.1.0
AVR gcc 15.2.0
AVR gcc 4.5.4
AVR gcc 4.6.4
AVR gcc 5.4.0
AVR gcc 9.2.0
AVR gcc 9.3.0
Arduino Mega (1.8.9)
Arduino Uno (1.8.9)
BPF clang (trunk)
BPF clang 13.0.0
BPF clang 14.0.0
BPF clang 15.0.0
BPF clang 16.0.0
BPF clang 17.0.1
BPF clang 18.1.0
BPF clang 19.1.0
BPF clang 20.1.0
BPF clang 21.1.0
EDG (experimental reflection)
EDG 6.5
EDG 6.5 (GNU mode gcc 13)
EDG 6.6
EDG 6.6 (GNU mode gcc 13)
EDG 6.7
EDG 6.7 (GNU mode gcc 14)
FRC 2019
FRC 2020
FRC 2023
HPPA gcc 14.2.0
HPPA gcc 14.3.0
HPPA gcc 15.1.0
HPPA gcc 15.2.0
KVX ACB 4.1.0 (GCC 7.5.0)
KVX ACB 4.1.0-cd1 (GCC 7.5.0)
KVX ACB 4.10.0 (GCC 10.3.1)
KVX ACB 4.11.1 (GCC 10.3.1)
KVX ACB 4.12.0 (GCC 11.3.0)
KVX ACB 4.2.0 (GCC 7.5.0)
KVX ACB 4.3.0 (GCC 7.5.0)
KVX ACB 4.4.0 (GCC 7.5.0)
KVX ACB 4.6.0 (GCC 9.4.1)
KVX ACB 4.8.0 (GCC 9.4.1)
KVX ACB 4.9.0 (GCC 9.4.1)
KVX ACB 5.0.0 (GCC 12.2.1)
KVX ACB 5.2.0 (GCC 13.2.1)
LoongArch64 clang (trunk)
LoongArch64 clang 17.0.1
LoongArch64 clang 18.1.0
LoongArch64 clang 19.1.0
LoongArch64 clang 20.1.0
LoongArch64 clang 21.1.0
M68K gcc 13.1.0
M68K gcc 13.2.0
M68K gcc 13.3.0
M68K gcc 13.4.0
M68K gcc 14.1.0
M68K gcc 14.2.0
M68K gcc 14.3.0
M68K gcc 15.1.0
M68K gcc 15.2.0
M68k clang (trunk)
MRISC32 gcc (trunk)
MSP430 gcc 4.5.3
MSP430 gcc 5.3.0
MSP430 gcc 6.2.1
MinGW clang 14.0.3
MinGW clang 14.0.6
MinGW clang 15.0.7
MinGW clang 16.0.0
MinGW clang 16.0.2
MinGW gcc 11.3.0
MinGW gcc 12.1.0
MinGW gcc 12.2.0
MinGW gcc 13.1.0
RISC-V (32-bits) gcc (trunk)
RISC-V (32-bits) gcc 10.2.0
RISC-V (32-bits) gcc 10.3.0
RISC-V (32-bits) gcc 11.2.0
RISC-V (32-bits) gcc 11.3.0
RISC-V (32-bits) gcc 11.4.0
RISC-V (32-bits) gcc 12.1.0
RISC-V (32-bits) gcc 12.2.0
RISC-V (32-bits) gcc 12.3.0
RISC-V (32-bits) gcc 12.4.0
RISC-V (32-bits) gcc 12.5.0
RISC-V (32-bits) gcc 13.1.0
RISC-V (32-bits) gcc 13.2.0
RISC-V (32-bits) gcc 13.3.0
RISC-V (32-bits) gcc 13.4.0
RISC-V (32-bits) gcc 14.1.0
RISC-V (32-bits) gcc 14.2.0
RISC-V (32-bits) gcc 14.3.0
RISC-V (32-bits) gcc 15.1.0
RISC-V (32-bits) gcc 15.2.0
RISC-V (32-bits) gcc 8.2.0
RISC-V (32-bits) gcc 8.5.0
RISC-V (32-bits) gcc 9.4.0
RISC-V (64-bits) gcc (trunk)
RISC-V (64-bits) gcc 10.2.0
RISC-V (64-bits) gcc 10.3.0
RISC-V (64-bits) gcc 11.2.0
RISC-V (64-bits) gcc 11.3.0
RISC-V (64-bits) gcc 11.4.0
RISC-V (64-bits) gcc 12.1.0
RISC-V (64-bits) gcc 12.2.0
RISC-V (64-bits) gcc 12.3.0
RISC-V (64-bits) gcc 12.4.0
RISC-V (64-bits) gcc 12.5.0
RISC-V (64-bits) gcc 13.1.0
RISC-V (64-bits) gcc 13.2.0
RISC-V (64-bits) gcc 13.3.0
RISC-V (64-bits) gcc 13.4.0
RISC-V (64-bits) gcc 14.1.0
RISC-V (64-bits) gcc 14.2.0
RISC-V (64-bits) gcc 14.3.0
RISC-V (64-bits) gcc 15.1.0
RISC-V (64-bits) gcc 15.2.0
RISC-V (64-bits) gcc 8.2.0
RISC-V (64-bits) gcc 8.5.0
RISC-V (64-bits) gcc 9.4.0
RISC-V rv32gc clang (trunk)
RISC-V rv32gc clang 10.0.0
RISC-V rv32gc clang 10.0.1
RISC-V rv32gc clang 11.0.0
RISC-V rv32gc clang 11.0.1
RISC-V rv32gc clang 12.0.0
RISC-V rv32gc clang 12.0.1
RISC-V rv32gc clang 13.0.0
RISC-V rv32gc clang 13.0.1
RISC-V rv32gc clang 14.0.0
RISC-V rv32gc clang 15.0.0
RISC-V rv32gc clang 16.0.0
RISC-V rv32gc clang 17.0.1
RISC-V rv32gc clang 18.1.0
RISC-V rv32gc clang 19.1.0
RISC-V rv32gc clang 20.1.0
RISC-V rv32gc clang 21.1.0
RISC-V rv32gc clang 9.0.0
RISC-V rv32gc clang 9.0.1
RISC-V rv64gc clang (trunk)
RISC-V rv64gc clang 10.0.0
RISC-V rv64gc clang 10.0.1
RISC-V rv64gc clang 11.0.0
RISC-V rv64gc clang 11.0.1
RISC-V rv64gc clang 12.0.0
RISC-V rv64gc clang 12.0.1
RISC-V rv64gc clang 13.0.0
RISC-V rv64gc clang 13.0.1
RISC-V rv64gc clang 14.0.0
RISC-V rv64gc clang 15.0.0
RISC-V rv64gc clang 16.0.0
RISC-V rv64gc clang 17.0.1
RISC-V rv64gc clang 18.1.0
RISC-V rv64gc clang 19.1.0
RISC-V rv64gc clang 20.1.0
RISC-V rv64gc clang 21.1.0
RISC-V rv64gc clang 9.0.0
RISC-V rv64gc clang 9.0.1
Raspbian Buster
Raspbian Stretch
SPARC LEON gcc 12.2.0
SPARC LEON gcc 12.3.0
SPARC LEON gcc 12.4.0
SPARC LEON gcc 12.5.0
SPARC LEON gcc 13.1.0
SPARC LEON gcc 13.2.0
SPARC LEON gcc 13.3.0
SPARC LEON gcc 13.4.0
SPARC LEON gcc 14.1.0
SPARC LEON gcc 14.2.0
SPARC LEON gcc 14.3.0
SPARC LEON gcc 15.1.0
SPARC LEON gcc 15.2.0
SPARC gcc 12.2.0
SPARC gcc 12.3.0
SPARC gcc 12.4.0
SPARC gcc 12.5.0
SPARC gcc 13.1.0
SPARC gcc 13.2.0
SPARC gcc 13.3.0
SPARC gcc 13.4.0
SPARC gcc 14.1.0
SPARC gcc 14.2.0
SPARC gcc 14.3.0
SPARC gcc 15.1.0
SPARC gcc 15.2.0
SPARC64 gcc 12.2.0
SPARC64 gcc 12.3.0
SPARC64 gcc 12.4.0
SPARC64 gcc 12.5.0
SPARC64 gcc 13.1.0
SPARC64 gcc 13.2.0
SPARC64 gcc 13.3.0
SPARC64 gcc 13.4.0
SPARC64 gcc 14.1.0
SPARC64 gcc 14.2.0
SPARC64 gcc 14.3.0
SPARC64 gcc 15.1.0
SPARC64 gcc 15.2.0
TI C6x gcc 12.2.0
TI C6x gcc 12.3.0
TI C6x gcc 12.4.0
TI C6x gcc 12.5.0
TI C6x gcc 13.1.0
TI C6x gcc 13.2.0
TI C6x gcc 13.3.0
TI C6x gcc 13.4.0
TI C6x gcc 14.1.0
TI C6x gcc 14.2.0
TI C6x gcc 14.3.0
TI C6x gcc 15.1.0
TI C6x gcc 15.2.0
TI CL430 21.6.1
Tricore gcc 11.3.0 (EEESlab)
VAX gcc NetBSDELF 10.4.0
VAX gcc NetBSDELF 10.5.0 (Nov 15 03:50:22 2023)
VAX gcc NetBSDELF 12.4.0 (Apr 16 05:27 2025)
WebAssembly clang (trunk)
Xtensa ESP32 gcc 11.2.0 (2022r1)
Xtensa ESP32 gcc 12.2.0 (20230208)
Xtensa ESP32 gcc 14.2.0 (20241119)
Xtensa ESP32 gcc 8.2.0 (2019r2)
Xtensa ESP32 gcc 8.2.0 (2020r1)
Xtensa ESP32 gcc 8.2.0 (2020r2)
Xtensa ESP32 gcc 8.4.0 (2020r3)
Xtensa ESP32 gcc 8.4.0 (2021r1)
Xtensa ESP32 gcc 8.4.0 (2021r2)
Xtensa ESP32-S2 gcc 11.2.0 (2022r1)
Xtensa ESP32-S2 gcc 12.2.0 (20230208)
Xtensa ESP32-S2 gcc 14.2.0 (20241119)
Xtensa ESP32-S2 gcc 8.2.0 (2019r2)
Xtensa ESP32-S2 gcc 8.2.0 (2020r1)
Xtensa ESP32-S2 gcc 8.2.0 (2020r2)
Xtensa ESP32-S2 gcc 8.4.0 (2020r3)
Xtensa ESP32-S2 gcc 8.4.0 (2021r1)
Xtensa ESP32-S2 gcc 8.4.0 (2021r2)
Xtensa ESP32-S3 gcc 11.2.0 (2022r1)
Xtensa ESP32-S3 gcc 12.2.0 (20230208)
Xtensa ESP32-S3 gcc 14.2.0 (20241119)
Xtensa ESP32-S3 gcc 8.4.0 (2020r3)
Xtensa ESP32-S3 gcc 8.4.0 (2021r1)
Xtensa ESP32-S3 gcc 8.4.0 (2021r2)
arm64 msvc v19.20 VS16.0
arm64 msvc v19.21 VS16.1
arm64 msvc v19.22 VS16.2
arm64 msvc v19.23 VS16.3
arm64 msvc v19.24 VS16.4
arm64 msvc v19.25 VS16.5
arm64 msvc v19.27 VS16.7
arm64 msvc v19.28 VS16.8
arm64 msvc v19.28 VS16.9
arm64 msvc v19.29 VS16.10
arm64 msvc v19.29 VS16.11
arm64 msvc v19.30 VS17.0
arm64 msvc v19.31 VS17.1
arm64 msvc v19.32 VS17.2
arm64 msvc v19.33 VS17.3
arm64 msvc v19.34 VS17.4
arm64 msvc v19.35 VS17.5
arm64 msvc v19.36 VS17.6
arm64 msvc v19.37 VS17.7
arm64 msvc v19.38 VS17.8
arm64 msvc v19.39 VS17.9
arm64 msvc v19.40 VS17.10
arm64 msvc v19.41 VS17.11
arm64 msvc v19.42 VS17.12
arm64 msvc v19.43 VS17.13
arm64 msvc v19.latest
armv7-a clang (trunk)
armv7-a clang 10.0.0
armv7-a clang 10.0.1
armv7-a clang 11.0.0
armv7-a clang 11.0.1
armv7-a clang 12.0.0
armv7-a clang 12.0.1
armv7-a clang 13.0.0
armv7-a clang 13.0.1
armv7-a clang 14.0.0
armv7-a clang 15.0.0
armv7-a clang 16.0.0
armv7-a clang 17.0.1
armv7-a clang 18.1.0
armv7-a clang 19.1.0
armv7-a clang 20.1.0
armv7-a clang 21.1.0
armv7-a clang 9.0.0
armv7-a clang 9.0.1
armv8-a clang (all architectural features, trunk)
armv8-a clang (trunk)
armv8-a clang 10.0.0
armv8-a clang 10.0.1
armv8-a clang 11.0.0
armv8-a clang 11.0.1
armv8-a clang 12.0.0
armv8-a clang 13.0.0
armv8-a clang 14.0.0
armv8-a clang 15.0.0
armv8-a clang 16.0.0
armv8-a clang 17.0.1
armv8-a clang 18.1.0
armv8-a clang 19.1.0
armv8-a clang 20.1.0
armv8-a clang 21.1.0
armv8-a clang 9.0.0
armv8-a clang 9.0.1
clad trunk (clang 21.1.0)
clad v1.10 (clang 20.1.0)
clad v1.8 (clang 18.1.0)
clad v1.9 (clang 19.1.0)
clad v2.00 (clang 20.1.0)
clang-cl 18.1.0
ellcc 0.1.33
ellcc 0.1.34
ellcc 2017-07-16
ez80-clang 15.0.0
ez80-clang 15.0.7
hexagon-clang 16.0.5
llvm-mos atari2600-3e
llvm-mos atari2600-4k
llvm-mos atari2600-common
llvm-mos atari5200-supercart
llvm-mos atari8-cart-megacart
llvm-mos atari8-cart-std
llvm-mos atari8-cart-xegs
llvm-mos atari8-common
llvm-mos atari8-dos
llvm-mos c128
llvm-mos c64
llvm-mos commodore
llvm-mos cpm65
llvm-mos cx16
llvm-mos dodo
llvm-mos eater
llvm-mos mega65
llvm-mos nes
llvm-mos nes-action53
llvm-mos nes-cnrom
llvm-mos nes-gtrom
llvm-mos nes-mmc1
llvm-mos nes-mmc3
llvm-mos nes-nrom
llvm-mos nes-unrom
llvm-mos nes-unrom-512
llvm-mos osi-c1p
llvm-mos pce
llvm-mos pce-cd
llvm-mos pce-common
llvm-mos pet
llvm-mos rp6502
llvm-mos rpc8e
llvm-mos supervision
llvm-mos vic20
loongarch64 gcc 12.2.0
loongarch64 gcc 12.3.0
loongarch64 gcc 12.4.0
loongarch64 gcc 12.5.0
loongarch64 gcc 13.1.0
loongarch64 gcc 13.2.0
loongarch64 gcc 13.3.0
loongarch64 gcc 13.4.0
loongarch64 gcc 14.1.0
loongarch64 gcc 14.2.0
loongarch64 gcc 14.3.0
loongarch64 gcc 15.1.0
loongarch64 gcc 15.2.0
mips clang 13.0.0
mips clang 14.0.0
mips clang 15.0.0
mips clang 16.0.0
mips clang 17.0.1
mips clang 18.1.0
mips clang 19.1.0
mips clang 20.1.0
mips clang 21.1.0
mips gcc 11.2.0
mips gcc 12.1.0
mips gcc 12.2.0
mips gcc 12.3.0
mips gcc 12.4.0
mips gcc 12.5.0
mips gcc 13.1.0
mips gcc 13.2.0
mips gcc 13.3.0
mips gcc 13.4.0
mips gcc 14.1.0
mips gcc 14.2.0
mips gcc 14.3.0
mips gcc 15.1.0
mips gcc 15.2.0
mips gcc 4.9.4
mips gcc 5.4
mips gcc 5.5.0
mips gcc 9.3.0 (codescape)
mips gcc 9.5.0
mips64 (el) gcc 12.1.0
mips64 (el) gcc 12.2.0
mips64 (el) gcc 12.3.0
mips64 (el) gcc 12.4.0
mips64 (el) gcc 12.5.0
mips64 (el) gcc 13.1.0
mips64 (el) gcc 13.2.0
mips64 (el) gcc 13.3.0
mips64 (el) gcc 13.4.0
mips64 (el) gcc 14.1.0
mips64 (el) gcc 14.2.0
mips64 (el) gcc 14.3.0
mips64 (el) gcc 15.1.0
mips64 (el) gcc 15.2.0
mips64 (el) gcc 4.9.4
mips64 (el) gcc 5.4.0
mips64 (el) gcc 5.5.0
mips64 (el) gcc 9.5.0
mips64 clang 13.0.0
mips64 clang 14.0.0
mips64 clang 15.0.0
mips64 clang 16.0.0
mips64 clang 17.0.1
mips64 clang 18.1.0
mips64 clang 19.1.0
mips64 clang 20.1.0
mips64 clang 21.1.0
mips64 gcc 11.2.0
mips64 gcc 12.1.0
mips64 gcc 12.2.0
mips64 gcc 12.3.0
mips64 gcc 12.4.0
mips64 gcc 12.5.0
mips64 gcc 13.1.0
mips64 gcc 13.2.0
mips64 gcc 13.3.0
mips64 gcc 13.4.0
mips64 gcc 14.1.0
mips64 gcc 14.2.0
mips64 gcc 14.3.0
mips64 gcc 15.1.0
mips64 gcc 15.2.0
mips64 gcc 4.9.4
mips64 gcc 5.4.0
mips64 gcc 5.5.0
mips64 gcc 9.5.0
mips64el clang 13.0.0
mips64el clang 14.0.0
mips64el clang 15.0.0
mips64el clang 16.0.0
mips64el clang 17.0.1
mips64el clang 18.1.0
mips64el clang 19.1.0
mips64el clang 20.1.0
mips64el clang 21.1.0
mipsel clang 13.0.0
mipsel clang 14.0.0
mipsel clang 15.0.0
mipsel clang 16.0.0
mipsel clang 17.0.1
mipsel clang 18.1.0
mipsel clang 19.1.0
mipsel clang 20.1.0
mipsel clang 21.1.0
mipsel gcc 12.1.0
mipsel gcc 12.2.0
mipsel gcc 12.3.0
mipsel gcc 12.4.0
mipsel gcc 12.5.0
mipsel gcc 13.1.0
mipsel gcc 13.2.0
mipsel gcc 13.3.0
mipsel gcc 13.4.0
mipsel gcc 14.1.0
mipsel gcc 14.2.0
mipsel gcc 14.3.0
mipsel gcc 15.1.0
mipsel gcc 15.2.0
mipsel gcc 4.9.4
mipsel gcc 5.4.0
mipsel gcc 5.5.0
mipsel gcc 9.5.0
nanoMIPS gcc 6.3.0 (mtk)
power gcc 11.2.0
power gcc 12.1.0
power gcc 12.2.0
power gcc 12.3.0
power gcc 12.4.0
power gcc 12.5.0
power gcc 13.1.0
power gcc 13.2.0
power gcc 13.3.0
power gcc 13.4.0
power gcc 14.1.0
power gcc 14.2.0
power gcc 14.3.0
power gcc 15.1.0
power gcc 15.2.0
power gcc 4.8.5
power64 AT12.0 (gcc8)
power64 AT13.0 (gcc9)
power64 gcc 11.2.0
power64 gcc 12.1.0
power64 gcc 12.2.0
power64 gcc 12.3.0
power64 gcc 12.4.0
power64 gcc 12.5.0
power64 gcc 13.1.0
power64 gcc 13.2.0
power64 gcc 13.3.0
power64 gcc 13.4.0
power64 gcc 14.1.0
power64 gcc 14.2.0
power64 gcc 14.3.0
power64 gcc 15.1.0
power64 gcc 15.2.0
power64 gcc trunk
power64le AT12.0 (gcc8)
power64le AT13.0 (gcc9)
power64le clang (trunk)
power64le gcc 11.2.0
power64le gcc 12.1.0
power64le gcc 12.2.0
power64le gcc 12.3.0
power64le gcc 12.4.0
power64le gcc 12.5.0
power64le gcc 13.1.0
power64le gcc 13.2.0
power64le gcc 13.3.0
power64le gcc 13.4.0
power64le gcc 14.1.0
power64le gcc 14.2.0
power64le gcc 14.3.0
power64le gcc 15.1.0
power64le gcc 15.2.0
power64le gcc 6.3.0
power64le gcc trunk
powerpc64 clang (trunk)
qnx 8.0.0
s390x gcc 11.2.0
s390x gcc 12.1.0
s390x gcc 12.2.0
s390x gcc 12.3.0
s390x gcc 12.4.0
s390x gcc 12.5.0
s390x gcc 13.1.0
s390x gcc 13.2.0
s390x gcc 13.3.0
s390x gcc 13.4.0
s390x gcc 14.1.0
s390x gcc 14.2.0
s390x gcc 14.3.0
s390x gcc 15.1.0
s390x gcc 15.2.0
sh gcc 12.2.0
sh gcc 12.3.0
sh gcc 12.4.0
sh gcc 12.5.0
sh gcc 13.1.0
sh gcc 13.2.0
sh gcc 13.3.0
sh gcc 13.4.0
sh gcc 14.1.0
sh gcc 14.2.0
sh gcc 14.3.0
sh gcc 15.1.0
sh gcc 15.2.0
sh gcc 4.9.4
sh gcc 9.5.0
vast (trunk)
x64 msvc v19.0 (ex-WINE)
x64 msvc v19.10 (ex-WINE)
x64 msvc v19.14 (ex-WINE)
x64 msvc v19.20 VS16.0
x64 msvc v19.21 VS16.1
x64 msvc v19.22 VS16.2
x64 msvc v19.23 VS16.3
x64 msvc v19.24 VS16.4
x64 msvc v19.25 VS16.5
x64 msvc v19.27 VS16.7
x64 msvc v19.28 VS16.8
x64 msvc v19.28 VS16.9
x64 msvc v19.29 VS16.10
x64 msvc v19.29 VS16.11
x64 msvc v19.30 VS17.0
x64 msvc v19.31 VS17.1
x64 msvc v19.32 VS17.2
x64 msvc v19.33 VS17.3
x64 msvc v19.34 VS17.4
x64 msvc v19.35 VS17.5
x64 msvc v19.36 VS17.6
x64 msvc v19.37 VS17.7
x64 msvc v19.38 VS17.8
x64 msvc v19.39 VS17.9
x64 msvc v19.40 VS17.10
x64 msvc v19.41 VS17.11
x64 msvc v19.42 VS17.12
x64 msvc v19.43 VS17.13
x64 msvc v19.latest
x86 djgpp 4.9.4
x86 djgpp 5.5.0
x86 djgpp 6.4.0
x86 djgpp 7.2.0
x86 msvc v19.0 (ex-WINE)
x86 msvc v19.10 (ex-WINE)
x86 msvc v19.14 (ex-WINE)
x86 msvc v19.20 VS16.0
x86 msvc v19.21 VS16.1
x86 msvc v19.22 VS16.2
x86 msvc v19.23 VS16.3
x86 msvc v19.24 VS16.4
x86 msvc v19.25 VS16.5
x86 msvc v19.27 VS16.7
x86 msvc v19.28 VS16.8
x86 msvc v19.28 VS16.9
x86 msvc v19.29 VS16.10
x86 msvc v19.29 VS16.11
x86 msvc v19.30 VS17.0
x86 msvc v19.31 VS17.1
x86 msvc v19.32 VS17.2
x86 msvc v19.33 VS17.3
x86 msvc v19.34 VS17.4
x86 msvc v19.35 VS17.5
x86 msvc v19.36 VS17.6
x86 msvc v19.37 VS17.7
x86 msvc v19.38 VS17.8
x86 msvc v19.39 VS17.9
x86 msvc v19.40 VS17.10
x86 msvc v19.41 VS17.11
x86 msvc v19.42 VS17.12
x86 msvc v19.43 VS17.13
x86 msvc v19.latest
x86 nvc++ 22.11
x86 nvc++ 22.7
x86 nvc++ 22.9
x86 nvc++ 23.1
x86 nvc++ 23.11
x86 nvc++ 23.3
x86 nvc++ 23.5
x86 nvc++ 23.7
x86 nvc++ 23.9
x86 nvc++ 24.1
x86 nvc++ 24.11
x86 nvc++ 24.3
x86 nvc++ 24.5
x86 nvc++ 24.7
x86 nvc++ 24.9
x86 nvc++ 25.1
x86 nvc++ 25.3
x86 nvc++ 25.5
x86 nvc++ 25.7
x86-64 Zapcc 190308
x86-64 clang (-fimplicit-constexpr)
x86-64 clang (Chris Bazley N3089)
x86-64 clang (EricWF contracts)
x86-64 clang (amd-staging)
x86-64 clang (assertions trunk)
x86-64 clang (clangir)
x86-64 clang (experimental -Wlifetime)
x86-64 clang (experimental P1061)
x86-64 clang (experimental P1144)
x86-64 clang (experimental P1221)
x86-64 clang (experimental P2998)
x86-64 clang (experimental P3068)
x86-64 clang (experimental P3309)
x86-64 clang (experimental P3367)
x86-64 clang (experimental P3372)
x86-64 clang (experimental P3385)
x86-64 clang (experimental P3776)
x86-64 clang (experimental metaprogramming - P2632)
x86-64 clang (old concepts branch)
x86-64 clang (p1974)
x86-64 clang (pattern matching - P2688)
x86-64 clang (reflection - C++26)
x86-64 clang (reflection - TS)
x86-64 clang (resugar)
x86-64 clang (string interpolation - P3412)
x86-64 clang (thephd.dev)
x86-64 clang (trunk)
x86-64 clang (variadic friends - P2893)
x86-64 clang (widberg)
x86-64 clang 10.0.0
x86-64 clang 10.0.0 (assertions)
x86-64 clang 10.0.1
x86-64 clang 11.0.0
x86-64 clang 11.0.0 (assertions)
x86-64 clang 11.0.1
x86-64 clang 12.0.0
x86-64 clang 12.0.0 (assertions)
x86-64 clang 12.0.1
x86-64 clang 13.0.0
x86-64 clang 13.0.0 (assertions)
x86-64 clang 13.0.1
x86-64 clang 14.0.0
x86-64 clang 14.0.0 (assertions)
x86-64 clang 15.0.0
x86-64 clang 15.0.0 (assertions)
x86-64 clang 16.0.0
x86-64 clang 16.0.0 (assertions)
x86-64 clang 17.0.1
x86-64 clang 17.0.1 (assertions)
x86-64 clang 18.1.0
x86-64 clang 18.1.0 (assertions)
x86-64 clang 19.1.0
x86-64 clang 19.1.0 (assertions)
x86-64 clang 2.6.0 (assertions)
x86-64 clang 2.7.0 (assertions)
x86-64 clang 2.8.0 (assertions)
x86-64 clang 2.9.0 (assertions)
x86-64 clang 20.1.0
x86-64 clang 20.1.0 (assertions)
x86-64 clang 21.1.0
x86-64 clang 21.1.0 (assertions)
x86-64 clang 3.0.0
x86-64 clang 3.0.0 (assertions)
x86-64 clang 3.1
x86-64 clang 3.1 (assertions)
x86-64 clang 3.2
x86-64 clang 3.2 (assertions)
x86-64 clang 3.3
x86-64 clang 3.3 (assertions)
x86-64 clang 3.4 (assertions)
x86-64 clang 3.4.1
x86-64 clang 3.5
x86-64 clang 3.5 (assertions)
x86-64 clang 3.5.1
x86-64 clang 3.5.2
x86-64 clang 3.6
x86-64 clang 3.6 (assertions)
x86-64 clang 3.7
x86-64 clang 3.7 (assertions)
x86-64 clang 3.7.1
x86-64 clang 3.8
x86-64 clang 3.8 (assertions)
x86-64 clang 3.8.1
x86-64 clang 3.9.0
x86-64 clang 3.9.0 (assertions)
x86-64 clang 3.9.1
x86-64 clang 4.0.0
x86-64 clang 4.0.0 (assertions)
x86-64 clang 4.0.1
x86-64 clang 5.0.0
x86-64 clang 5.0.0 (assertions)
x86-64 clang 5.0.1
x86-64 clang 5.0.2
x86-64 clang 6.0.0
x86-64 clang 6.0.0 (assertions)
x86-64 clang 6.0.1
x86-64 clang 7.0.0
x86-64 clang 7.0.0 (assertions)
x86-64 clang 7.0.1
x86-64 clang 7.1.0
x86-64 clang 8.0.0
x86-64 clang 8.0.0 (assertions)
x86-64 clang 8.0.1
x86-64 clang 9.0.0
x86-64 clang 9.0.0 (assertions)
x86-64 clang 9.0.1
x86-64 clang rocm-4.5.2
x86-64 clang rocm-5.0.2
x86-64 clang rocm-5.1.3
x86-64 clang rocm-5.2.3
x86-64 clang rocm-5.3.3
x86-64 clang rocm-5.7.0
x86-64 clang rocm-6.0.2
x86-64 clang rocm-6.1.2
x86-64 clang rocm-6.2.4
x86-64 clang rocm-6.3.3
x86-64 clang rocm-6.4.0
x86-64 gcc (P2034 lambdas)
x86-64 gcc (contract labels)
x86-64 gcc (contracts natural syntax)
x86-64 gcc (contracts)
x86-64 gcc (coroutines)
x86-64 gcc (modules)
x86-64 gcc (trunk)
x86-64 gcc 10.1
x86-64 gcc 10.2
x86-64 gcc 10.3
x86-64 gcc 10.3 (assertions)
x86-64 gcc 10.4
x86-64 gcc 10.4 (assertions)
x86-64 gcc 10.5
x86-64 gcc 10.5 (assertions)
x86-64 gcc 11.1
x86-64 gcc 11.1 (assertions)
x86-64 gcc 11.2
x86-64 gcc 11.2 (assertions)
x86-64 gcc 11.3
x86-64 gcc 11.3 (assertions)
x86-64 gcc 11.4
x86-64 gcc 11.4 (assertions)
x86-64 gcc 12.1
x86-64 gcc 12.1 (assertions)
x86-64 gcc 12.2
x86-64 gcc 12.2 (assertions)
x86-64 gcc 12.3
x86-64 gcc 12.3 (assertions)
x86-64 gcc 12.4
x86-64 gcc 12.4 (assertions)
x86-64 gcc 12.5
x86-64 gcc 12.5 (assertions)
x86-64 gcc 13.1
x86-64 gcc 13.1 (assertions)
x86-64 gcc 13.2
x86-64 gcc 13.2 (assertions)
x86-64 gcc 13.3
x86-64 gcc 13.3 (assertions)
x86-64 gcc 13.4
x86-64 gcc 13.4 (assertions)
x86-64 gcc 14.1
x86-64 gcc 14.1 (assertions)
x86-64 gcc 14.2
x86-64 gcc 14.2 (assertions)
x86-64 gcc 14.3
x86-64 gcc 14.3 (assertions)
x86-64 gcc 15.1
x86-64 gcc 15.1 (assertions)
x86-64 gcc 15.2
x86-64 gcc 15.2 (assertions)
x86-64 gcc 3.4.6
x86-64 gcc 4.0.4
x86-64 gcc 4.1.2
x86-64 gcc 4.4.7
x86-64 gcc 4.5.3
x86-64 gcc 4.6.4
x86-64 gcc 4.7.1
x86-64 gcc 4.7.2
x86-64 gcc 4.7.3
x86-64 gcc 4.7.4
x86-64 gcc 4.8.1
x86-64 gcc 4.8.2
x86-64 gcc 4.8.3
x86-64 gcc 4.8.4
x86-64 gcc 4.8.5
x86-64 gcc 4.9.0
x86-64 gcc 4.9.1
x86-64 gcc 4.9.2
x86-64 gcc 4.9.3
x86-64 gcc 4.9.4
x86-64 gcc 5.1
x86-64 gcc 5.2
x86-64 gcc 5.3
x86-64 gcc 5.4
x86-64 gcc 5.5
x86-64 gcc 6.1
x86-64 gcc 6.2
x86-64 gcc 6.3
x86-64 gcc 6.4
x86-64 gcc 6.5
x86-64 gcc 7.1
x86-64 gcc 7.2
x86-64 gcc 7.3
x86-64 gcc 7.4
x86-64 gcc 7.5
x86-64 gcc 8.1
x86-64 gcc 8.2
x86-64 gcc 8.3
x86-64 gcc 8.4
x86-64 gcc 8.5
x86-64 gcc 9.1
x86-64 gcc 9.2
x86-64 gcc 9.3
x86-64 gcc 9.4
x86-64 gcc 9.5
x86-64 icc 13.0.1
x86-64 icc 16.0.3
x86-64 icc 17.0.0
x86-64 icc 18.0.0
x86-64 icc 19.0.0
x86-64 icc 19.0.1
x86-64 icc 2021.1.2
x86-64 icc 2021.10.0
x86-64 icc 2021.2.0
x86-64 icc 2021.3.0
x86-64 icc 2021.4.0
x86-64 icc 2021.5.0
x86-64 icc 2021.6.0
x86-64 icc 2021.7.0
x86-64 icc 2021.7.1
x86-64 icc 2021.8.0
x86-64 icc 2021.9.0
x86-64 icx 2021.1.2
x86-64 icx 2021.2.0
x86-64 icx 2021.3.0
x86-64 icx 2021.4.0
x86-64 icx 2022.0.0
x86-64 icx 2022.1.0
x86-64 icx 2022.2.0
x86-64 icx 2022.2.1
x86-64 icx 2023.0.0
x86-64 icx 2023.1.0
x86-64 icx 2023.2.1
x86-64 icx 2024.0.0
x86-64 icx 2024.1.0
x86-64 icx 2024.2.0
x86-64 icx 2024.2.1
x86-64 icx 2025.0.0
x86-64 icx 2025.0.1
x86-64 icx 2025.0.3
x86-64 icx 2025.0.4
x86-64 icx 2025.1.0
x86-64 icx 2025.1.1
x86-64 icx 2025.2.0
x86-64 icx 2025.2.1
x86-64 icx 2025.2.1
z180-clang 15.0.0
z180-clang 15.0.7
z80-clang 15.0.0
z80-clang 15.0.7
zig c++ 0.10.0
zig c++ 0.11.0
zig c++ 0.12.0
zig c++ 0.12.1
zig c++ 0.13.0
zig c++ 0.14.0
zig c++ 0.14.1
zig c++ 0.15.1
zig c++ 0.6.0
zig c++ 0.7.0
zig c++ 0.7.1
zig c++ 0.8.0
zig c++ 0.9.0
zig c++ trunk
Options
Source code
#include <iostream> #include <vector> /// // expected - An implementation of std::expected with extensions // Written in 2017 by Sy Brand (tartanllama@gmail.com, @TartanLlama) // // Documentation available at http://tl.tartanllama.xyz/ // // To the extent possible under law, the author(s) have dedicated all // copyright and related and neighboring rights to this software to the // public domain worldwide. This software is distributed without any warranty. // // You should have received a copy of the CC0 Public Domain Dedication // along with this software. If not, see // <http://creativecommons.org/publicdomain/zero/1.0/>. /// #ifndef TL_EXPECTED_HPP #define TL_EXPECTED_HPP #define TL_EXPECTED_VERSION_MAJOR 1 #define TL_EXPECTED_VERSION_MINOR 1 #define TL_EXPECTED_VERSION_PATCH 0 #include <exception> #include <functional> #include <type_traits> #include <utility> #if defined(__EXCEPTIONS) || defined(_CPPUNWIND) #define TL_EXPECTED_EXCEPTIONS_ENABLED #endif #if (defined(_MSC_VER) && _MSC_VER == 1900) #define TL_EXPECTED_MSVC2015 #define TL_EXPECTED_MSVC2015_CONSTEXPR #else #define TL_EXPECTED_MSVC2015_CONSTEXPR constexpr #endif #if (defined(__GNUC__) && __GNUC__ == 4 && __GNUC_MINOR__ <= 9 && \ !defined(__clang__)) #define TL_EXPECTED_GCC49 #endif #if (defined(__GNUC__) && __GNUC__ == 5 && __GNUC_MINOR__ <= 4 && \ !defined(__clang__)) #define TL_EXPECTED_GCC54 #endif #if (defined(__GNUC__) && __GNUC__ == 5 && __GNUC_MINOR__ <= 5 && \ !defined(__clang__)) #define TL_EXPECTED_GCC55 #endif #if !defined(TL_ASSERT) //can't have assert in constexpr in C++11 and GCC 4.9 has a compiler bug #if (__cplusplus > 201103L) && !defined(TL_EXPECTED_GCC49) #include <cassert> #define TL_ASSERT(x) assert(x) #else #define TL_ASSERT(x) #endif #endif #if (defined(__GNUC__) && __GNUC__ == 4 && __GNUC_MINOR__ <= 9 && \ !defined(__clang__)) // GCC < 5 doesn't support overloading on const&& for member functions #define TL_EXPECTED_NO_CONSTRR // GCC < 5 doesn't support some standard C++11 type traits #define TL_EXPECTED_IS_TRIVIALLY_COPY_CONSTRUCTIBLE(T) \ std::has_trivial_copy_constructor<T> #define TL_EXPECTED_IS_TRIVIALLY_COPY_ASSIGNABLE(T) \ std::has_trivial_copy_assign<T> // This one will be different for GCC 5.7 if it's ever supported #define TL_EXPECTED_IS_TRIVIALLY_DESTRUCTIBLE(T) \ std::is_trivially_destructible<T> // GCC 5 < v < 8 has a bug in is_trivially_copy_constructible which breaks // std::vector for non-copyable types #elif (defined(__GNUC__) && __GNUC__ < 8 && !defined(__clang__)) #ifndef TL_GCC_LESS_8_TRIVIALLY_COPY_CONSTRUCTIBLE_MUTEX #define TL_GCC_LESS_8_TRIVIALLY_COPY_CONSTRUCTIBLE_MUTEX namespace tl { namespace detail { template <class T> struct is_trivially_copy_constructible : std::is_trivially_copy_constructible<T> {}; #ifdef _GLIBCXX_VECTOR template <class T, class A> struct is_trivially_copy_constructible<std::vector<T, A>> : std::false_type {}; #endif } // namespace detail } // namespace tl #endif #define TL_EXPECTED_IS_TRIVIALLY_COPY_CONSTRUCTIBLE(T) \ tl::detail::is_trivially_copy_constructible<T> #define TL_EXPECTED_IS_TRIVIALLY_COPY_ASSIGNABLE(T) \ std::is_trivially_copy_assignable<T> #define TL_EXPECTED_IS_TRIVIALLY_DESTRUCTIBLE(T) \ std::is_trivially_destructible<T> #else #define TL_EXPECTED_IS_TRIVIALLY_COPY_CONSTRUCTIBLE(T) \ std::is_trivially_copy_constructible<T> #define TL_EXPECTED_IS_TRIVIALLY_COPY_ASSIGNABLE(T) \ std::is_trivially_copy_assignable<T> #define TL_EXPECTED_IS_TRIVIALLY_DESTRUCTIBLE(T) \ std::is_trivially_destructible<T> #endif #if __cplusplus > 201103L #define TL_EXPECTED_CXX14 #endif #ifdef TL_EXPECTED_GCC49 #define TL_EXPECTED_GCC49_CONSTEXPR #else #define TL_EXPECTED_GCC49_CONSTEXPR constexpr #endif #if (__cplusplus == 201103L || defined(TL_EXPECTED_MSVC2015) || \ defined(TL_EXPECTED_GCC49)) #define TL_EXPECTED_11_CONSTEXPR #else #define TL_EXPECTED_11_CONSTEXPR constexpr #endif namespace tl { template <class T, class E> class expected; #ifndef TL_MONOSTATE_INPLACE_MUTEX #define TL_MONOSTATE_INPLACE_MUTEX class monostate {}; struct in_place_t { explicit in_place_t() = default; }; static constexpr in_place_t in_place{}; #endif template <class E> class unexpected { public: static_assert(!std::is_same<E, void>::value, "E must not be void"); unexpected() = delete; constexpr explicit unexpected(const E &e) : m_val(e) {} constexpr explicit unexpected(E &&e) : m_val(std::move(e)) {} template <class... Args, typename std::enable_if<std::is_constructible< E, Args &&...>::value>::type * = nullptr> constexpr explicit unexpected(Args &&...args) : m_val(std::forward<Args>(args)...) {} template < class U, class... Args, typename std::enable_if<std::is_constructible< E, std::initializer_list<U> &, Args &&...>::value>::type * = nullptr> constexpr explicit unexpected(std::initializer_list<U> l, Args &&...args) : m_val(l, std::forward<Args>(args)...) {} constexpr const E &value() const & { return m_val; } TL_EXPECTED_11_CONSTEXPR E &value() & { return m_val; } TL_EXPECTED_11_CONSTEXPR E &&value() && { return std::move(m_val); } constexpr const E &&value() const && { return std::move(m_val); } private: E m_val; }; #ifdef __cpp_deduction_guides template <class E> unexpected(E) -> unexpected<E>; #endif template <class E> constexpr bool operator==(const unexpected<E> &lhs, const unexpected<E> &rhs) { return lhs.value() == rhs.value(); } template <class E> constexpr bool operator!=(const unexpected<E> &lhs, const unexpected<E> &rhs) { return lhs.value() != rhs.value(); } template <class E> constexpr bool operator<(const unexpected<E> &lhs, const unexpected<E> &rhs) { return lhs.value() < rhs.value(); } template <class E> constexpr bool operator<=(const unexpected<E> &lhs, const unexpected<E> &rhs) { return lhs.value() <= rhs.value(); } template <class E> constexpr bool operator>(const unexpected<E> &lhs, const unexpected<E> &rhs) { return lhs.value() > rhs.value(); } template <class E> constexpr bool operator>=(const unexpected<E> &lhs, const unexpected<E> &rhs) { return lhs.value() >= rhs.value(); } template <class E> unexpected<typename std::decay<E>::type> make_unexpected(E &&e) { return unexpected<typename std::decay<E>::type>(std::forward<E>(e)); } struct unexpect_t { unexpect_t() = default; }; static constexpr unexpect_t unexpect{}; namespace detail { template <typename E> [[noreturn]] TL_EXPECTED_11_CONSTEXPR void throw_exception(E &&e) { #ifdef TL_EXPECTED_EXCEPTIONS_ENABLED throw std::forward<E>(e); #else (void)e; #ifdef _MSC_VER __assume(0); #else __builtin_unreachable(); #endif #endif } #ifndef TL_TRAITS_MUTEX #define TL_TRAITS_MUTEX // C++14-style aliases for brevity template <class T> using remove_const_t = typename std::remove_const<T>::type; template <class T> using remove_reference_t = typename std::remove_reference<T>::type; template <class T> using decay_t = typename std::decay<T>::type; template <bool E, class T = void> using enable_if_t = typename std::enable_if<E, T>::type; template <bool B, class T, class F> using conditional_t = typename std::conditional<B, T, F>::type; // std::conjunction from C++17 template <class...> struct conjunction : std::true_type {}; template <class B> struct conjunction<B> : B {}; template <class B, class... Bs> struct conjunction<B, Bs...> : std::conditional<bool(B::value), conjunction<Bs...>, B>::type {}; #if defined(_LIBCPP_VERSION) && __cplusplus == 201103L #define TL_TRAITS_LIBCXX_MEM_FN_WORKAROUND #endif // In C++11 mode, there's an issue in libc++'s std::mem_fn // which results in a hard-error when using it in a noexcept expression // in some cases. This is a check to workaround the common failing case. #ifdef TL_TRAITS_LIBCXX_MEM_FN_WORKAROUND template <class T> struct is_pointer_to_non_const_member_func : std::false_type {}; template <class T, class Ret, class... Args> struct is_pointer_to_non_const_member_func<Ret (T::*)(Args...)> : std::true_type {}; template <class T, class Ret, class... Args> struct is_pointer_to_non_const_member_func<Ret (T::*)(Args...) &> : std::true_type {}; template <class T, class Ret, class... Args> struct is_pointer_to_non_const_member_func<Ret (T::*)(Args...) &&> : std::true_type {}; template <class T, class Ret, class... Args> struct is_pointer_to_non_const_member_func<Ret (T::*)(Args...) volatile> : std::true_type {}; template <class T, class Ret, class... Args> struct is_pointer_to_non_const_member_func<Ret (T::*)(Args...) volatile &> : std::true_type {}; template <class T, class Ret, class... Args> struct is_pointer_to_non_const_member_func<Ret (T::*)(Args...) volatile &&> : std::true_type {}; template <class T> struct is_const_or_const_ref : std::false_type {}; template <class T> struct is_const_or_const_ref<T const &> : std::true_type {}; template <class T> struct is_const_or_const_ref<T const> : std::true_type {}; #endif // std::invoke from C++17 // https://stackoverflow.com/questions/38288042/c11-14-invoke-workaround template < typename Fn, typename... Args, #ifdef TL_TRAITS_LIBCXX_MEM_FN_WORKAROUND typename = enable_if_t<!(is_pointer_to_non_const_member_func<Fn>::value && is_const_or_const_ref<Args...>::value)>, #endif typename = enable_if_t<std::is_member_pointer<decay_t<Fn>>::value>, int = 0> constexpr auto invoke(Fn &&f, Args &&...args) noexcept( noexcept(std::mem_fn(f)(std::forward<Args>(args)...))) -> decltype(std::mem_fn(f)(std::forward<Args>(args)...)) { return std::mem_fn(f)(std::forward<Args>(args)...); } template <typename Fn, typename... Args, typename = enable_if_t<!std::is_member_pointer<decay_t<Fn>>::value>> constexpr auto invoke(Fn &&f, Args &&...args) noexcept( noexcept(std::forward<Fn>(f)(std::forward<Args>(args)...))) -> decltype(std::forward<Fn>(f)(std::forward<Args>(args)...)) { return std::forward<Fn>(f)(std::forward<Args>(args)...); } // std::invoke_result from C++17 template <class F, class, class... Us> struct invoke_result_impl; template <class F, class... Us> struct invoke_result_impl< F, decltype(detail::invoke(std::declval<F>(), std::declval<Us>()...), void()), Us...> { using type = decltype(detail::invoke(std::declval<F>(), std::declval<Us>()...)); }; template <class F, class... Us> using invoke_result = invoke_result_impl<F, void, Us...>; template <class F, class... Us> using invoke_result_t = typename invoke_result<F, Us...>::type; #if defined(_MSC_VER) && _MSC_VER <= 1900 // TODO make a version which works with MSVC 2015 template <class T, class U = T> struct is_swappable : std::true_type {}; template <class T, class U = T> struct is_nothrow_swappable : std::true_type {}; #else // https://stackoverflow.com/questions/26744589/what-is-a-proper-way-to-implement-is-swappable-to-test-for-the-swappable-concept namespace swap_adl_tests { // if swap ADL finds this then it would call std::swap otherwise (same // signature) struct tag {}; template <class T> tag swap(T &, T &); template <class T, std::size_t N> tag swap(T (&a)[N], T (&b)[N]); // helper functions to test if an unqualified swap is possible, and if it // becomes std::swap template <class, class> std::false_type can_swap(...) noexcept(false); template <class T, class U, class = decltype(swap(std::declval<T &>(), std::declval<U &>()))> std::true_type can_swap(int) noexcept(noexcept(swap(std::declval<T &>(), std::declval<U &>()))); template <class, class> std::false_type uses_std(...); template <class T, class U> std::is_same<decltype(swap(std::declval<T &>(), std::declval<U &>())), tag> uses_std(int); template <class T> struct is_std_swap_noexcept : std::integral_constant<bool, std::is_nothrow_move_constructible<T>::value && std::is_nothrow_move_assignable<T>::value> {}; template <class T, std::size_t N> struct is_std_swap_noexcept<T[N]> : is_std_swap_noexcept<T> {}; template <class T, class U> struct is_adl_swap_noexcept : std::integral_constant<bool, noexcept(can_swap<T, U>(0))> {}; } // namespace swap_adl_tests template <class T, class U = T> struct is_swappable : std::integral_constant< bool, decltype(detail::swap_adl_tests::can_swap<T, U>(0))::value && (!decltype(detail::swap_adl_tests::uses_std<T, U>(0))::value || (std::is_move_assignable<T>::value && std::is_move_constructible<T>::value))> {}; template <class T, std::size_t N> struct is_swappable<T[N], T[N]> : std::integral_constant< bool, decltype(detail::swap_adl_tests::can_swap<T[N], T[N]>(0))::value && (!decltype(detail::swap_adl_tests::uses_std<T[N], T[N]>( 0))::value || is_swappable<T, T>::value)> {}; template <class T, class U = T> struct is_nothrow_swappable : std::integral_constant< bool, is_swappable<T, U>::value && ((decltype(detail::swap_adl_tests::uses_std<T, U>(0))::value && detail::swap_adl_tests::is_std_swap_noexcept<T>::value) || (!decltype(detail::swap_adl_tests::uses_std<T, U>(0))::value && detail::swap_adl_tests::is_adl_swap_noexcept<T, U>::value))> {}; #endif #endif // Trait for checking if a type is a tl::expected template <class T> struct is_expected_impl : std::false_type {}; template <class T, class E> struct is_expected_impl<expected<T, E>> : std::true_type {}; template <class T> using is_expected = is_expected_impl<decay_t<T>>; template <class T, class E, class U> using expected_enable_forward_value = detail::enable_if_t< std::is_constructible<T, U &&>::value && !std::is_same<detail::decay_t<U>, in_place_t>::value && !std::is_same<expected<T, E>, detail::decay_t<U>>::value && !std::is_same<unexpected<E>, detail::decay_t<U>>::value>; template <class T, class E, class U, class G, class UR, class GR> using expected_enable_from_other = detail::enable_if_t< std::is_constructible<T, UR>::value && std::is_constructible<E, GR>::value && !std::is_constructible<T, expected<U, G> &>::value && !std::is_constructible<T, expected<U, G> &&>::value && !std::is_constructible<T, const expected<U, G> &>::value && !std::is_constructible<T, const expected<U, G> &&>::value && !std::is_convertible<expected<U, G> &, T>::value && !std::is_convertible<expected<U, G> &&, T>::value && !std::is_convertible<const expected<U, G> &, T>::value && !std::is_convertible<const expected<U, G> &&, T>::value>; template <class T, class U> using is_void_or = conditional_t<std::is_void<T>::value, std::true_type, U>; template <class T> using is_copy_constructible_or_void = is_void_or<T, std::is_copy_constructible<T>>; template <class T> using is_move_constructible_or_void = is_void_or<T, std::is_move_constructible<T>>; template <class T> using is_copy_assignable_or_void = is_void_or<T, std::is_copy_assignable<T>>; template <class T> using is_move_assignable_or_void = is_void_or<T, std::is_move_assignable<T>>; } // namespace detail namespace detail { struct no_init_t {}; static constexpr no_init_t no_init{}; // Implements the storage of the values, and ensures that the destructor is // trivial if it can be. // // This specialization is for where neither `T` or `E` is trivially // destructible, so the destructors must be called on destruction of the // `expected` template <class T, class E, bool = std::is_trivially_destructible<T>::value, bool = std::is_trivially_destructible<E>::value> struct expected_storage_base { constexpr expected_storage_base() : m_val(T{}), m_has_val(true) {} constexpr expected_storage_base(no_init_t) : m_no_init(), m_has_val(false) {} template <class... Args, detail::enable_if_t<std::is_constructible<T, Args &&...>::value> * = nullptr> constexpr expected_storage_base(in_place_t, Args &&...args) : m_val(std::forward<Args>(args)...), m_has_val(true) {} template <class U, class... Args, detail::enable_if_t<std::is_constructible< T, std::initializer_list<U> &, Args &&...>::value> * = nullptr> constexpr expected_storage_base(in_place_t, std::initializer_list<U> il, Args &&...args) : m_val(il, std::forward<Args>(args)...), m_has_val(true) {} template <class... Args, detail::enable_if_t<std::is_constructible<E, Args &&...>::value> * = nullptr> constexpr explicit expected_storage_base(unexpect_t, Args &&...args) : m_unexpect(std::forward<Args>(args)...), m_has_val(false) {} template <class U, class... Args, detail::enable_if_t<std::is_constructible< E, std::initializer_list<U> &, Args &&...>::value> * = nullptr> constexpr explicit expected_storage_base(unexpect_t, std::initializer_list<U> il, Args &&...args) : m_unexpect(il, std::forward<Args>(args)...), m_has_val(false) {} ~expected_storage_base() { if (m_has_val) { m_val.~T(); } else { m_unexpect.~unexpected<E>(); } } union { T m_val; unexpected<E> m_unexpect; char m_no_init; }; bool m_has_val; }; // This specialization is for when both `T` and `E` are trivially-destructible, // so the destructor of the `expected` can be trivial. template <class T, class E> struct expected_storage_base<T, E, true, true> { constexpr expected_storage_base() : m_val(T{}), m_has_val(true) {} constexpr expected_storage_base(no_init_t) : m_no_init(), m_has_val(false) {} template <class... Args, detail::enable_if_t<std::is_constructible<T, Args &&...>::value> * = nullptr> constexpr expected_storage_base(in_place_t, Args &&...args) : m_val(std::forward<Args>(args)...), m_has_val(true) {} template <class U, class... Args, detail::enable_if_t<std::is_constructible< T, std::initializer_list<U> &, Args &&...>::value> * = nullptr> constexpr expected_storage_base(in_place_t, std::initializer_list<U> il, Args &&...args) : m_val(il, std::forward<Args>(args)...), m_has_val(true) {} template <class... Args, detail::enable_if_t<std::is_constructible<E, Args &&...>::value> * = nullptr> constexpr explicit expected_storage_base(unexpect_t, Args &&...args) : m_unexpect(std::forward<Args>(args)...), m_has_val(false) {} template <class U, class... Args, detail::enable_if_t<std::is_constructible< E, std::initializer_list<U> &, Args &&...>::value> * = nullptr> constexpr explicit expected_storage_base(unexpect_t, std::initializer_list<U> il, Args &&...args) : m_unexpect(il, std::forward<Args>(args)...), m_has_val(false) {} ~expected_storage_base() = default; union { T m_val; unexpected<E> m_unexpect; char m_no_init; }; bool m_has_val; }; // T is trivial, E is not. template <class T, class E> struct expected_storage_base<T, E, true, false> { constexpr expected_storage_base() : m_val(T{}), m_has_val(true) {} TL_EXPECTED_MSVC2015_CONSTEXPR expected_storage_base(no_init_t) : m_no_init(), m_has_val(false) {} template <class... Args, detail::enable_if_t<std::is_constructible<T, Args &&...>::value> * = nullptr> constexpr expected_storage_base(in_place_t, Args &&...args) : m_val(std::forward<Args>(args)...), m_has_val(true) {} template <class U, class... Args, detail::enable_if_t<std::is_constructible< T, std::initializer_list<U> &, Args &&...>::value> * = nullptr> constexpr expected_storage_base(in_place_t, std::initializer_list<U> il, Args &&...args) : m_val(il, std::forward<Args>(args)...), m_has_val(true) {} template <class... Args, detail::enable_if_t<std::is_constructible<E, Args &&...>::value> * = nullptr> constexpr explicit expected_storage_base(unexpect_t, Args &&...args) : m_unexpect(std::forward<Args>(args)...), m_has_val(false) {} template <class U, class... Args, detail::enable_if_t<std::is_constructible< E, std::initializer_list<U> &, Args &&...>::value> * = nullptr> constexpr explicit expected_storage_base(unexpect_t, std::initializer_list<U> il, Args &&...args) : m_unexpect(il, std::forward<Args>(args)...), m_has_val(false) {} ~expected_storage_base() { if (!m_has_val) { m_unexpect.~unexpected<E>(); } } union { T m_val; unexpected<E> m_unexpect; char m_no_init; }; bool m_has_val; }; // E is trivial, T is not. template <class T, class E> struct expected_storage_base<T, E, false, true> { constexpr expected_storage_base() : m_val(T{}), m_has_val(true) {} constexpr expected_storage_base(no_init_t) : m_no_init(), m_has_val(false) {} template <class... Args, detail::enable_if_t<std::is_constructible<T, Args &&...>::value> * = nullptr> constexpr expected_storage_base(in_place_t, Args &&...args) : m_val(std::forward<Args>(args)...), m_has_val(true) {} template <class U, class... Args, detail::enable_if_t<std::is_constructible< T, std::initializer_list<U> &, Args &&...>::value> * = nullptr> constexpr expected_storage_base(in_place_t, std::initializer_list<U> il, Args &&...args) : m_val(il, std::forward<Args>(args)...), m_has_val(true) {} template <class... Args, detail::enable_if_t<std::is_constructible<E, Args &&...>::value> * = nullptr> constexpr explicit expected_storage_base(unexpect_t, Args &&...args) : m_unexpect(std::forward<Args>(args)...), m_has_val(false) {} template <class U, class... Args, detail::enable_if_t<std::is_constructible< E, std::initializer_list<U> &, Args &&...>::value> * = nullptr> constexpr explicit expected_storage_base(unexpect_t, std::initializer_list<U> il, Args &&...args) : m_unexpect(il, std::forward<Args>(args)...), m_has_val(false) {} ~expected_storage_base() { if (m_has_val) { m_val.~T(); } } union { T m_val; unexpected<E> m_unexpect; char m_no_init; }; bool m_has_val; }; // `T` is `void`, `E` is trivially-destructible template <class E> struct expected_storage_base<void, E, false, true> { #if __GNUC__ <= 5 //no constexpr for GCC 4/5 bug #else TL_EXPECTED_MSVC2015_CONSTEXPR #endif expected_storage_base() : m_has_val(true) {} constexpr expected_storage_base(no_init_t) : m_val(), m_has_val(false) {} constexpr expected_storage_base(in_place_t) : m_has_val(true) {} template <class... Args, detail::enable_if_t<std::is_constructible<E, Args &&...>::value> * = nullptr> constexpr explicit expected_storage_base(unexpect_t, Args &&...args) : m_unexpect(std::forward<Args>(args)...), m_has_val(false) {} template <class U, class... Args, detail::enable_if_t<std::is_constructible< E, std::initializer_list<U> &, Args &&...>::value> * = nullptr> constexpr explicit expected_storage_base(unexpect_t, std::initializer_list<U> il, Args &&...args) : m_unexpect(il, std::forward<Args>(args)...), m_has_val(false) {} ~expected_storage_base() = default; struct dummy {}; union { unexpected<E> m_unexpect; dummy m_val; }; bool m_has_val; }; // `T` is `void`, `E` is not trivially-destructible template <class E> struct expected_storage_base<void, E, false, false> { constexpr expected_storage_base() : m_dummy(), m_has_val(true) {} constexpr expected_storage_base(no_init_t) : m_dummy(), m_has_val(false) {} constexpr expected_storage_base(in_place_t) : m_dummy(), m_has_val(true) {} template <class... Args, detail::enable_if_t<std::is_constructible<E, Args &&...>::value> * = nullptr> constexpr explicit expected_storage_base(unexpect_t, Args &&...args) : m_unexpect(std::forward<Args>(args)...), m_has_val(false) {} template <class U, class... Args, detail::enable_if_t<std::is_constructible< E, std::initializer_list<U> &, Args &&...>::value> * = nullptr> constexpr explicit expected_storage_base(unexpect_t, std::initializer_list<U> il, Args &&...args) : m_unexpect(il, std::forward<Args>(args)...), m_has_val(false) {} ~expected_storage_base() { if (!m_has_val) { m_unexpect.~unexpected<E>(); } } union { unexpected<E> m_unexpect; char m_dummy; }; bool m_has_val; }; // This base class provides some handy member functions which can be used in // further derived classes template <class T, class E> struct expected_operations_base : expected_storage_base<T, E> { using expected_storage_base<T, E>::expected_storage_base; template <class... Args> void construct(Args &&...args) noexcept { new (std::addressof(this->m_val)) T(std::forward<Args>(args)...); this->m_has_val = true; } template <class Rhs> void construct_with(Rhs &&rhs) noexcept { new (std::addressof(this->m_val)) T(std::forward<Rhs>(rhs).get()); this->m_has_val = true; } template <class... Args> void construct_error(Args &&...args) noexcept { new (std::addressof(this->m_unexpect)) unexpected<E>(std::forward<Args>(args)...); this->m_has_val = false; } #ifdef TL_EXPECTED_EXCEPTIONS_ENABLED // These assign overloads ensure that the most efficient assignment // implementation is used while maintaining the strong exception guarantee. // The problematic case is where rhs has a value, but *this does not. // // This overload handles the case where we can just copy-construct `T` // directly into place without throwing. template <class U = T, detail::enable_if_t<std::is_nothrow_copy_constructible<U>::value> * = nullptr> void assign(const expected_operations_base &rhs) noexcept { if (!this->m_has_val && rhs.m_has_val) { geterr().~unexpected<E>(); construct(rhs.get()); } else { assign_common(rhs); } } // This overload handles the case where we can attempt to create a copy of // `T`, then no-throw move it into place if the copy was successful. template <class U = T, detail::enable_if_t<!std::is_nothrow_copy_constructible<U>::value && std::is_nothrow_move_constructible<U>::value> * = nullptr> void assign(const expected_operations_base &rhs) noexcept { if (!this->m_has_val && rhs.m_has_val) { T tmp = rhs.get(); geterr().~unexpected<E>(); construct(std::move(tmp)); } else { assign_common(rhs); } } // This overload is the worst-case, where we have to move-construct the // unexpected value into temporary storage, then try to copy the T into place. // If the construction succeeds, then everything is fine, but if it throws, // then we move the old unexpected value back into place before rethrowing the // exception. template <class U = T, detail::enable_if_t<!std::is_nothrow_copy_constructible<U>::value && !std::is_nothrow_move_constructible<U>::value> * = nullptr> void assign(const expected_operations_base &rhs) { if (!this->m_has_val && rhs.m_has_val) { auto tmp = std::move(geterr()); geterr().~unexpected<E>(); #ifdef TL_EXPECTED_EXCEPTIONS_ENABLED try { construct(rhs.get()); } catch (...) { geterr() = std::move(tmp); throw; } #else construct(rhs.get()); #endif } else { assign_common(rhs); } } // These overloads do the same as above, but for rvalues template <class U = T, detail::enable_if_t<std::is_nothrow_move_constructible<U>::value> * = nullptr> void assign(expected_operations_base &&rhs) noexcept { if (!this->m_has_val && rhs.m_has_val) { geterr().~unexpected<E>(); construct(std::move(rhs).get()); } else { assign_common(std::move(rhs)); } } template <class U = T, detail::enable_if_t<!std::is_nothrow_move_constructible<U>::value> * = nullptr> void assign(expected_operations_base &&rhs) { if (!this->m_has_val && rhs.m_has_val) { auto tmp = std::move(geterr()); geterr().~unexpected<E>(); #ifdef TL_EXPECTED_EXCEPTIONS_ENABLED try { construct(std::move(rhs).get()); } catch (...) { geterr() = std::move(tmp); throw; } #else construct(std::move(rhs).get()); #endif } else { assign_common(std::move(rhs)); } } #else // If exceptions are disabled then we can just copy-construct void assign(const expected_operations_base &rhs) noexcept { if (!this->m_has_val && rhs.m_has_val) { geterr().~unexpected<E>(); construct(rhs.get()); } else { assign_common(rhs); } } void assign(expected_operations_base &&rhs) noexcept { if (!this->m_has_val && rhs.m_has_val) { geterr().~unexpected<E>(); construct(std::move(rhs).get()); } else { assign_common(std::move(rhs)); } } #endif // The common part of move/copy assigning template <class Rhs> void assign_common(Rhs &&rhs) { if (this->m_has_val) { if (rhs.m_has_val) { get() = std::forward<Rhs>(rhs).get(); } else { destroy_val(); construct_error(std::forward<Rhs>(rhs).geterr()); } } else { if (!rhs.m_has_val) { geterr() = std::forward<Rhs>(rhs).geterr(); } } } bool has_value() const { return this->m_has_val; } TL_EXPECTED_11_CONSTEXPR T &get() & { return this->m_val; } constexpr const T &get() const & { return this->m_val; } TL_EXPECTED_11_CONSTEXPR T &&get() && { return std::move(this->m_val); } #ifndef TL_EXPECTED_NO_CONSTRR constexpr const T &&get() const && { return std::move(this->m_val); } #endif TL_EXPECTED_11_CONSTEXPR unexpected<E> &geterr() & { return this->m_unexpect; } constexpr const unexpected<E> &geterr() const & { return this->m_unexpect; } TL_EXPECTED_11_CONSTEXPR unexpected<E> &&geterr() && { return std::move(this->m_unexpect); } #ifndef TL_EXPECTED_NO_CONSTRR constexpr const unexpected<E> &&geterr() const && { return std::move(this->m_unexpect); } #endif TL_EXPECTED_11_CONSTEXPR void destroy_val() { get().~T(); } }; // This base class provides some handy member functions which can be used in // further derived classes template <class E> struct expected_operations_base<void, E> : expected_storage_base<void, E> { using expected_storage_base<void, E>::expected_storage_base; template <class... Args> void construct() noexcept { this->m_has_val = true; } // This function doesn't use its argument, but needs it so that code in // levels above this can work independently of whether T is void template <class Rhs> void construct_with(Rhs &&) noexcept { this->m_has_val = true; } template <class... Args> void construct_error(Args &&...args) noexcept { new (std::addressof(this->m_unexpect)) unexpected<E>(std::forward<Args>(args)...); this->m_has_val = false; } template <class Rhs> void assign(Rhs &&rhs) noexcept { if (!this->m_has_val) { if (rhs.m_has_val) { geterr().~unexpected<E>(); construct(); } else { geterr() = std::forward<Rhs>(rhs).geterr(); } } else { if (!rhs.m_has_val) { construct_error(std::forward<Rhs>(rhs).geterr()); } } } bool has_value() const { return this->m_has_val; } TL_EXPECTED_11_CONSTEXPR unexpected<E> &geterr() & { return this->m_unexpect; } constexpr const unexpected<E> &geterr() const & { return this->m_unexpect; } TL_EXPECTED_11_CONSTEXPR unexpected<E> &&geterr() && { return std::move(this->m_unexpect); } #ifndef TL_EXPECTED_NO_CONSTRR constexpr const unexpected<E> &&geterr() const && { return std::move(this->m_unexpect); } #endif TL_EXPECTED_11_CONSTEXPR void destroy_val() { // no-op } }; // This class manages conditionally having a trivial copy constructor // This specialization is for when T and E are trivially copy constructible template <class T, class E, bool = is_void_or<T, TL_EXPECTED_IS_TRIVIALLY_COPY_CONSTRUCTIBLE(T)>:: value &&TL_EXPECTED_IS_TRIVIALLY_COPY_CONSTRUCTIBLE(E)::value> struct expected_copy_base : expected_operations_base<T, E> { using expected_operations_base<T, E>::expected_operations_base; }; // This specialization is for when T or E are not trivially copy constructible template <class T, class E> struct expected_copy_base<T, E, false> : expected_operations_base<T, E> { using expected_operations_base<T, E>::expected_operations_base; expected_copy_base() = default; expected_copy_base(const expected_copy_base &rhs) : expected_operations_base<T, E>(no_init) { if (rhs.has_value()) { this->construct_with(rhs); } else { this->construct_error(rhs.geterr()); } } expected_copy_base(expected_copy_base &&rhs) = default; expected_copy_base &operator=(const expected_copy_base &rhs) = default; expected_copy_base &operator=(expected_copy_base &&rhs) = default; }; // This class manages conditionally having a trivial move constructor // Unfortunately there's no way to achieve this in GCC < 5 AFAIK, since it // doesn't implement an analogue to std::is_trivially_move_constructible. We // have to make do with a non-trivial move constructor even if T is trivially // move constructible #ifndef TL_EXPECTED_GCC49 template <class T, class E, bool = is_void_or<T, std::is_trivially_move_constructible<T>>::value &&std::is_trivially_move_constructible<E>::value> struct expected_move_base : expected_copy_base<T, E> { using expected_copy_base<T, E>::expected_copy_base; }; #else template <class T, class E, bool = false> struct expected_move_base; #endif template <class T, class E> struct expected_move_base<T, E, false> : expected_copy_base<T, E> { using expected_copy_base<T, E>::expected_copy_base; expected_move_base() = default; expected_move_base(const expected_move_base &rhs) = default; expected_move_base(expected_move_base &&rhs) noexcept( std::is_nothrow_move_constructible<T>::value) : expected_copy_base<T, E>(no_init) { if (rhs.has_value()) { this->construct_with(std::move(rhs)); } else { this->construct_error(std::move(rhs.geterr())); } } expected_move_base &operator=(const expected_move_base &rhs) = default; expected_move_base &operator=(expected_move_base &&rhs) = default; }; // This class manages conditionally having a trivial copy assignment operator template <class T, class E, bool = is_void_or< T, conjunction<TL_EXPECTED_IS_TRIVIALLY_COPY_ASSIGNABLE(T), TL_EXPECTED_IS_TRIVIALLY_COPY_CONSTRUCTIBLE(T), TL_EXPECTED_IS_TRIVIALLY_DESTRUCTIBLE(T)>>::value &&TL_EXPECTED_IS_TRIVIALLY_COPY_ASSIGNABLE(E)::value &&TL_EXPECTED_IS_TRIVIALLY_COPY_CONSTRUCTIBLE(E)::value &&TL_EXPECTED_IS_TRIVIALLY_DESTRUCTIBLE(E)::value> struct expected_copy_assign_base : expected_move_base<T, E> { using expected_move_base<T, E>::expected_move_base; }; template <class T, class E> struct expected_copy_assign_base<T, E, false> : expected_move_base<T, E> { using expected_move_base<T, E>::expected_move_base; expected_copy_assign_base() = default; expected_copy_assign_base(const expected_copy_assign_base &rhs) = default; expected_copy_assign_base(expected_copy_assign_base &&rhs) = default; expected_copy_assign_base &operator=(const expected_copy_assign_base &rhs) { this->assign(rhs); return *this; } expected_copy_assign_base & operator=(expected_copy_assign_base &&rhs) = default; }; // This class manages conditionally having a trivial move assignment operator // Unfortunately there's no way to achieve this in GCC < 5 AFAIK, since it // doesn't implement an analogue to std::is_trivially_move_assignable. We have // to make do with a non-trivial move assignment operator even if T is trivially // move assignable #ifndef TL_EXPECTED_GCC49 template <class T, class E, bool = is_void_or<T, conjunction<std::is_trivially_destructible<T>, std::is_trivially_move_constructible<T>, std::is_trivially_move_assignable<T>>>:: value &&std::is_trivially_destructible<E>::value &&std::is_trivially_move_constructible<E>::value &&std::is_trivially_move_assignable<E>::value> struct expected_move_assign_base : expected_copy_assign_base<T, E> { using expected_copy_assign_base<T, E>::expected_copy_assign_base; }; #else template <class T, class E, bool = false> struct expected_move_assign_base; #endif template <class T, class E> struct expected_move_assign_base<T, E, false> : expected_copy_assign_base<T, E> { using expected_copy_assign_base<T, E>::expected_copy_assign_base; expected_move_assign_base() = default; expected_move_assign_base(const expected_move_assign_base &rhs) = default; expected_move_assign_base(expected_move_assign_base &&rhs) = default; expected_move_assign_base & operator=(const expected_move_assign_base &rhs) = default; expected_move_assign_base & operator=(expected_move_assign_base &&rhs) noexcept( std::is_nothrow_move_constructible<T>::value &&std::is_nothrow_move_assignable<T>::value) { this->assign(std::move(rhs)); return *this; } }; // expected_delete_ctor_base will conditionally delete copy and move // constructors depending on whether T is copy/move constructible template <class T, class E, bool EnableCopy = (is_copy_constructible_or_void<T>::value && std::is_copy_constructible<E>::value), bool EnableMove = (is_move_constructible_or_void<T>::value && std::is_move_constructible<E>::value)> struct expected_delete_ctor_base { expected_delete_ctor_base() = default; expected_delete_ctor_base(const expected_delete_ctor_base &) = default; expected_delete_ctor_base(expected_delete_ctor_base &&) noexcept = default; expected_delete_ctor_base & operator=(const expected_delete_ctor_base &) = default; expected_delete_ctor_base & operator=(expected_delete_ctor_base &&) noexcept = default; }; template <class T, class E> struct expected_delete_ctor_base<T, E, true, false> { expected_delete_ctor_base() = default; expected_delete_ctor_base(const expected_delete_ctor_base &) = default; expected_delete_ctor_base(expected_delete_ctor_base &&) noexcept = delete; expected_delete_ctor_base & operator=(const expected_delete_ctor_base &) = default; expected_delete_ctor_base & operator=(expected_delete_ctor_base &&) noexcept = default; }; template <class T, class E> struct expected_delete_ctor_base<T, E, false, true> { expected_delete_ctor_base() = default; expected_delete_ctor_base(const expected_delete_ctor_base &) = delete; expected_delete_ctor_base(expected_delete_ctor_base &&) noexcept = default; expected_delete_ctor_base & operator=(const expected_delete_ctor_base &) = default; expected_delete_ctor_base & operator=(expected_delete_ctor_base &&) noexcept = default; }; template <class T, class E> struct expected_delete_ctor_base<T, E, false, false> { expected_delete_ctor_base() = default; expected_delete_ctor_base(const expected_delete_ctor_base &) = delete; expected_delete_ctor_base(expected_delete_ctor_base &&) noexcept = delete; expected_delete_ctor_base & operator=(const expected_delete_ctor_base &) = default; expected_delete_ctor_base & operator=(expected_delete_ctor_base &&) noexcept = default; }; // expected_delete_assign_base will conditionally delete copy and move // constructors depending on whether T and E are copy/move constructible + // assignable template <class T, class E, bool EnableCopy = (is_copy_constructible_or_void<T>::value && std::is_copy_constructible<E>::value && is_copy_assignable_or_void<T>::value && std::is_copy_assignable<E>::value), bool EnableMove = (is_move_constructible_or_void<T>::value && std::is_move_constructible<E>::value && is_move_assignable_or_void<T>::value && std::is_move_assignable<E>::value)> struct expected_delete_assign_base { expected_delete_assign_base() = default; expected_delete_assign_base(const expected_delete_assign_base &) = default; expected_delete_assign_base(expected_delete_assign_base &&) noexcept = default; expected_delete_assign_base & operator=(const expected_delete_assign_base &) = default; expected_delete_assign_base & operator=(expected_delete_assign_base &&) noexcept = default; }; template <class T, class E> struct expected_delete_assign_base<T, E, true, false> { expected_delete_assign_base() = default; expected_delete_assign_base(const expected_delete_assign_base &) = default; expected_delete_assign_base(expected_delete_assign_base &&) noexcept = default; expected_delete_assign_base & operator=(const expected_delete_assign_base &) = default; expected_delete_assign_base & operator=(expected_delete_assign_base &&) noexcept = delete; }; template <class T, class E> struct expected_delete_assign_base<T, E, false, true> { expected_delete_assign_base() = default; expected_delete_assign_base(const expected_delete_assign_base &) = default; expected_delete_assign_base(expected_delete_assign_base &&) noexcept = default; expected_delete_assign_base & operator=(const expected_delete_assign_base &) = delete; expected_delete_assign_base & operator=(expected_delete_assign_base &&) noexcept = default; }; template <class T, class E> struct expected_delete_assign_base<T, E, false, false> { expected_delete_assign_base() = default; expected_delete_assign_base(const expected_delete_assign_base &) = default; expected_delete_assign_base(expected_delete_assign_base &&) noexcept = default; expected_delete_assign_base & operator=(const expected_delete_assign_base &) = delete; expected_delete_assign_base & operator=(expected_delete_assign_base &&) noexcept = delete; }; // This is needed to be able to construct the expected_default_ctor_base which // follows, while still conditionally deleting the default constructor. struct default_constructor_tag { explicit constexpr default_constructor_tag() = default; }; // expected_default_ctor_base will ensure that expected has a deleted default // consturctor if T is not default constructible. // This specialization is for when T is default constructible template <class T, class E, bool Enable = std::is_default_constructible<T>::value || std::is_void<T>::value> struct expected_default_ctor_base { constexpr expected_default_ctor_base() noexcept = default; constexpr expected_default_ctor_base( expected_default_ctor_base const &) noexcept = default; constexpr expected_default_ctor_base(expected_default_ctor_base &&) noexcept = default; expected_default_ctor_base & operator=(expected_default_ctor_base const &) noexcept = default; expected_default_ctor_base & operator=(expected_default_ctor_base &&) noexcept = default; constexpr explicit expected_default_ctor_base(default_constructor_tag) {} }; // This specialization is for when T is not default constructible template <class T, class E> struct expected_default_ctor_base<T, E, false> { constexpr expected_default_ctor_base() noexcept = delete; constexpr expected_default_ctor_base( expected_default_ctor_base const &) noexcept = default; constexpr expected_default_ctor_base(expected_default_ctor_base &&) noexcept = default; expected_default_ctor_base & operator=(expected_default_ctor_base const &) noexcept = default; expected_default_ctor_base & operator=(expected_default_ctor_base &&) noexcept = default; constexpr explicit expected_default_ctor_base(default_constructor_tag) {} }; } // namespace detail template <class E> class bad_expected_access : public std::exception { public: explicit bad_expected_access(E e) : m_val(std::move(e)) {} virtual const char *what() const noexcept override { return "Bad expected access"; } const E &error() const & { return m_val; } E &error() & { return m_val; } const E &&error() const && { return std::move(m_val); } E &&error() && { return std::move(m_val); } private: E m_val; }; /// An `expected<T, E>` object is an object that contains the storage for /// another object and manages the lifetime of this contained object `T`. /// Alternatively it could contain the storage for another unexpected object /// `E`. The contained object may not be initialized after the expected object /// has been initialized, and may not be destroyed before the expected object /// has been destroyed. The initialization state of the contained object is /// tracked by the expected object. template <class T, class E> class expected : private detail::expected_move_assign_base<T, E>, private detail::expected_delete_ctor_base<T, E>, private detail::expected_delete_assign_base<T, E>, private detail::expected_default_ctor_base<T, E> { static_assert(!std::is_reference<T>::value, "T must not be a reference"); static_assert(!std::is_same<T, std::remove_cv<in_place_t>::type>::value, "T must not be in_place_t"); static_assert(!std::is_same<T, std::remove_cv<unexpect_t>::type>::value, "T must not be unexpect_t"); static_assert( !std::is_same<T, typename std::remove_cv<unexpected<E>>::type>::value, "T must not be unexpected<E>"); static_assert(!std::is_reference<E>::value, "E must not be a reference"); T *valptr() { return std::addressof(this->m_val); } const T *valptr() const { return std::addressof(this->m_val); } unexpected<E> *errptr() { return std::addressof(this->m_unexpect); } const unexpected<E> *errptr() const { return std::addressof(this->m_unexpect); } template <class U = T, detail::enable_if_t<!std::is_void<U>::value> * = nullptr> TL_EXPECTED_11_CONSTEXPR U &val() { return this->m_val; } TL_EXPECTED_11_CONSTEXPR unexpected<E> &err() { return this->m_unexpect; } template <class U = T, detail::enable_if_t<!std::is_void<U>::value> * = nullptr> constexpr const U &val() const { return this->m_val; } constexpr const unexpected<E> &err() const { return this->m_unexpect; } using impl_base = detail::expected_move_assign_base<T, E>; using ctor_base = detail::expected_default_ctor_base<T, E>; public: typedef T value_type; typedef E error_type; typedef unexpected<E> unexpected_type; #if defined(TL_EXPECTED_CXX14) && !defined(TL_EXPECTED_GCC49) && \ !defined(TL_EXPECTED_GCC54) && !defined(TL_EXPECTED_GCC55) template <class F> TL_EXPECTED_11_CONSTEXPR auto and_then(F &&f) & { return and_then_impl(*this, std::forward<F>(f)); } template <class F> TL_EXPECTED_11_CONSTEXPR auto and_then(F &&f) && { return and_then_impl(std::move(*this), std::forward<F>(f)); } template <class F> constexpr auto and_then(F &&f) const & { return and_then_impl(*this, std::forward<F>(f)); } #ifndef TL_EXPECTED_NO_CONSTRR template <class F> constexpr auto and_then(F &&f) const && { return and_then_impl(std::move(*this), std::forward<F>(f)); } #endif #else template <class F> TL_EXPECTED_11_CONSTEXPR auto and_then(F &&f) & -> decltype(and_then_impl(std::declval<expected &>(), std::forward<F>(f))) { return and_then_impl(*this, std::forward<F>(f)); } template <class F> TL_EXPECTED_11_CONSTEXPR auto and_then(F &&f) && -> decltype(and_then_impl(std::declval<expected &&>(), std::forward<F>(f))) { return and_then_impl(std::move(*this), std::forward<F>(f)); } template <class F> constexpr auto and_then(F &&f) const & -> decltype(and_then_impl( std::declval<expected const &>(), std::forward<F>(f))) { return and_then_impl(*this, std::forward<F>(f)); } #ifndef TL_EXPECTED_NO_CONSTRR template <class F> constexpr auto and_then(F &&f) const && -> decltype(and_then_impl( std::declval<expected const &&>(), std::forward<F>(f))) { return and_then_impl(std::move(*this), std::forward<F>(f)); } #endif #endif #if defined(TL_EXPECTED_CXX14) && !defined(TL_EXPECTED_GCC49) && \ !defined(TL_EXPECTED_GCC54) && !defined(TL_EXPECTED_GCC55) template <class F> TL_EXPECTED_11_CONSTEXPR auto map(F &&f) & { return expected_map_impl(*this, std::forward<F>(f)); } template <class F> TL_EXPECTED_11_CONSTEXPR auto map(F &&f) && { return expected_map_impl(std::move(*this), std::forward<F>(f)); } template <class F> constexpr auto map(F &&f) const & { return expected_map_impl(*this, std::forward<F>(f)); } template <class F> constexpr auto map(F &&f) const && { return expected_map_impl(std::move(*this), std::forward<F>(f)); } #else template <class F> TL_EXPECTED_11_CONSTEXPR decltype(expected_map_impl( std::declval<expected &>(), std::declval<F &&>())) map(F &&f) & { return expected_map_impl(*this, std::forward<F>(f)); } template <class F> TL_EXPECTED_11_CONSTEXPR decltype(expected_map_impl(std::declval<expected>(), std::declval<F &&>())) map(F &&f) && { return expected_map_impl(std::move(*this), std::forward<F>(f)); } template <class F> constexpr decltype(expected_map_impl(std::declval<const expected &>(), std::declval<F &&>())) map(F &&f) const & { return expected_map_impl(*this, std::forward<F>(f)); } #ifndef TL_EXPECTED_NO_CONSTRR template <class F> constexpr decltype(expected_map_impl(std::declval<const expected &&>(), std::declval<F &&>())) map(F &&f) const && { return expected_map_impl(std::move(*this), std::forward<F>(f)); } #endif #endif #if defined(TL_EXPECTED_CXX14) && !defined(TL_EXPECTED_GCC49) && \ !defined(TL_EXPECTED_GCC54) && !defined(TL_EXPECTED_GCC55) template <class F> TL_EXPECTED_11_CONSTEXPR auto transform(F &&f) & { return expected_map_impl(*this, std::forward<F>(f)); } template <class F> TL_EXPECTED_11_CONSTEXPR auto transform(F &&f) && { return expected_map_impl(std::move(*this), std::forward<F>(f)); } template <class F> constexpr auto transform(F &&f) const & { return expected_map_impl(*this, std::forward<F>(f)); } template <class F> constexpr auto transform(F &&f) const && { return expected_map_impl(std::move(*this), std::forward<F>(f)); } #else template <class F> TL_EXPECTED_11_CONSTEXPR decltype(expected_map_impl( std::declval<expected &>(), std::declval<F &&>())) transform(F &&f) & { return expected_map_impl(*this, std::forward<F>(f)); } template <class F> TL_EXPECTED_11_CONSTEXPR decltype(expected_map_impl(std::declval<expected>(), std::declval<F &&>())) transform(F &&f) && { return expected_map_impl(std::move(*this), std::forward<F>(f)); } template <class F> constexpr decltype(expected_map_impl(std::declval<const expected &>(), std::declval<F &&>())) transform(F &&f) const & { return expected_map_impl(*this, std::forward<F>(f)); } #ifndef TL_EXPECTED_NO_CONSTRR template <class F> constexpr decltype(expected_map_impl(std::declval<const expected &&>(), std::declval<F &&>())) transform(F &&f) const && { return expected_map_impl(std::move(*this), std::forward<F>(f)); } #endif #endif #if defined(TL_EXPECTED_CXX14) && !defined(TL_EXPECTED_GCC49) && \ !defined(TL_EXPECTED_GCC54) && !defined(TL_EXPECTED_GCC55) template <class F> TL_EXPECTED_11_CONSTEXPR auto map_error(F &&f) & { return map_error_impl(*this, std::forward<F>(f)); } template <class F> TL_EXPECTED_11_CONSTEXPR auto map_error(F &&f) && { return map_error_impl(std::move(*this), std::forward<F>(f)); } template <class F> constexpr auto map_error(F &&f) const & { return map_error_impl(*this, std::forward<F>(f)); } template <class F> constexpr auto map_error(F &&f) const && { return map_error_impl(std::move(*this), std::forward<F>(f)); } #else template <class F> TL_EXPECTED_11_CONSTEXPR decltype(map_error_impl(std::declval<expected &>(), std::declval<F &&>())) map_error(F &&f) & { return map_error_impl(*this, std::forward<F>(f)); } template <class F> TL_EXPECTED_11_CONSTEXPR decltype(map_error_impl(std::declval<expected &&>(), std::declval<F &&>())) map_error(F &&f) && { return map_error_impl(std::move(*this), std::forward<F>(f)); } template <class F> constexpr decltype(map_error_impl(std::declval<const expected &>(), std::declval<F &&>())) map_error(F &&f) const & { return map_error_impl(*this, std::forward<F>(f)); } #ifndef TL_EXPECTED_NO_CONSTRR template <class F> constexpr decltype(map_error_impl(std::declval<const expected &&>(), std::declval<F &&>())) map_error(F &&f) const && { return map_error_impl(std::move(*this), std::forward<F>(f)); } #endif #endif #if defined(TL_EXPECTED_CXX14) && !defined(TL_EXPECTED_GCC49) && \ !defined(TL_EXPECTED_GCC54) && !defined(TL_EXPECTED_GCC55) template <class F> TL_EXPECTED_11_CONSTEXPR auto transform_error(F &&f) & { return map_error_impl(*this, std::forward<F>(f)); } template <class F> TL_EXPECTED_11_CONSTEXPR auto transform_error(F &&f) && { return map_error_impl(std::move(*this), std::forward<F>(f)); } template <class F> constexpr auto transform_error(F &&f) const & { return map_error_impl(*this, std::forward<F>(f)); } template <class F> constexpr auto transform_error(F &&f) const && { return map_error_impl(std::move(*this), std::forward<F>(f)); } #else template <class F> TL_EXPECTED_11_CONSTEXPR decltype(map_error_impl(std::declval<expected &>(), std::declval<F &&>())) transform_error(F &&f) & { return map_error_impl(*this, std::forward<F>(f)); } template <class F> TL_EXPECTED_11_CONSTEXPR decltype(map_error_impl(std::declval<expected &&>(), std::declval<F &&>())) transform_error(F &&f) && { return map_error_impl(std::move(*this), std::forward<F>(f)); } template <class F> constexpr decltype(map_error_impl(std::declval<const expected &>(), std::declval<F &&>())) transform_error(F &&f) const & { return map_error_impl(*this, std::forward<F>(f)); } #ifndef TL_EXPECTED_NO_CONSTRR template <class F> constexpr decltype(map_error_impl(std::declval<const expected &&>(), std::declval<F &&>())) transform_error(F &&f) const && { return map_error_impl(std::move(*this), std::forward<F>(f)); } #endif #endif template <class F> expected TL_EXPECTED_11_CONSTEXPR or_else(F &&f) & { return or_else_impl(*this, std::forward<F>(f)); } template <class F> expected TL_EXPECTED_11_CONSTEXPR or_else(F &&f) && { return or_else_impl(std::move(*this), std::forward<F>(f)); } template <class F> expected constexpr or_else(F &&f) const & { return or_else_impl(*this, std::forward<F>(f)); } #ifndef TL_EXPECTED_NO_CONSTRR template <class F> expected constexpr or_else(F &&f) const && { return or_else_impl(std::move(*this), std::forward<F>(f)); } #endif constexpr expected() = default; constexpr expected(const expected &rhs) = default; constexpr expected(expected &&rhs) = default; expected &operator=(const expected &rhs) = default; expected &operator=(expected &&rhs) = default; template <class... Args, detail::enable_if_t<std::is_constructible<T, Args &&...>::value> * = nullptr> constexpr expected(in_place_t, Args &&...args) : impl_base(in_place, std::forward<Args>(args)...), ctor_base(detail::default_constructor_tag{}) {} template <class U, class... Args, detail::enable_if_t<std::is_constructible< T, std::initializer_list<U> &, Args &&...>::value> * = nullptr> constexpr expected(in_place_t, std::initializer_list<U> il, Args &&...args) : impl_base(in_place, il, std::forward<Args>(args)...), ctor_base(detail::default_constructor_tag{}) {} template <class G = E, detail::enable_if_t<std::is_constructible<E, const G &>::value> * = nullptr, detail::enable_if_t<!std::is_convertible<const G &, E>::value> * = nullptr> explicit constexpr expected(const unexpected<G> &e) : impl_base(unexpect, e.value()), ctor_base(detail::default_constructor_tag{}) {} template < class G = E, detail::enable_if_t<std::is_constructible<E, const G &>::value> * = nullptr, detail::enable_if_t<std::is_convertible<const G &, E>::value> * = nullptr> constexpr expected(unexpected<G> const &e) : impl_base(unexpect, e.value()), ctor_base(detail::default_constructor_tag{}) {} template < class G = E, detail::enable_if_t<std::is_constructible<E, G &&>::value> * = nullptr, detail::enable_if_t<!std::is_convertible<G &&, E>::value> * = nullptr> explicit constexpr expected(unexpected<G> &&e) noexcept( std::is_nothrow_constructible<E, G &&>::value) : impl_base(unexpect, std::move(e.value())), ctor_base(detail::default_constructor_tag{}) {} template < class G = E, detail::enable_if_t<std::is_constructible<E, G &&>::value> * = nullptr, detail::enable_if_t<std::is_convertible<G &&, E>::value> * = nullptr> constexpr expected(unexpected<G> &&e) noexcept( std::is_nothrow_constructible<E, G &&>::value) : impl_base(unexpect, std::move(e.value())), ctor_base(detail::default_constructor_tag{}) {} template <class... Args, detail::enable_if_t<std::is_constructible<E, Args &&...>::value> * = nullptr> constexpr explicit expected(unexpect_t, Args &&...args) : impl_base(unexpect, std::forward<Args>(args)...), ctor_base(detail::default_constructor_tag{}) {} template <class U, class... Args, detail::enable_if_t<std::is_constructible< E, std::initializer_list<U> &, Args &&...>::value> * = nullptr> constexpr explicit expected(unexpect_t, std::initializer_list<U> il, Args &&...args) : impl_base(unexpect, il, std::forward<Args>(args)...), ctor_base(detail::default_constructor_tag{}) {} template <class U, class G, detail::enable_if_t<!(std::is_convertible<U const &, T>::value && std::is_convertible<G const &, E>::value)> * = nullptr, detail::expected_enable_from_other<T, E, U, G, const U &, const G &> * = nullptr> explicit TL_EXPECTED_11_CONSTEXPR expected(const expected<U, G> &rhs) : ctor_base(detail::default_constructor_tag{}) { if (rhs.has_value()) { this->construct(*rhs); } else { this->construct_error(rhs.error()); } } template <class U, class G, detail::enable_if_t<(std::is_convertible<U const &, T>::value && std::is_convertible<G const &, E>::value)> * = nullptr, detail::expected_enable_from_other<T, E, U, G, const U &, const G &> * = nullptr> TL_EXPECTED_11_CONSTEXPR expected(const expected<U, G> &rhs) : ctor_base(detail::default_constructor_tag{}) { if (rhs.has_value()) { this->construct(*rhs); } else { this->construct_error(rhs.error()); } } template < class U, class G, detail::enable_if_t<!(std::is_convertible<U &&, T>::value && std::is_convertible<G &&, E>::value)> * = nullptr, detail::expected_enable_from_other<T, E, U, G, U &&, G &&> * = nullptr> explicit TL_EXPECTED_11_CONSTEXPR expected(expected<U, G> &&rhs) : ctor_base(detail::default_constructor_tag{}) { if (rhs.has_value()) { this->construct(std::move(*rhs)); } else { this->construct_error(std::move(rhs.error())); } } template < class U, class G, detail::enable_if_t<(std::is_convertible<U &&, T>::value && std::is_convertible<G &&, E>::value)> * = nullptr, detail::expected_enable_from_other<T, E, U, G, U &&, G &&> * = nullptr> TL_EXPECTED_11_CONSTEXPR expected(expected<U, G> &&rhs) : ctor_base(detail::default_constructor_tag{}) { if (rhs.has_value()) { this->construct(std::move(*rhs)); } else { this->construct_error(std::move(rhs.error())); } } template < class U = T, detail::enable_if_t<!std::is_convertible<U &&, T>::value> * = nullptr, detail::expected_enable_forward_value<T, E, U> * = nullptr> explicit TL_EXPECTED_MSVC2015_CONSTEXPR expected(U &&v) : expected(in_place, std::forward<U>(v)) {} template < class U = T, detail::enable_if_t<std::is_convertible<U &&, T>::value> * = nullptr, detail::expected_enable_forward_value<T, E, U> * = nullptr> TL_EXPECTED_MSVC2015_CONSTEXPR expected(U &&v) : expected(in_place, std::forward<U>(v)) {} template < class U = T, class G = T, detail::enable_if_t<std::is_nothrow_constructible<T, U &&>::value> * = nullptr, detail::enable_if_t<!std::is_void<G>::value> * = nullptr, detail::enable_if_t< (!std::is_same<expected<T, E>, detail::decay_t<U>>::value && !detail::conjunction<std::is_scalar<T>, std::is_same<T, detail::decay_t<U>>>::value && std::is_constructible<T, U>::value && std::is_assignable<G &, U>::value && std::is_nothrow_move_constructible<E>::value)> * = nullptr> expected &operator=(U &&v) { if (has_value()) { val() = std::forward<U>(v); } else { err().~unexpected<E>(); ::new (valptr()) T(std::forward<U>(v)); this->m_has_val = true; } return *this; } template < class U = T, class G = T, detail::enable_if_t<!std::is_nothrow_constructible<T, U &&>::value> * = nullptr, detail::enable_if_t<!std::is_void<U>::value> * = nullptr, detail::enable_if_t< (!std::is_same<expected<T, E>, detail::decay_t<U>>::value && !detail::conjunction<std::is_scalar<T>, std::is_same<T, detail::decay_t<U>>>::value && std::is_constructible<T, U>::value && std::is_assignable<G &, U>::value && std::is_nothrow_move_constructible<E>::value)> * = nullptr> expected &operator=(U &&v) { if (has_value()) { val() = std::forward<U>(v); } else { auto tmp = std::move(err()); err().~unexpected<E>(); #ifdef TL_EXPECTED_EXCEPTIONS_ENABLED try { ::new (valptr()) T(std::forward<U>(v)); this->m_has_val = true; } catch (...) { err() = std::move(tmp); throw; } #else ::new (valptr()) T(std::forward<U>(v)); this->m_has_val = true; #endif } return *this; } template <class G = E, detail::enable_if_t<std::is_nothrow_copy_constructible<G>::value && std::is_assignable<G &, G>::value> * = nullptr> expected &operator=(const unexpected<G> &rhs) { if (!has_value()) { err() = rhs; } else { this->destroy_val(); ::new (errptr()) unexpected<E>(rhs); this->m_has_val = false; } return *this; } template <class G = E, detail::enable_if_t<std::is_nothrow_move_constructible<G>::value && std::is_move_assignable<G>::value> * = nullptr> expected &operator=(unexpected<G> &&rhs) noexcept { if (!has_value()) { err() = std::move(rhs); } else { this->destroy_val(); ::new (errptr()) unexpected<E>(std::move(rhs)); this->m_has_val = false; } return *this; } template <class... Args, detail::enable_if_t<std::is_nothrow_constructible< T, Args &&...>::value> * = nullptr> void emplace(Args &&...args) { if (has_value()) { val().~T(); } else { err().~unexpected<E>(); this->m_has_val = true; } ::new (valptr()) T(std::forward<Args>(args)...); } template <class... Args, detail::enable_if_t<!std::is_nothrow_constructible< T, Args &&...>::value> * = nullptr> void emplace(Args &&...args) { if (has_value()) { val().~T(); ::new (valptr()) T(std::forward<Args>(args)...); } else { auto tmp = std::move(err()); err().~unexpected<E>(); #ifdef TL_EXPECTED_EXCEPTIONS_ENABLED try { ::new (valptr()) T(std::forward<Args>(args)...); this->m_has_val = true; } catch (...) { err() = std::move(tmp); throw; } #else ::new (valptr()) T(std::forward<Args>(args)...); this->m_has_val = true; #endif } } template <class U, class... Args, detail::enable_if_t<std::is_nothrow_constructible< T, std::initializer_list<U> &, Args &&...>::value> * = nullptr> void emplace(std::initializer_list<U> il, Args &&...args) { if (has_value()) { T t(il, std::forward<Args>(args)...); val() = std::move(t); } else { err().~unexpected<E>(); ::new (valptr()) T(il, std::forward<Args>(args)...); this->m_has_val = true; } } template <class U, class... Args, detail::enable_if_t<!std::is_nothrow_constructible< T, std::initializer_list<U> &, Args &&...>::value> * = nullptr> void emplace(std::initializer_list<U> il, Args &&...args) { if (has_value()) { T t(il, std::forward<Args>(args)...); val() = std::move(t); } else { auto tmp = std::move(err()); err().~unexpected<E>(); #ifdef TL_EXPECTED_EXCEPTIONS_ENABLED try { ::new (valptr()) T(il, std::forward<Args>(args)...); this->m_has_val = true; } catch (...) { err() = std::move(tmp); throw; } #else ::new (valptr()) T(il, std::forward<Args>(args)...); this->m_has_val = true; #endif } } private: using t_is_void = std::true_type; using t_is_not_void = std::false_type; using t_is_nothrow_move_constructible = std::true_type; using move_constructing_t_can_throw = std::false_type; using e_is_nothrow_move_constructible = std::true_type; using move_constructing_e_can_throw = std::false_type; void swap_where_both_have_value(expected & /*rhs*/, t_is_void) noexcept { // swapping void is a no-op } void swap_where_both_have_value(expected &rhs, t_is_not_void) { using std::swap; swap(val(), rhs.val()); } void swap_where_only_one_has_value(expected &rhs, t_is_void) noexcept( std::is_nothrow_move_constructible<E>::value) { ::new (errptr()) unexpected_type(std::move(rhs.err())); rhs.err().~unexpected_type(); std::swap(this->m_has_val, rhs.m_has_val); } void swap_where_only_one_has_value(expected &rhs, t_is_not_void) { swap_where_only_one_has_value_and_t_is_not_void( rhs, typename std::is_nothrow_move_constructible<T>::type{}, typename std::is_nothrow_move_constructible<E>::type{}); } void swap_where_only_one_has_value_and_t_is_not_void( expected &rhs, t_is_nothrow_move_constructible, e_is_nothrow_move_constructible) noexcept { auto temp = std::move(val()); val().~T(); ::new (errptr()) unexpected_type(std::move(rhs.err())); rhs.err().~unexpected_type(); ::new (rhs.valptr()) T(std::move(temp)); std::swap(this->m_has_val, rhs.m_has_val); } void swap_where_only_one_has_value_and_t_is_not_void( expected &rhs, t_is_nothrow_move_constructible, move_constructing_e_can_throw) { auto temp = std::move(val()); val().~T(); #ifdef TL_EXPECTED_EXCEPTIONS_ENABLED try { ::new (errptr()) unexpected_type(std::move(rhs.err())); rhs.err().~unexpected_type(); ::new (rhs.valptr()) T(std::move(temp)); std::swap(this->m_has_val, rhs.m_has_val); } catch (...) { val() = std::move(temp); throw; } #else ::new (errptr()) unexpected_type(std::move(rhs.err())); rhs.err().~unexpected_type(); ::new (rhs.valptr()) T(std::move(temp)); std::swap(this->m_has_val, rhs.m_has_val); #endif } void swap_where_only_one_has_value_and_t_is_not_void( expected &rhs, move_constructing_t_can_throw, e_is_nothrow_move_constructible) { auto temp = std::move(rhs.err()); rhs.err().~unexpected_type(); #ifdef TL_EXPECTED_EXCEPTIONS_ENABLED try { ::new (rhs.valptr()) T(std::move(val())); val().~T(); ::new (errptr()) unexpected_type(std::move(temp)); std::swap(this->m_has_val, rhs.m_has_val); } catch (...) { rhs.err() = std::move(temp); throw; } #else ::new (rhs.valptr()) T(std::move(val())); val().~T(); ::new (errptr()) unexpected_type(std::move(temp)); std::swap(this->m_has_val, rhs.m_has_val); #endif } public: template <class OT = T, class OE = E> detail::enable_if_t<detail::is_swappable<OT>::value && detail::is_swappable<OE>::value && (std::is_nothrow_move_constructible<OT>::value || std::is_nothrow_move_constructible<OE>::value)> swap(expected &rhs) noexcept( std::is_nothrow_move_constructible<T>::value &&detail::is_nothrow_swappable<T>::value &&std::is_nothrow_move_constructible<E>::value &&detail::is_nothrow_swappable<E>::value) { if (has_value() && rhs.has_value()) { swap_where_both_have_value(rhs, typename std::is_void<T>::type{}); } else if (!has_value() && rhs.has_value()) { rhs.swap(*this); } else if (has_value()) { swap_where_only_one_has_value(rhs, typename std::is_void<T>::type{}); } else { using std::swap; swap(err(), rhs.err()); } } constexpr const T *operator->() const { TL_ASSERT(has_value()); return valptr(); } TL_EXPECTED_11_CONSTEXPR T *operator->() { TL_ASSERT(has_value()); return valptr(); } template <class U = T, detail::enable_if_t<!std::is_void<U>::value> * = nullptr> constexpr const U &operator*() const & { TL_ASSERT(has_value()); return val(); } template <class U = T, detail::enable_if_t<!std::is_void<U>::value> * = nullptr> TL_EXPECTED_11_CONSTEXPR U &operator*() & { TL_ASSERT(has_value()); return val(); } template <class U = T, detail::enable_if_t<!std::is_void<U>::value> * = nullptr> constexpr const U &&operator*() const && { TL_ASSERT(has_value()); return std::move(val()); } template <class U = T, detail::enable_if_t<!std::is_void<U>::value> * = nullptr> TL_EXPECTED_11_CONSTEXPR U &&operator*() && { TL_ASSERT(has_value()); return std::move(val()); } constexpr bool has_value() const noexcept { return this->m_has_val; } constexpr explicit operator bool() const noexcept { return this->m_has_val; } template <class U = T, detail::enable_if_t<!std::is_void<U>::value> * = nullptr> TL_EXPECTED_11_CONSTEXPR const U &value() const & { if (!has_value()) detail::throw_exception(bad_expected_access<E>(err().value())); return val(); } template <class U = T, detail::enable_if_t<!std::is_void<U>::value> * = nullptr> TL_EXPECTED_11_CONSTEXPR U &value() & { if (!has_value()) detail::throw_exception(bad_expected_access<E>(err().value())); return val(); } template <class U = T, detail::enable_if_t<!std::is_void<U>::value> * = nullptr> TL_EXPECTED_11_CONSTEXPR const U &&value() const && { if (!has_value()) detail::throw_exception(bad_expected_access<E>(std::move(err()).value())); return std::move(val()); } template <class U = T, detail::enable_if_t<!std::is_void<U>::value> * = nullptr> TL_EXPECTED_11_CONSTEXPR U &&value() && { if (!has_value()) detail::throw_exception(bad_expected_access<E>(std::move(err()).value())); return std::move(val()); } constexpr const E &error() const & { TL_ASSERT(!has_value()); return err().value(); } TL_EXPECTED_11_CONSTEXPR E &error() & { TL_ASSERT(!has_value()); return err().value(); } constexpr const E &&error() const && { TL_ASSERT(!has_value()); return std::move(err().value()); } TL_EXPECTED_11_CONSTEXPR E &&error() && { TL_ASSERT(!has_value()); return std::move(err().value()); } template <class U> constexpr T value_or(U &&v) const & { static_assert(std::is_copy_constructible<T>::value && std::is_convertible<U &&, T>::value, "T must be copy-constructible and convertible to from U&&"); return bool(*this) ? **this : static_cast<T>(std::forward<U>(v)); } template <class U> TL_EXPECTED_11_CONSTEXPR T value_or(U &&v) && { static_assert(std::is_move_constructible<T>::value && std::is_convertible<U &&, T>::value, "T must be move-constructible and convertible to from U&&"); return bool(*this) ? std::move(**this) : static_cast<T>(std::forward<U>(v)); } }; namespace detail { template <class Exp> using exp_t = typename detail::decay_t<Exp>::value_type; template <class Exp> using err_t = typename detail::decay_t<Exp>::error_type; template <class Exp, class Ret> using ret_t = expected<Ret, err_t<Exp>>; #ifdef TL_EXPECTED_CXX14 template <class Exp, class F, detail::enable_if_t<!std::is_void<exp_t<Exp>>::value> * = nullptr, class Ret = decltype(detail::invoke(std::declval<F>(), *std::declval<Exp>()))> constexpr auto and_then_impl(Exp &&exp, F &&f) { static_assert(detail::is_expected<Ret>::value, "F must return an expected"); return exp.has_value() ? detail::invoke(std::forward<F>(f), *std::forward<Exp>(exp)) : Ret(unexpect, std::forward<Exp>(exp).error()); } template <class Exp, class F, detail::enable_if_t<std::is_void<exp_t<Exp>>::value> * = nullptr, class Ret = decltype(detail::invoke(std::declval<F>()))> constexpr auto and_then_impl(Exp &&exp, F &&f) { static_assert(detail::is_expected<Ret>::value, "F must return an expected"); return exp.has_value() ? detail::invoke(std::forward<F>(f)) : Ret(unexpect, std::forward<Exp>(exp).error()); } #else template <class> struct TC; template <class Exp, class F, class Ret = decltype(detail::invoke(std::declval<F>(), *std::declval<Exp>())), detail::enable_if_t<!std::is_void<exp_t<Exp>>::value> * = nullptr> auto and_then_impl(Exp &&exp, F &&f) -> Ret { static_assert(detail::is_expected<Ret>::value, "F must return an expected"); return exp.has_value() ? detail::invoke(std::forward<F>(f), *std::forward<Exp>(exp)) : Ret(unexpect, std::forward<Exp>(exp).error()); } template <class Exp, class F, class Ret = decltype(detail::invoke(std::declval<F>())), detail::enable_if_t<std::is_void<exp_t<Exp>>::value> * = nullptr> constexpr auto and_then_impl(Exp &&exp, F &&f) -> Ret { static_assert(detail::is_expected<Ret>::value, "F must return an expected"); return exp.has_value() ? detail::invoke(std::forward<F>(f)) : Ret(unexpect, std::forward<Exp>(exp).error()); } #endif #ifdef TL_EXPECTED_CXX14 template <class Exp, class F, detail::enable_if_t<!std::is_void<exp_t<Exp>>::value> * = nullptr, class Ret = decltype(detail::invoke(std::declval<F>(), *std::declval<Exp>())), detail::enable_if_t<!std::is_void<Ret>::value> * = nullptr> constexpr auto expected_map_impl(Exp &&exp, F &&f) { using result = ret_t<Exp, detail::decay_t<Ret>>; return exp.has_value() ? result(detail::invoke(std::forward<F>(f), *std::forward<Exp>(exp))) : result(unexpect, std::forward<Exp>(exp).error()); } template <class Exp, class F, detail::enable_if_t<!std::is_void<exp_t<Exp>>::value> * = nullptr, class Ret = decltype(detail::invoke(std::declval<F>(), *std::declval<Exp>())), detail::enable_if_t<std::is_void<Ret>::value> * = nullptr> auto expected_map_impl(Exp &&exp, F &&f) { using result = expected<void, err_t<Exp>>; if (exp.has_value()) { detail::invoke(std::forward<F>(f), *std::forward<Exp>(exp)); return result(); } return result(unexpect, std::forward<Exp>(exp).error()); } template <class Exp, class F, detail::enable_if_t<std::is_void<exp_t<Exp>>::value> * = nullptr, class Ret = decltype(detail::invoke(std::declval<F>())), detail::enable_if_t<!std::is_void<Ret>::value> * = nullptr> constexpr auto expected_map_impl(Exp &&exp, F &&f) { using result = ret_t<Exp, detail::decay_t<Ret>>; return exp.has_value() ? result(detail::invoke(std::forward<F>(f))) : result(unexpect, std::forward<Exp>(exp).error()); } template <class Exp, class F, detail::enable_if_t<std::is_void<exp_t<Exp>>::value> * = nullptr, class Ret = decltype(detail::invoke(std::declval<F>())), detail::enable_if_t<std::is_void<Ret>::value> * = nullptr> auto expected_map_impl(Exp &&exp, F &&f) { using result = expected<void, err_t<Exp>>; if (exp.has_value()) { detail::invoke(std::forward<F>(f)); return result(); } return result(unexpect, std::forward<Exp>(exp).error()); } #else template <class Exp, class F, detail::enable_if_t<!std::is_void<exp_t<Exp>>::value> * = nullptr, class Ret = decltype(detail::invoke(std::declval<F>(), *std::declval<Exp>())), detail::enable_if_t<!std::is_void<Ret>::value> * = nullptr> constexpr auto expected_map_impl(Exp &&exp, F &&f) -> ret_t<Exp, detail::decay_t<Ret>> { using result = ret_t<Exp, detail::decay_t<Ret>>; return exp.has_value() ? result(detail::invoke(std::forward<F>(f), *std::forward<Exp>(exp))) : result(unexpect, std::forward<Exp>(exp).error()); } template <class Exp, class F, detail::enable_if_t<!std::is_void<exp_t<Exp>>::value> * = nullptr, class Ret = decltype(detail::invoke(std::declval<F>(), *std::declval<Exp>())), detail::enable_if_t<std::is_void<Ret>::value> * = nullptr> auto expected_map_impl(Exp &&exp, F &&f) -> expected<void, err_t<Exp>> { if (exp.has_value()) { detail::invoke(std::forward<F>(f), *std::forward<Exp>(exp)); return {}; } return unexpected<err_t<Exp>>(std::forward<Exp>(exp).error()); } template <class Exp, class F, detail::enable_if_t<std::is_void<exp_t<Exp>>::value> * = nullptr, class Ret = decltype(detail::invoke(std::declval<F>())), detail::enable_if_t<!std::is_void<Ret>::value> * = nullptr> constexpr auto expected_map_impl(Exp &&exp, F &&f) -> ret_t<Exp, detail::decay_t<Ret>> { using result = ret_t<Exp, detail::decay_t<Ret>>; return exp.has_value() ? result(detail::invoke(std::forward<F>(f))) : result(unexpect, std::forward<Exp>(exp).error()); } template <class Exp, class F, detail::enable_if_t<std::is_void<exp_t<Exp>>::value> * = nullptr, class Ret = decltype(detail::invoke(std::declval<F>())), detail::enable_if_t<std::is_void<Ret>::value> * = nullptr> auto expected_map_impl(Exp &&exp, F &&f) -> expected<void, err_t<Exp>> { if (exp.has_value()) { detail::invoke(std::forward<F>(f)); return {}; } return unexpected<err_t<Exp>>(std::forward<Exp>(exp).error()); } #endif #if defined(TL_EXPECTED_CXX14) && !defined(TL_EXPECTED_GCC49) && \ !defined(TL_EXPECTED_GCC54) && !defined(TL_EXPECTED_GCC55) template <class Exp, class F, detail::enable_if_t<!std::is_void<exp_t<Exp>>::value> * = nullptr, class Ret = decltype(detail::invoke(std::declval<F>(), std::declval<Exp>().error())), detail::enable_if_t<!std::is_void<Ret>::value> * = nullptr> constexpr auto map_error_impl(Exp &&exp, F &&f) { using result = expected<exp_t<Exp>, detail::decay_t<Ret>>; return exp.has_value() ? result(*std::forward<Exp>(exp)) : result(unexpect, detail::invoke(std::forward<F>(f), std::forward<Exp>(exp).error())); } template <class Exp, class F, detail::enable_if_t<!std::is_void<exp_t<Exp>>::value> * = nullptr, class Ret = decltype(detail::invoke(std::declval<F>(), std::declval<Exp>().error())), detail::enable_if_t<std::is_void<Ret>::value> * = nullptr> auto map_error_impl(Exp &&exp, F &&f) { using result = expected<exp_t<Exp>, monostate>; if (exp.has_value()) { return result(*std::forward<Exp>(exp)); } detail::invoke(std::forward<F>(f), std::forward<Exp>(exp).error()); return result(unexpect, monostate{}); } template <class Exp, class F, detail::enable_if_t<std::is_void<exp_t<Exp>>::value> * = nullptr, class Ret = decltype(detail::invoke(std::declval<F>(), std::declval<Exp>().error())), detail::enable_if_t<!std::is_void<Ret>::value> * = nullptr> constexpr auto map_error_impl(Exp &&exp, F &&f) { using result = expected<exp_t<Exp>, detail::decay_t<Ret>>; return exp.has_value() ? result() : result(unexpect, detail::invoke(std::forward<F>(f), std::forward<Exp>(exp).error())); } template <class Exp, class F, detail::enable_if_t<std::is_void<exp_t<Exp>>::value> * = nullptr, class Ret = decltype(detail::invoke(std::declval<F>(), std::declval<Exp>().error())), detail::enable_if_t<std::is_void<Ret>::value> * = nullptr> auto map_error_impl(Exp &&exp, F &&f) { using result = expected<exp_t<Exp>, monostate>; if (exp.has_value()) { return result(); } detail::invoke(std::forward<F>(f), std::forward<Exp>(exp).error()); return result(unexpect, monostate{}); } #else template <class Exp, class F, detail::enable_if_t<!std::is_void<exp_t<Exp>>::value> * = nullptr, class Ret = decltype(detail::invoke(std::declval<F>(), std::declval<Exp>().error())), detail::enable_if_t<!std::is_void<Ret>::value> * = nullptr> constexpr auto map_error_impl(Exp &&exp, F &&f) -> expected<exp_t<Exp>, detail::decay_t<Ret>> { using result = expected<exp_t<Exp>, detail::decay_t<Ret>>; return exp.has_value() ? result(*std::forward<Exp>(exp)) : result(unexpect, detail::invoke(std::forward<F>(f), std::forward<Exp>(exp).error())); } template <class Exp, class F, detail::enable_if_t<!std::is_void<exp_t<Exp>>::value> * = nullptr, class Ret = decltype(detail::invoke(std::declval<F>(), std::declval<Exp>().error())), detail::enable_if_t<std::is_void<Ret>::value> * = nullptr> auto map_error_impl(Exp &&exp, F &&f) -> expected<exp_t<Exp>, monostate> { using result = expected<exp_t<Exp>, monostate>; if (exp.has_value()) { return result(*std::forward<Exp>(exp)); } detail::invoke(std::forward<F>(f), std::forward<Exp>(exp).error()); return result(unexpect, monostate{}); } template <class Exp, class F, detail::enable_if_t<std::is_void<exp_t<Exp>>::value> * = nullptr, class Ret = decltype(detail::invoke(std::declval<F>(), std::declval<Exp>().error())), detail::enable_if_t<!std::is_void<Ret>::value> * = nullptr> constexpr auto map_error_impl(Exp &&exp, F &&f) -> expected<exp_t<Exp>, detail::decay_t<Ret>> { using result = expected<exp_t<Exp>, detail::decay_t<Ret>>; return exp.has_value() ? result() : result(unexpect, detail::invoke(std::forward<F>(f), std::forward<Exp>(exp).error())); } template <class Exp, class F, detail::enable_if_t<std::is_void<exp_t<Exp>>::value> * = nullptr, class Ret = decltype(detail::invoke(std::declval<F>(), std::declval<Exp>().error())), detail::enable_if_t<std::is_void<Ret>::value> * = nullptr> auto map_error_impl(Exp &&exp, F &&f) -> expected<exp_t<Exp>, monostate> { using result = expected<exp_t<Exp>, monostate>; if (exp.has_value()) { return result(); } detail::invoke(std::forward<F>(f), std::forward<Exp>(exp).error()); return result(unexpect, monostate{}); } #endif #ifdef TL_EXPECTED_CXX14 template <class Exp, class F, class Ret = decltype(detail::invoke(std::declval<F>(), std::declval<Exp>().error())), detail::enable_if_t<!std::is_void<Ret>::value> * = nullptr> constexpr auto or_else_impl(Exp &&exp, F &&f) { static_assert(detail::is_expected<Ret>::value, "F must return an expected"); return exp.has_value() ? std::forward<Exp>(exp) : detail::invoke(std::forward<F>(f), std::forward<Exp>(exp).error()); } template <class Exp, class F, class Ret = decltype(detail::invoke(std::declval<F>(), std::declval<Exp>().error())), detail::enable_if_t<std::is_void<Ret>::value> * = nullptr> detail::decay_t<Exp> or_else_impl(Exp &&exp, F &&f) { return exp.has_value() ? std::forward<Exp>(exp) : (detail::invoke(std::forward<F>(f), std::forward<Exp>(exp).error()), std::forward<Exp>(exp)); } #else template <class Exp, class F, class Ret = decltype(detail::invoke(std::declval<F>(), std::declval<Exp>().error())), detail::enable_if_t<!std::is_void<Ret>::value> * = nullptr> auto or_else_impl(Exp &&exp, F &&f) -> Ret { static_assert(detail::is_expected<Ret>::value, "F must return an expected"); return exp.has_value() ? std::forward<Exp>(exp) : detail::invoke(std::forward<F>(f), std::forward<Exp>(exp).error()); } template <class Exp, class F, class Ret = decltype(detail::invoke(std::declval<F>(), std::declval<Exp>().error())), detail::enable_if_t<std::is_void<Ret>::value> * = nullptr> detail::decay_t<Exp> or_else_impl(Exp &&exp, F &&f) { return exp.has_value() ? std::forward<Exp>(exp) : (detail::invoke(std::forward<F>(f), std::forward<Exp>(exp).error()), std::forward<Exp>(exp)); } #endif } // namespace detail template <class T, class E, class U, class F> constexpr bool operator==(const expected<T, E> &lhs, const expected<U, F> &rhs) { return (lhs.has_value() != rhs.has_value()) ? false : (!lhs.has_value() ? lhs.error() == rhs.error() : *lhs == *rhs); } template <class T, class E, class U, class F> constexpr bool operator!=(const expected<T, E> &lhs, const expected<U, F> &rhs) { return (lhs.has_value() != rhs.has_value()) ? true : (!lhs.has_value() ? lhs.error() != rhs.error() : *lhs != *rhs); } template <class E, class F> constexpr bool operator==(const expected<void, E> &lhs, const expected<void, F> &rhs) { return (lhs.has_value() != rhs.has_value()) ? false : (!lhs.has_value() ? lhs.error() == rhs.error() : true); } template <class E, class F> constexpr bool operator!=(const expected<void, E> &lhs, const expected<void, F> &rhs) { return (lhs.has_value() != rhs.has_value()) ? true : (!lhs.has_value() ? lhs.error() == rhs.error() : false); } template <class T, class E, class U> constexpr bool operator==(const expected<T, E> &x, const U &v) { return x.has_value() ? *x == v : false; } template <class T, class E, class U> constexpr bool operator==(const U &v, const expected<T, E> &x) { return x.has_value() ? *x == v : false; } template <class T, class E, class U> constexpr bool operator!=(const expected<T, E> &x, const U &v) { return x.has_value() ? *x != v : true; } template <class T, class E, class U> constexpr bool operator!=(const U &v, const expected<T, E> &x) { return x.has_value() ? *x != v : true; } template <class T, class E> constexpr bool operator==(const expected<T, E> &x, const unexpected<E> &e) { return x.has_value() ? false : x.error() == e.value(); } template <class T, class E> constexpr bool operator==(const unexpected<E> &e, const expected<T, E> &x) { return x.has_value() ? false : x.error() == e.value(); } template <class T, class E> constexpr bool operator!=(const expected<T, E> &x, const unexpected<E> &e) { return x.has_value() ? true : x.error() != e.value(); } template <class T, class E> constexpr bool operator!=(const unexpected<E> &e, const expected<T, E> &x) { return x.has_value() ? true : x.error() != e.value(); } template <class T, class E, detail::enable_if_t<(std::is_void<T>::value || std::is_move_constructible<T>::value) && detail::is_swappable<T>::value && std::is_move_constructible<E>::value && detail::is_swappable<E>::value> * = nullptr> void swap(expected<T, E> &lhs, expected<T, E> &rhs) noexcept(noexcept(lhs.swap(rhs))) { lhs.swap(rhs); } } // namespace tl #endif template<typename T1, typename T2> class C { private: T1 a; T2 b; }; template<typename T> C (int, const T&)->C<int, const T&>; class MyError { public: enum ErrorType : int { none, type1, type2 }; MyError (ErrorType type, const std::string& description) { } }; namespace tl { template<typename T> unexpected(MyError::ErrorType, const T&) -> unexpected<MyError>; } // namespace tl int main() { return 0; }
Become a Patron
Sponsor on GitHub
Donate via PayPal
Compiler Explorer Shop
Source on GitHub
Mailing list
Installed libraries
Wiki
Report an issue
How it works
Contact the author
CE on Mastodon
CE on Bluesky
Statistics
Changelog
Version tree