Thanks for using Compiler Explorer
Sponsors
Jakt
C++
Ada
Analysis
Android Java
Android Kotlin
Assembly
C
C3
Carbon
C++ (Circle)
CIRCT
Clean
CMake
CMakeScript
COBOL
C++ for OpenCL
MLIR
Cppx
Cppx-Blue
Cppx-Gold
Cpp2-cppfront
Crystal
C#
CUDA C++
D
Dart
Elixir
Erlang
Fortran
F#
GLSL
Go
Haskell
HLSL
Hook
Hylo
IL
ispc
Java
Julia
Kotlin
LLVM IR
LLVM MIR
Modula-2
Nim
Objective-C
Objective-C++
OCaml
OpenCL C
Pascal
Pony
Python
Racket
Ruby
Rust
Snowball
Scala
Solidity
Spice
SPIR-V
Swift
LLVM TableGen
Toit
TypeScript Native
V
Vala
Visual Basic
WASM
Zig
Javascript
GIMPLE
Ygen
c++ source #1
Output
Compile to binary object
Link to binary
Execute the code
Intel asm syntax
Demangle identifiers
Verbose demangling
Filters
Unused labels
Library functions
Directives
Comments
Horizontal whitespace
Debug intrinsics
Compiler
6502-c++ 11.1.0
ARM GCC 10.2.0
ARM GCC 10.3.0
ARM GCC 10.4.0
ARM GCC 10.5.0
ARM GCC 11.1.0
ARM GCC 11.2.0
ARM GCC 11.3.0
ARM GCC 11.4.0
ARM GCC 12.1.0
ARM GCC 12.2.0
ARM GCC 12.3.0
ARM GCC 12.4.0
ARM GCC 13.1.0
ARM GCC 13.2.0
ARM GCC 13.2.0 (unknown-eabi)
ARM GCC 13.3.0
ARM GCC 13.3.0 (unknown-eabi)
ARM GCC 14.1.0
ARM GCC 14.1.0 (unknown-eabi)
ARM GCC 14.2.0
ARM GCC 14.2.0 (unknown-eabi)
ARM GCC 4.5.4
ARM GCC 4.6.4
ARM GCC 5.4
ARM GCC 6.3.0
ARM GCC 6.4.0
ARM GCC 7.3.0
ARM GCC 7.5.0
ARM GCC 8.2.0
ARM GCC 8.5.0
ARM GCC 9.3.0
ARM GCC 9.4.0
ARM GCC 9.5.0
ARM GCC trunk
ARM gcc 10.2.1 (none)
ARM gcc 10.3.1 (2021.07 none)
ARM gcc 10.3.1 (2021.10 none)
ARM gcc 11.2.1 (none)
ARM gcc 5.4.1 (none)
ARM gcc 7.2.1 (none)
ARM gcc 8.2 (WinCE)
ARM gcc 8.3.1 (none)
ARM gcc 9.2.1 (none)
ARM msvc v19.0 (WINE)
ARM msvc v19.10 (WINE)
ARM msvc v19.14 (WINE)
ARM64 Morello gcc 10.1 Alpha 2
ARM64 gcc 10.2
ARM64 gcc 10.3
ARM64 gcc 10.4
ARM64 gcc 10.5.0
ARM64 gcc 11.1
ARM64 gcc 11.2
ARM64 gcc 11.3
ARM64 gcc 11.4.0
ARM64 gcc 12.1
ARM64 gcc 12.2.0
ARM64 gcc 12.3.0
ARM64 gcc 12.4.0
ARM64 gcc 13.1.0
ARM64 gcc 13.2.0
ARM64 gcc 13.3.0
ARM64 gcc 14.1.0
ARM64 gcc 14.2.0
ARM64 gcc 4.9.4
ARM64 gcc 5.4
ARM64 gcc 5.5.0
ARM64 gcc 6.3
ARM64 gcc 6.4
ARM64 gcc 7.3
ARM64 gcc 7.5
ARM64 gcc 8.2
ARM64 gcc 8.5
ARM64 gcc 9.3
ARM64 gcc 9.4
ARM64 gcc 9.5
ARM64 gcc trunk
ARM64 msvc v19.14 (WINE)
AVR gcc 10.3.0
AVR gcc 11.1.0
AVR gcc 12.1.0
AVR gcc 12.2.0
AVR gcc 12.3.0
AVR gcc 12.4.0
AVR gcc 13.1.0
AVR gcc 13.2.0
AVR gcc 13.3.0
AVR gcc 14.1.0
AVR gcc 14.2.0
AVR gcc 4.5.4
AVR gcc 4.6.4
AVR gcc 5.4.0
AVR gcc 9.2.0
AVR gcc 9.3.0
Arduino Mega (1.8.9)
Arduino Uno (1.8.9)
BPF clang (trunk)
BPF clang 13.0.0
BPF clang 14.0.0
BPF clang 15.0.0
BPF clang 16.0.0
BPF clang 17.0.1
BPF clang 18.1.0
BPF clang 19.1.0
BPF gcc 13.1.0
BPF gcc 13.2.0
BPF gcc 13.3.0
BPF gcc trunk
EDG (experimental reflection)
EDG 6.5
EDG 6.5 (GNU mode gcc 13)
EDG 6.6
EDG 6.6 (GNU mode gcc 13)
FRC 2019
FRC 2020
FRC 2023
HPPA gcc 14.2.0
KVX ACB 4.1.0 (GCC 7.5.0)
KVX ACB 4.1.0-cd1 (GCC 7.5.0)
KVX ACB 4.10.0 (GCC 10.3.1)
KVX ACB 4.11.1 (GCC 10.3.1)
KVX ACB 4.12.0 (GCC 11.3.0)
KVX ACB 4.2.0 (GCC 7.5.0)
KVX ACB 4.3.0 (GCC 7.5.0)
KVX ACB 4.4.0 (GCC 7.5.0)
KVX ACB 4.6.0 (GCC 9.4.1)
KVX ACB 4.8.0 (GCC 9.4.1)
KVX ACB 4.9.0 (GCC 9.4.1)
KVX ACB 5.0.0 (GCC 12.2.1)
KVX ACB 5.2.0 (GCC 13.2.1)
LoongArch64 clang (trunk)
LoongArch64 clang 17.0.1
LoongArch64 clang 18.1.0
LoongArch64 clang 19.1.0
M68K gcc 13.1.0
M68K gcc 13.2.0
M68K gcc 13.3.0
M68K gcc 14.1.0
M68K gcc 14.2.0
M68k clang (trunk)
MRISC32 gcc (trunk)
MSP430 gcc 4.5.3
MSP430 gcc 5.3.0
MSP430 gcc 6.2.1
MinGW clang 14.0.3
MinGW clang 14.0.6
MinGW clang 15.0.7
MinGW clang 16.0.0
MinGW clang 16.0.2
MinGW gcc 11.3.0
MinGW gcc 12.1.0
MinGW gcc 12.2.0
MinGW gcc 13.1.0
RISC-V (32-bits) gcc (trunk)
RISC-V (32-bits) gcc 10.2.0
RISC-V (32-bits) gcc 10.3.0
RISC-V (32-bits) gcc 11.2.0
RISC-V (32-bits) gcc 11.3.0
RISC-V (32-bits) gcc 11.4.0
RISC-V (32-bits) gcc 12.1.0
RISC-V (32-bits) gcc 12.2.0
RISC-V (32-bits) gcc 12.3.0
RISC-V (32-bits) gcc 12.4.0
RISC-V (32-bits) gcc 13.1.0
RISC-V (32-bits) gcc 13.2.0
RISC-V (32-bits) gcc 13.3.0
RISC-V (32-bits) gcc 14.1.0
RISC-V (32-bits) gcc 14.2.0
RISC-V (32-bits) gcc 8.2.0
RISC-V (32-bits) gcc 8.5.0
RISC-V (32-bits) gcc 9.4.0
RISC-V (64-bits) gcc (trunk)
RISC-V (64-bits) gcc 10.2.0
RISC-V (64-bits) gcc 10.3.0
RISC-V (64-bits) gcc 11.2.0
RISC-V (64-bits) gcc 11.3.0
RISC-V (64-bits) gcc 11.4.0
RISC-V (64-bits) gcc 12.1.0
RISC-V (64-bits) gcc 12.2.0
RISC-V (64-bits) gcc 12.3.0
RISC-V (64-bits) gcc 12.4.0
RISC-V (64-bits) gcc 13.1.0
RISC-V (64-bits) gcc 13.2.0
RISC-V (64-bits) gcc 13.3.0
RISC-V (64-bits) gcc 14.1.0
RISC-V (64-bits) gcc 14.2.0
RISC-V (64-bits) gcc 8.2.0
RISC-V (64-bits) gcc 8.5.0
RISC-V (64-bits) gcc 9.4.0
RISC-V rv32gc clang (trunk)
RISC-V rv32gc clang 10.0.0
RISC-V rv32gc clang 10.0.1
RISC-V rv32gc clang 11.0.0
RISC-V rv32gc clang 11.0.1
RISC-V rv32gc clang 12.0.0
RISC-V rv32gc clang 12.0.1
RISC-V rv32gc clang 13.0.0
RISC-V rv32gc clang 13.0.1
RISC-V rv32gc clang 14.0.0
RISC-V rv32gc clang 15.0.0
RISC-V rv32gc clang 16.0.0
RISC-V rv32gc clang 17.0.1
RISC-V rv32gc clang 18.1.0
RISC-V rv32gc clang 19.1.0
RISC-V rv32gc clang 9.0.0
RISC-V rv32gc clang 9.0.1
RISC-V rv64gc clang (trunk)
RISC-V rv64gc clang 10.0.0
RISC-V rv64gc clang 10.0.1
RISC-V rv64gc clang 11.0.0
RISC-V rv64gc clang 11.0.1
RISC-V rv64gc clang 12.0.0
RISC-V rv64gc clang 12.0.1
RISC-V rv64gc clang 13.0.0
RISC-V rv64gc clang 13.0.1
RISC-V rv64gc clang 14.0.0
RISC-V rv64gc clang 15.0.0
RISC-V rv64gc clang 16.0.0
RISC-V rv64gc clang 17.0.1
RISC-V rv64gc clang 18.1.0
RISC-V rv64gc clang 19.1.0
RISC-V rv64gc clang 9.0.0
RISC-V rv64gc clang 9.0.1
Raspbian Buster
Raspbian Stretch
SPARC LEON gcc 12.2.0
SPARC LEON gcc 12.3.0
SPARC LEON gcc 12.4.0
SPARC LEON gcc 13.1.0
SPARC LEON gcc 13.2.0
SPARC LEON gcc 13.3.0
SPARC LEON gcc 14.1.0
SPARC LEON gcc 14.2.0
SPARC gcc 12.2.0
SPARC gcc 12.3.0
SPARC gcc 12.4.0
SPARC gcc 13.1.0
SPARC gcc 13.2.0
SPARC gcc 13.3.0
SPARC gcc 14.1.0
SPARC gcc 14.2.0
SPARC64 gcc 12.2.0
SPARC64 gcc 12.3.0
SPARC64 gcc 12.4.0
SPARC64 gcc 13.1.0
SPARC64 gcc 13.2.0
SPARC64 gcc 13.3.0
SPARC64 gcc 14.1.0
SPARC64 gcc 14.2.0
TI C6x gcc 12.2.0
TI C6x gcc 12.3.0
TI C6x gcc 12.4.0
TI C6x gcc 13.1.0
TI C6x gcc 13.2.0
TI C6x gcc 13.3.0
TI C6x gcc 14.1.0
TI C6x gcc 14.2.0
TI CL430 21.6.1
VAX gcc NetBSDELF 10.4.0
VAX gcc NetBSDELF 10.5.0 (Nov 15 03:50:22 2023)
WebAssembly clang (trunk)
Xtensa ESP32 gcc 11.2.0 (2022r1)
Xtensa ESP32 gcc 12.2.0 (20230208)
Xtensa ESP32 gcc 8.2.0 (2019r2)
Xtensa ESP32 gcc 8.2.0 (2020r1)
Xtensa ESP32 gcc 8.2.0 (2020r2)
Xtensa ESP32 gcc 8.4.0 (2020r3)
Xtensa ESP32 gcc 8.4.0 (2021r1)
Xtensa ESP32 gcc 8.4.0 (2021r2)
Xtensa ESP32-S2 gcc 11.2.0 (2022r1)
Xtensa ESP32-S2 gcc 12.2.0 (20230208)
Xtensa ESP32-S2 gcc 8.2.0 (2019r2)
Xtensa ESP32-S2 gcc 8.2.0 (2020r1)
Xtensa ESP32-S2 gcc 8.2.0 (2020r2)
Xtensa ESP32-S2 gcc 8.4.0 (2020r3)
Xtensa ESP32-S2 gcc 8.4.0 (2021r1)
Xtensa ESP32-S2 gcc 8.4.0 (2021r2)
Xtensa ESP32-S3 gcc 11.2.0 (2022r1)
Xtensa ESP32-S3 gcc 12.2.0 (20230208)
Xtensa ESP32-S3 gcc 8.4.0 (2020r3)
Xtensa ESP32-S3 gcc 8.4.0 (2021r1)
Xtensa ESP32-S3 gcc 8.4.0 (2021r2)
arm64 msvc v19.20 VS16.0
arm64 msvc v19.21 VS16.1
arm64 msvc v19.22 VS16.2
arm64 msvc v19.23 VS16.3
arm64 msvc v19.24 VS16.4
arm64 msvc v19.25 VS16.5
arm64 msvc v19.27 VS16.7
arm64 msvc v19.28 VS16.8
arm64 msvc v19.28 VS16.9
arm64 msvc v19.29 VS16.10
arm64 msvc v19.29 VS16.11
arm64 msvc v19.30 VS17.0
arm64 msvc v19.31 VS17.1
arm64 msvc v19.32 VS17.2
arm64 msvc v19.33 VS17.3
arm64 msvc v19.34 VS17.4
arm64 msvc v19.35 VS17.5
arm64 msvc v19.36 VS17.6
arm64 msvc v19.37 VS17.7
arm64 msvc v19.38 VS17.8
arm64 msvc v19.39 VS17.9
arm64 msvc v19.40 VS17.10
arm64 msvc v19.latest
armv7-a clang (trunk)
armv7-a clang 10.0.0
armv7-a clang 10.0.1
armv7-a clang 11.0.0
armv7-a clang 11.0.1
armv7-a clang 12.0.0
armv7-a clang 12.0.1
armv7-a clang 13.0.0
armv7-a clang 13.0.1
armv7-a clang 14.0.0
armv7-a clang 15.0.0
armv7-a clang 16.0.0
armv7-a clang 17.0.1
armv7-a clang 18.1.0
armv7-a clang 19.1.0
armv7-a clang 9.0.0
armv7-a clang 9.0.1
armv8-a clang (all architectural features, trunk)
armv8-a clang (trunk)
armv8-a clang 10.0.0
armv8-a clang 10.0.1
armv8-a clang 11.0.0
armv8-a clang 11.0.1
armv8-a clang 12.0.0
armv8-a clang 13.0.0
armv8-a clang 14.0.0
armv8-a clang 15.0.0
armv8-a clang 16.0.0
armv8-a clang 17.0.1
armv8-a clang 18.1.0
armv8-a clang 19.1.0
armv8-a clang 9.0.0
armv8-a clang 9.0.1
clang-cl 18.1.0
ellcc 0.1.33
ellcc 0.1.34
ellcc 2017-07-16
hexagon-clang 16.0.5
llvm-mos atari2600-3e
llvm-mos atari2600-4k
llvm-mos atari2600-common
llvm-mos atari5200-supercart
llvm-mos atari8-cart-megacart
llvm-mos atari8-cart-std
llvm-mos atari8-cart-xegs
llvm-mos atari8-common
llvm-mos atari8-dos
llvm-mos c128
llvm-mos c64
llvm-mos commodore
llvm-mos cpm65
llvm-mos cx16
llvm-mos dodo
llvm-mos eater
llvm-mos mega65
llvm-mos nes
llvm-mos nes-action53
llvm-mos nes-cnrom
llvm-mos nes-gtrom
llvm-mos nes-mmc1
llvm-mos nes-mmc3
llvm-mos nes-nrom
llvm-mos nes-unrom
llvm-mos nes-unrom-512
llvm-mos osi-c1p
llvm-mos pce
llvm-mos pce-cd
llvm-mos pce-common
llvm-mos pet
llvm-mos rp6502
llvm-mos rpc8e
llvm-mos supervision
llvm-mos vic20
loongarch64 gcc 12.2.0
loongarch64 gcc 12.3.0
loongarch64 gcc 12.4.0
loongarch64 gcc 13.1.0
loongarch64 gcc 13.2.0
loongarch64 gcc 13.3.0
loongarch64 gcc 14.1.0
loongarch64 gcc 14.2.0
mips clang 13.0.0
mips clang 14.0.0
mips clang 15.0.0
mips clang 16.0.0
mips clang 17.0.1
mips clang 18.1.0
mips clang 19.1.0
mips gcc 11.2.0
mips gcc 12.1.0
mips gcc 12.2.0
mips gcc 12.3.0
mips gcc 12.4.0
mips gcc 13.1.0
mips gcc 13.2.0
mips gcc 13.3.0
mips gcc 14.1.0
mips gcc 14.2.0
mips gcc 4.9.4
mips gcc 5.4
mips gcc 5.5.0
mips gcc 9.3.0 (codescape)
mips gcc 9.5.0
mips64 (el) gcc 12.1.0
mips64 (el) gcc 12.2.0
mips64 (el) gcc 12.3.0
mips64 (el) gcc 12.4.0
mips64 (el) gcc 13.1.0
mips64 (el) gcc 13.2.0
mips64 (el) gcc 13.3.0
mips64 (el) gcc 14.1.0
mips64 (el) gcc 14.2.0
mips64 (el) gcc 4.9.4
mips64 (el) gcc 5.4.0
mips64 (el) gcc 5.5.0
mips64 (el) gcc 9.5.0
mips64 clang 13.0.0
mips64 clang 14.0.0
mips64 clang 15.0.0
mips64 clang 16.0.0
mips64 clang 17.0.1
mips64 clang 18.1.0
mips64 clang 19.1.0
mips64 gcc 11.2.0
mips64 gcc 12.1.0
mips64 gcc 12.2.0
mips64 gcc 12.3.0
mips64 gcc 12.4.0
mips64 gcc 13.1.0
mips64 gcc 13.2.0
mips64 gcc 13.3.0
mips64 gcc 14.1.0
mips64 gcc 14.2.0
mips64 gcc 4.9.4
mips64 gcc 5.4.0
mips64 gcc 5.5.0
mips64 gcc 9.5.0
mips64el clang 13.0.0
mips64el clang 14.0.0
mips64el clang 15.0.0
mips64el clang 16.0.0
mips64el clang 17.0.1
mips64el clang 18.1.0
mips64el clang 19.1.0
mipsel clang 13.0.0
mipsel clang 14.0.0
mipsel clang 15.0.0
mipsel clang 16.0.0
mipsel clang 17.0.1
mipsel clang 18.1.0
mipsel clang 19.1.0
mipsel gcc 12.1.0
mipsel gcc 12.2.0
mipsel gcc 12.3.0
mipsel gcc 12.4.0
mipsel gcc 13.1.0
mipsel gcc 13.2.0
mipsel gcc 13.3.0
mipsel gcc 14.1.0
mipsel gcc 14.2.0
mipsel gcc 4.9.4
mipsel gcc 5.4.0
mipsel gcc 5.5.0
mipsel gcc 9.5.0
nanoMIPS gcc 6.3.0 (mtk)
power gcc 11.2.0
power gcc 12.1.0
power gcc 12.2.0
power gcc 12.3.0
power gcc 12.4.0
power gcc 13.1.0
power gcc 13.2.0
power gcc 13.3.0
power gcc 14.1.0
power gcc 14.2.0
power gcc 4.8.5
power64 AT12.0 (gcc8)
power64 AT13.0 (gcc9)
power64 gcc 11.2.0
power64 gcc 12.1.0
power64 gcc 12.2.0
power64 gcc 12.3.0
power64 gcc 12.4.0
power64 gcc 13.1.0
power64 gcc 13.2.0
power64 gcc 13.3.0
power64 gcc 14.1.0
power64 gcc 14.2.0
power64 gcc trunk
power64le AT12.0 (gcc8)
power64le AT13.0 (gcc9)
power64le clang (trunk)
power64le gcc 11.2.0
power64le gcc 12.1.0
power64le gcc 12.2.0
power64le gcc 12.3.0
power64le gcc 12.4.0
power64le gcc 13.1.0
power64le gcc 13.2.0
power64le gcc 13.3.0
power64le gcc 14.1.0
power64le gcc 14.2.0
power64le gcc 6.3.0
power64le gcc trunk
powerpc64 clang (trunk)
s390x gcc 11.2.0
s390x gcc 12.1.0
s390x gcc 12.2.0
s390x gcc 12.3.0
s390x gcc 12.4.0
s390x gcc 13.1.0
s390x gcc 13.2.0
s390x gcc 13.3.0
s390x gcc 14.1.0
s390x gcc 14.2.0
sh gcc 12.2.0
sh gcc 12.3.0
sh gcc 12.4.0
sh gcc 13.1.0
sh gcc 13.2.0
sh gcc 13.3.0
sh gcc 14.1.0
sh gcc 14.2.0
sh gcc 4.9.4
sh gcc 9.5.0
vast (trunk)
x64 msvc v19.0 (WINE)
x64 msvc v19.10 (WINE)
x64 msvc v19.14 (WINE)
x64 msvc v19.20 VS16.0
x64 msvc v19.21 VS16.1
x64 msvc v19.22 VS16.2
x64 msvc v19.23 VS16.3
x64 msvc v19.24 VS16.4
x64 msvc v19.25 VS16.5
x64 msvc v19.27 VS16.7
x64 msvc v19.28 VS16.8
x64 msvc v19.28 VS16.9
x64 msvc v19.29 VS16.10
x64 msvc v19.29 VS16.11
x64 msvc v19.30 VS17.0
x64 msvc v19.31 VS17.1
x64 msvc v19.32 VS17.2
x64 msvc v19.33 VS17.3
x64 msvc v19.34 VS17.4
x64 msvc v19.35 VS17.5
x64 msvc v19.36 VS17.6
x64 msvc v19.37 VS17.7
x64 msvc v19.38 VS17.8
x64 msvc v19.39 VS17.9
x64 msvc v19.40 VS17.10
x64 msvc v19.latest
x86 djgpp 4.9.4
x86 djgpp 5.5.0
x86 djgpp 6.4.0
x86 djgpp 7.2.0
x86 msvc v19.0 (WINE)
x86 msvc v19.10 (WINE)
x86 msvc v19.14 (WINE)
x86 msvc v19.20 VS16.0
x86 msvc v19.21 VS16.1
x86 msvc v19.22 VS16.2
x86 msvc v19.23 VS16.3
x86 msvc v19.24 VS16.4
x86 msvc v19.25 VS16.5
x86 msvc v19.27 VS16.7
x86 msvc v19.28 VS16.8
x86 msvc v19.28 VS16.9
x86 msvc v19.29 VS16.10
x86 msvc v19.29 VS16.11
x86 msvc v19.30 VS17.0
x86 msvc v19.31 VS17.1
x86 msvc v19.32 VS17.2
x86 msvc v19.33 VS17.3
x86 msvc v19.34 VS17.4
x86 msvc v19.35 VS17.5
x86 msvc v19.36 VS17.6
x86 msvc v19.37 VS17.7
x86 msvc v19.38 VS17.8
x86 msvc v19.39 VS17.9
x86 msvc v19.40 VS17.10
x86 msvc v19.latest
x86 nvc++ 22.11
x86 nvc++ 22.7
x86 nvc++ 22.9
x86 nvc++ 23.1
x86 nvc++ 23.11
x86 nvc++ 23.3
x86 nvc++ 23.5
x86 nvc++ 23.7
x86 nvc++ 23.9
x86 nvc++ 24.1
x86 nvc++ 24.3
x86 nvc++ 24.5
x86 nvc++ 24.7
x86 nvc++ 24.9
x86-64 Zapcc 190308
x86-64 clang (EricWF contracts)
x86-64 clang (amd-staging)
x86-64 clang (assertions trunk)
x86-64 clang (clangir)
x86-64 clang (dascandy contracts)
x86-64 clang (experimental -Wlifetime)
x86-64 clang (experimental P1061)
x86-64 clang (experimental P1144)
x86-64 clang (experimental P1221)
x86-64 clang (experimental P2996)
x86-64 clang (experimental P3068)
x86-64 clang (experimental P3309)
x86-64 clang (experimental P3367)
x86-64 clang (experimental P3372)
x86-64 clang (experimental metaprogramming - P2632)
x86-64 clang (old concepts branch)
x86-64 clang (p1974)
x86-64 clang (pattern matching - P2688)
x86-64 clang (reflection)
x86-64 clang (resugar)
x86-64 clang (string interpolation - P3412)
x86-64 clang (thephd.dev)
x86-64 clang (trunk)
x86-64 clang (variadic friends - P2893)
x86-64 clang (widberg)
x86-64 clang 10.0.0
x86-64 clang 10.0.0 (assertions)
x86-64 clang 10.0.1
x86-64 clang 11.0.0
x86-64 clang 11.0.0 (assertions)
x86-64 clang 11.0.1
x86-64 clang 12.0.0
x86-64 clang 12.0.0 (assertions)
x86-64 clang 12.0.1
x86-64 clang 13.0.0
x86-64 clang 13.0.0 (assertions)
x86-64 clang 13.0.1
x86-64 clang 14.0.0
x86-64 clang 14.0.0 (assertions)
x86-64 clang 15.0.0
x86-64 clang 15.0.0 (assertions)
x86-64 clang 16.0.0
x86-64 clang 16.0.0 (assertions)
x86-64 clang 17.0.1
x86-64 clang 17.0.1 (assertions)
x86-64 clang 18.1.0
x86-64 clang 18.1.0 (assertions)
x86-64 clang 19.1.0
x86-64 clang 19.1.0 (assertions)
x86-64 clang 2.6.0 (assertions)
x86-64 clang 2.7.0 (assertions)
x86-64 clang 2.8.0 (assertions)
x86-64 clang 2.9.0 (assertions)
x86-64 clang 3.0.0
x86-64 clang 3.0.0 (assertions)
x86-64 clang 3.1
x86-64 clang 3.1 (assertions)
x86-64 clang 3.2
x86-64 clang 3.2 (assertions)
x86-64 clang 3.3
x86-64 clang 3.3 (assertions)
x86-64 clang 3.4 (assertions)
x86-64 clang 3.4.1
x86-64 clang 3.5
x86-64 clang 3.5 (assertions)
x86-64 clang 3.5.1
x86-64 clang 3.5.2
x86-64 clang 3.6
x86-64 clang 3.6 (assertions)
x86-64 clang 3.7
x86-64 clang 3.7 (assertions)
x86-64 clang 3.7.1
x86-64 clang 3.8
x86-64 clang 3.8 (assertions)
x86-64 clang 3.8.1
x86-64 clang 3.9.0
x86-64 clang 3.9.0 (assertions)
x86-64 clang 3.9.1
x86-64 clang 4.0.0
x86-64 clang 4.0.0 (assertions)
x86-64 clang 4.0.1
x86-64 clang 5.0.0
x86-64 clang 5.0.0 (assertions)
x86-64 clang 5.0.1
x86-64 clang 5.0.2
x86-64 clang 6.0.0
x86-64 clang 6.0.0 (assertions)
x86-64 clang 6.0.1
x86-64 clang 7.0.0
x86-64 clang 7.0.0 (assertions)
x86-64 clang 7.0.1
x86-64 clang 7.1.0
x86-64 clang 8.0.0
x86-64 clang 8.0.0 (assertions)
x86-64 clang 8.0.1
x86-64 clang 9.0.0
x86-64 clang 9.0.0 (assertions)
x86-64 clang 9.0.1
x86-64 clang rocm-4.5.2
x86-64 clang rocm-5.0.2
x86-64 clang rocm-5.1.3
x86-64 clang rocm-5.2.3
x86-64 clang rocm-5.3.3
x86-64 clang rocm-5.7.0
x86-64 clang rocm-6.0.2
x86-64 clang rocm-6.1.2
x86-64 gcc (contract labels)
x86-64 gcc (contracts natural syntax)
x86-64 gcc (contracts)
x86-64 gcc (coroutines)
x86-64 gcc (modules)
x86-64 gcc (trunk)
x86-64 gcc 10.1
x86-64 gcc 10.2
x86-64 gcc 10.3
x86-64 gcc 10.4
x86-64 gcc 10.5
x86-64 gcc 11.1
x86-64 gcc 11.2
x86-64 gcc 11.3
x86-64 gcc 11.4
x86-64 gcc 12.1
x86-64 gcc 12.2
x86-64 gcc 12.3
x86-64 gcc 12.4
x86-64 gcc 13.1
x86-64 gcc 13.2
x86-64 gcc 13.3
x86-64 gcc 14.1
x86-64 gcc 14.2
x86-64 gcc 3.4.6
x86-64 gcc 4.0.4
x86-64 gcc 4.1.2
x86-64 gcc 4.4.7
x86-64 gcc 4.5.3
x86-64 gcc 4.6.4
x86-64 gcc 4.7.1
x86-64 gcc 4.7.2
x86-64 gcc 4.7.3
x86-64 gcc 4.7.4
x86-64 gcc 4.8.1
x86-64 gcc 4.8.2
x86-64 gcc 4.8.3
x86-64 gcc 4.8.4
x86-64 gcc 4.8.5
x86-64 gcc 4.9.0
x86-64 gcc 4.9.1
x86-64 gcc 4.9.2
x86-64 gcc 4.9.3
x86-64 gcc 4.9.4
x86-64 gcc 5.1
x86-64 gcc 5.2
x86-64 gcc 5.3
x86-64 gcc 5.4
x86-64 gcc 5.5
x86-64 gcc 6.1
x86-64 gcc 6.2
x86-64 gcc 6.3
x86-64 gcc 6.4
x86-64 gcc 6.5
x86-64 gcc 7.1
x86-64 gcc 7.2
x86-64 gcc 7.3
x86-64 gcc 7.4
x86-64 gcc 7.5
x86-64 gcc 8.1
x86-64 gcc 8.2
x86-64 gcc 8.3
x86-64 gcc 8.4
x86-64 gcc 8.5
x86-64 gcc 9.1
x86-64 gcc 9.2
x86-64 gcc 9.3
x86-64 gcc 9.4
x86-64 gcc 9.5
x86-64 icc 13.0.1
x86-64 icc 16.0.3
x86-64 icc 17.0.0
x86-64 icc 18.0.0
x86-64 icc 19.0.0
x86-64 icc 19.0.1
x86-64 icc 2021.1.2
x86-64 icc 2021.10.0
x86-64 icc 2021.2.0
x86-64 icc 2021.3.0
x86-64 icc 2021.4.0
x86-64 icc 2021.5.0
x86-64 icc 2021.6.0
x86-64 icc 2021.7.0
x86-64 icc 2021.7.1
x86-64 icc 2021.8.0
x86-64 icc 2021.9.0
x86-64 icx 2021.1.2
x86-64 icx 2021.2.0
x86-64 icx 2021.3.0
x86-64 icx 2021.4.0
x86-64 icx 2022.0.0
x86-64 icx 2022.1.0
x86-64 icx 2022.2.0
x86-64 icx 2022.2.1
x86-64 icx 2023.0.0
x86-64 icx 2023.1.0
x86-64 icx 2023.2.1
x86-64 icx 2024.0.0
x86-64 icx 2024.1.0
x86-64 icx 2024.2.0
x86-64 icx 2025.0.0
x86-64 icx 2025.0.0
zig c++ 0.10.0
zig c++ 0.11.0
zig c++ 0.12.0
zig c++ 0.12.1
zig c++ 0.13.0
zig c++ 0.6.0
zig c++ 0.7.0
zig c++ 0.7.1
zig c++ 0.8.0
zig c++ 0.9.0
zig c++ trunk
Options
Source code
// Copyright 2017 The Abseil Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // https://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // Unit tests for the variant template. The 'is' and 'IsEmpty' methods // of variant are not explicitly tested because they are used repeatedly // in building other tests. All other public variant methods should have // explicit tests. #include "absl/types/variant.h" #include <algorithm> #include <cstddef> #include <functional> #include <initializer_list> #include <memory> #include <ostream> #include <queue> #include <type_traits> #include <unordered_set> #include <utility> #include <vector> #include "gmock/gmock.h" #include "gtest/gtest.h" #include "absl/base/config.h" #include "absl/base/port.h" #include "absl/memory/memory.h" #include "absl/meta/type_traits.h" #include "absl/strings/string_view.h" #ifdef ABSL_HAVE_EXCEPTIONS #define ABSL_VARIANT_TEST_EXPECT_FAIL(expr, exception_t, text) \ EXPECT_THROW(expr, exception_t) #else #define ABSL_VARIANT_TEST_EXPECT_FAIL(expr, exception_t, text) \ EXPECT_DEATH(expr, text) #endif // ABSL_HAVE_EXCEPTIONS #define ABSL_VARIANT_TEST_EXPECT_BAD_VARIANT_ACCESS(...) \ ABSL_VARIANT_TEST_EXPECT_FAIL((void)(__VA_ARGS__), absl::bad_variant_access, \ "Bad variant access") struct Hashable {}; namespace std { template <> struct hash<Hashable> { size_t operator()(const Hashable&); }; } // namespace std struct NonHashable {}; namespace absl { namespace { using ::testing::DoubleEq; using ::testing::Pointee; using ::testing::VariantWith; struct MoveCanThrow { MoveCanThrow() : v(0) {} MoveCanThrow(int v) : v(v) {} // NOLINT(runtime/explicit) MoveCanThrow(const MoveCanThrow& other) : v(other.v) {} MoveCanThrow& operator=(const MoveCanThrow& /*other*/) { return *this; } int v; }; bool operator==(MoveCanThrow lhs, MoveCanThrow rhs) { return lhs.v == rhs.v; } bool operator!=(MoveCanThrow lhs, MoveCanThrow rhs) { return lhs.v != rhs.v; } bool operator<(MoveCanThrow lhs, MoveCanThrow rhs) { return lhs.v < rhs.v; } bool operator<=(MoveCanThrow lhs, MoveCanThrow rhs) { return lhs.v <= rhs.v; } bool operator>=(MoveCanThrow lhs, MoveCanThrow rhs) { return lhs.v >= rhs.v; } bool operator>(MoveCanThrow lhs, MoveCanThrow rhs) { return lhs.v > rhs.v; } // This helper class allows us to determine if it was swapped with std::swap() // or with its friend swap() function. struct SpecialSwap { explicit SpecialSwap(int i) : i(i) {} friend void swap(SpecialSwap& a, SpecialSwap& b) { a.special_swap = b.special_swap = true; std::swap(a.i, b.i); } bool operator==(SpecialSwap other) const { return i == other.i; } int i; bool special_swap = false; }; struct MoveOnlyWithListConstructor { MoveOnlyWithListConstructor() = default; explicit MoveOnlyWithListConstructor(std::initializer_list<int> /*ilist*/, int value) : value(value) {} MoveOnlyWithListConstructor(MoveOnlyWithListConstructor&&) = default; MoveOnlyWithListConstructor& operator=(MoveOnlyWithListConstructor&&) = default; int value = 0; }; #ifdef ABSL_HAVE_EXCEPTIONS struct ConversionException {}; template <class T> struct ExceptionOnConversion { operator T() const { // NOLINT(runtime/explicit) throw ConversionException(); } }; // Forces a variant into the valueless by exception state. template <class H, class... T> void ToValuelessByException(absl::variant<H, T...>& v) { // NOLINT try { v.template emplace<0>(ExceptionOnConversion<H>()); } catch (ConversionException& /*e*/) { // This space intentionally left blank. } } #endif // ABSL_HAVE_EXCEPTIONS // An indexed sequence of distinct structures holding a single // value of type T template<typename T, size_t N> struct ValueHolder { explicit ValueHolder(const T& x) : value(x) {} typedef T value_type; value_type value; static const size_t kIndex = N; }; template<typename T, size_t N> const size_t ValueHolder<T, N>::kIndex; // The following three functions make ValueHolder compatible with // EXPECT_EQ and EXPECT_NE template<typename T, size_t N> inline bool operator==(const ValueHolder<T, N>& left, const ValueHolder<T, N>& right) { return left.value == right.value; } template<typename T, size_t N> inline bool operator!=(const ValueHolder<T, N>& left, const ValueHolder<T, N>& right) { return left.value != right.value; } template<typename T, size_t N> inline std::ostream& operator<<( std::ostream& stream, const ValueHolder<T, N>& object) { return stream << object.value; } // Makes a variant holding twelve uniquely typed T wrappers. template<typename T> struct VariantFactory { typedef variant<ValueHolder<T, 1>, ValueHolder<T, 2>, ValueHolder<T, 3>, ValueHolder<T, 4>> Type; }; // A typelist in 1:1 with VariantFactory, to use type driven unit tests. typedef ::testing::Types<ValueHolder<size_t, 1>, ValueHolder<size_t, 2>, ValueHolder<size_t, 3>, ValueHolder<size_t, 4>> VariantTypes; // Increments the provided counter pointer in the destructor struct IncrementInDtor { explicit IncrementInDtor(int* counter) : counter(counter) {} ~IncrementInDtor() { *counter += 1; } int* counter; }; struct IncrementInDtorCopyCanThrow { explicit IncrementInDtorCopyCanThrow(int* counter) : counter(counter) {} IncrementInDtorCopyCanThrow(IncrementInDtorCopyCanThrow&& other) noexcept = default; IncrementInDtorCopyCanThrow(const IncrementInDtorCopyCanThrow& other) : counter(other.counter) {} IncrementInDtorCopyCanThrow& operator=( IncrementInDtorCopyCanThrow&&) noexcept = default; IncrementInDtorCopyCanThrow& operator=( IncrementInDtorCopyCanThrow const& other) { counter = other.counter; return *this; } ~IncrementInDtorCopyCanThrow() { *counter += 1; } int* counter; }; // This is defined so operator== for ValueHolder<IncrementInDtor> will // return true if two IncrementInDtor objects increment the same // counter inline bool operator==(const IncrementInDtor& left, const IncrementInDtor& right) { return left.counter == right.counter; } // This is defined so EXPECT_EQ can work with IncrementInDtor inline std::ostream& operator<<( std::ostream& stream, const IncrementInDtor& object) { return stream << object.counter; } // A class that can be copied, but not assigned. class CopyNoAssign { public: explicit CopyNoAssign(int value) : foo(value) {} CopyNoAssign(const CopyNoAssign& other) : foo(other.foo) {} int foo; private: const CopyNoAssign& operator=(const CopyNoAssign&); }; // A class that can neither be copied nor assigned. We provide // overloads for the constructor with up to four parameters so we can // test the overloads of variant::emplace. class NonCopyable { public: NonCopyable() : value(0) {} explicit NonCopyable(int value1) : value(value1) {} NonCopyable(int value1, int value2) : value(value1 + value2) {} NonCopyable(int value1, int value2, int value3) : value(value1 + value2 + value3) {} NonCopyable(int value1, int value2, int value3, int value4) : value(value1 + value2 + value3 + value4) {} NonCopyable(const NonCopyable&) = delete; NonCopyable& operator=(const NonCopyable&) = delete; int value; }; // A typed test and typed test case over the VariantTypes typelist, // from which we derive a number of tests that will execute for one of // each type. template <typename T> class VariantTypesTest : public ::testing::Test {}; TYPED_TEST_SUITE(VariantTypesTest, VariantTypes); //////////////////// // [variant.ctor] // //////////////////// struct NonNoexceptDefaultConstructible { NonNoexceptDefaultConstructible() {} int value = 5; }; struct NonDefaultConstructible { NonDefaultConstructible() = delete; }; TEST(VariantTest, TestDefaultConstructor) { { using X = variant<int>; constexpr variant<int> x{}; ASSERT_FALSE(x.valueless_by_exception()); ASSERT_EQ(0, x.index()); EXPECT_EQ(0, absl::get<0>(x)); EXPECT_TRUE(std::is_nothrow_default_constructible<X>::value); } { using X = variant<NonNoexceptDefaultConstructible>; X x{}; ASSERT_FALSE(x.valueless_by_exception()); ASSERT_EQ(0, x.index()); EXPECT_EQ(5, absl::get<0>(x).value); EXPECT_FALSE(std::is_nothrow_default_constructible<X>::value); } { using X = variant<int, NonNoexceptDefaultConstructible>; X x{}; ASSERT_FALSE(x.valueless_by_exception()); ASSERT_EQ(0, x.index()); EXPECT_EQ(0, absl::get<0>(x)); EXPECT_TRUE(std::is_nothrow_default_constructible<X>::value); } { using X = variant<NonNoexceptDefaultConstructible, int>; X x{}; ASSERT_FALSE(x.valueless_by_exception()); ASSERT_EQ(0, x.index()); EXPECT_EQ(5, absl::get<0>(x).value); EXPECT_FALSE(std::is_nothrow_default_constructible<X>::value); } EXPECT_FALSE( std::is_default_constructible<variant<NonDefaultConstructible>>::value); EXPECT_FALSE((std::is_default_constructible< variant<NonDefaultConstructible, int>>::value)); EXPECT_TRUE((std::is_default_constructible< variant<int, NonDefaultConstructible>>::value)); } // Test that for each slot, copy constructing a variant with that type // produces a sensible object that correctly reports its type, and // that copies the provided value. TYPED_TEST(VariantTypesTest, TestCopyCtor) { typedef typename VariantFactory<typename TypeParam::value_type>::Type Variant; using value_type1 = absl::variant_alternative_t<0, Variant>; using value_type2 = absl::variant_alternative_t<1, Variant>; using value_type3 = absl::variant_alternative_t<2, Variant>; using value_type4 = absl::variant_alternative_t<3, Variant>; const TypeParam value(TypeParam::kIndex); Variant original(value); Variant copied(original); EXPECT_TRUE(absl::holds_alternative<value_type1>(copied) || TypeParam::kIndex != 1); EXPECT_TRUE(absl::holds_alternative<value_type2>(copied) || TypeParam::kIndex != 2); EXPECT_TRUE(absl::holds_alternative<value_type3>(copied) || TypeParam::kIndex != 3); EXPECT_TRUE(absl::holds_alternative<value_type4>(copied) || TypeParam::kIndex != 4); EXPECT_TRUE((absl::get_if<value_type1>(&original) == absl::get_if<value_type1>(&copied)) || TypeParam::kIndex == 1); EXPECT_TRUE((absl::get_if<value_type2>(&original) == absl::get_if<value_type2>(&copied)) || TypeParam::kIndex == 2); EXPECT_TRUE((absl::get_if<value_type3>(&original) == absl::get_if<value_type3>(&copied)) || TypeParam::kIndex == 3); EXPECT_TRUE((absl::get_if<value_type4>(&original) == absl::get_if<value_type4>(&copied)) || TypeParam::kIndex == 4); EXPECT_TRUE((absl::get_if<value_type1>(&original) == absl::get_if<value_type1>(&copied)) || TypeParam::kIndex == 1); EXPECT_TRUE((absl::get_if<value_type2>(&original) == absl::get_if<value_type2>(&copied)) || TypeParam::kIndex == 2); EXPECT_TRUE((absl::get_if<value_type3>(&original) == absl::get_if<value_type3>(&copied)) || TypeParam::kIndex == 3); EXPECT_TRUE((absl::get_if<value_type4>(&original) == absl::get_if<value_type4>(&copied)) || TypeParam::kIndex == 4); const TypeParam* ovalptr = absl::get_if<TypeParam>(&original); const TypeParam* cvalptr = absl::get_if<TypeParam>(&copied); ASSERT_TRUE(ovalptr != nullptr); ASSERT_TRUE(cvalptr != nullptr); EXPECT_EQ(*ovalptr, *cvalptr); TypeParam* mutable_ovalptr = absl::get_if<TypeParam>(&original); TypeParam* mutable_cvalptr = absl::get_if<TypeParam>(&copied); ASSERT_TRUE(mutable_ovalptr != nullptr); ASSERT_TRUE(mutable_cvalptr != nullptr); EXPECT_EQ(*mutable_ovalptr, *mutable_cvalptr); } template <class> struct MoveOnly { MoveOnly() = default; explicit MoveOnly(int value) : value(value) {} MoveOnly(MoveOnly&&) = default; MoveOnly& operator=(MoveOnly&&) = default; int value = 5; }; TEST(VariantTest, TestMoveConstruct) { using V = variant<MoveOnly<class A>, MoveOnly<class B>, MoveOnly<class C>>; V v(in_place_index<1>, 10); V v2 = absl::move(v); EXPECT_EQ(10, absl::get<1>(v2).value); } // Used internally to emulate missing triviality traits for tests. template <class T> union SingleUnion { T member; }; // NOTE: These don't work with types that can't be union members. // They are just for testing. template <class T> struct is_trivially_move_constructible : std::is_move_constructible<SingleUnion<T>>::type {}; template <class T> struct is_trivially_move_assignable : absl::is_move_assignable<SingleUnion<T>>::type {}; TEST(VariantTest, NothrowMoveConstructible) { // Verify that variant is nothrow move constructible iff its template // arguments are. using U = std::unique_ptr<int>; struct E { E(E&&) {} }; static_assert(std::is_nothrow_move_constructible<variant<U>>::value, ""); static_assert(std::is_nothrow_move_constructible<variant<U, int>>::value, ""); static_assert(!std::is_nothrow_move_constructible<variant<U, E>>::value, ""); } // Test that for each slot, constructing a variant with that type // produces a sensible object that correctly reports its type, and // that copies the provided value. TYPED_TEST(VariantTypesTest, TestValueCtor) { typedef typename VariantFactory<typename TypeParam::value_type>::Type Variant; using value_type1 = absl::variant_alternative_t<0, Variant>; using value_type2 = absl::variant_alternative_t<1, Variant>; using value_type3 = absl::variant_alternative_t<2, Variant>; using value_type4 = absl::variant_alternative_t<3, Variant>; const TypeParam value(TypeParam::kIndex); Variant v(value); EXPECT_TRUE(absl::holds_alternative<value_type1>(v) || TypeParam::kIndex != 1); EXPECT_TRUE(absl::holds_alternative<value_type2>(v) || TypeParam::kIndex != 2); EXPECT_TRUE(absl::holds_alternative<value_type3>(v) || TypeParam::kIndex != 3); EXPECT_TRUE(absl::holds_alternative<value_type4>(v) || TypeParam::kIndex != 4); EXPECT_TRUE(nullptr != absl::get_if<value_type1>(&v) || TypeParam::kIndex != 1); EXPECT_TRUE(nullptr != absl::get_if<value_type2>(&v) || TypeParam::kIndex != 2); EXPECT_TRUE(nullptr != absl::get_if<value_type3>(&v) || TypeParam::kIndex != 3); EXPECT_TRUE(nullptr != absl::get_if<value_type4>(&v) || TypeParam::kIndex != 4); EXPECT_TRUE(nullptr != absl::get_if<value_type1>(&v) || TypeParam::kIndex != 1); EXPECT_TRUE(nullptr != absl::get_if<value_type2>(&v) || TypeParam::kIndex != 2); EXPECT_TRUE(nullptr != absl::get_if<value_type3>(&v) || TypeParam::kIndex != 3); EXPECT_TRUE(nullptr != absl::get_if<value_type4>(&v) || TypeParam::kIndex != 4); const TypeParam* valptr = absl::get_if<TypeParam>(&v); ASSERT_TRUE(nullptr != valptr); EXPECT_EQ(value.value, valptr->value); const TypeParam* mutable_valptr = absl::get_if<TypeParam>(&v); ASSERT_TRUE(nullptr != mutable_valptr); EXPECT_EQ(value.value, mutable_valptr->value); } TEST(VariantTest, AmbiguousValueConstructor) { EXPECT_FALSE((std::is_convertible<int, absl::variant<int, int>>::value)); EXPECT_FALSE((std::is_constructible<absl::variant<int, int>, int>::value)); } TEST(VariantTest, InPlaceType) { using Var = variant<int, std::string, NonCopyable, std::vector<int>>; Var v1(in_place_type_t<int>(), 7); ASSERT_TRUE(absl::holds_alternative<int>(v1)); EXPECT_EQ(7, absl::get<int>(v1)); Var v2(in_place_type_t<std::string>(), "ABC"); ASSERT_TRUE(absl::holds_alternative<std::string>(v2)); EXPECT_EQ("ABC", absl::get<std::string>(v2)); Var v3(in_place_type_t<std::string>(), "ABC", 2); ASSERT_TRUE(absl::holds_alternative<std::string>(v3)); EXPECT_EQ("AB", absl::get<std::string>(v3)); Var v4(in_place_type_t<NonCopyable>{}); ASSERT_TRUE(absl::holds_alternative<NonCopyable>(v4)); Var v5(in_place_type_t<std::vector<int>>(), {1, 2, 3}); ASSERT_TRUE(absl::holds_alternative<std::vector<int>>(v5)); EXPECT_THAT(absl::get<std::vector<int>>(v5), ::testing::ElementsAre(1, 2, 3)); } TEST(VariantTest, InPlaceTypeVariableTemplate) { using Var = variant<int, std::string, NonCopyable, std::vector<int>>; Var v1(in_place_type<int>, 7); ASSERT_TRUE(absl::holds_alternative<int>(v1)); EXPECT_EQ(7, absl::get<int>(v1)); Var v2(in_place_type<std::string>, "ABC"); ASSERT_TRUE(absl::holds_alternative<std::string>(v2)); EXPECT_EQ("ABC", absl::get<std::string>(v2)); Var v3(in_place_type<std::string>, "ABC", 2); ASSERT_TRUE(absl::holds_alternative<std::string>(v3)); EXPECT_EQ("AB", absl::get<std::string>(v3)); Var v4(in_place_type<NonCopyable>); ASSERT_TRUE(absl::holds_alternative<NonCopyable>(v4)); Var v5(in_place_type<std::vector<int>>, {1, 2, 3}); ASSERT_TRUE(absl::holds_alternative<std::vector<int>>(v5)); EXPECT_THAT(absl::get<std::vector<int>>(v5), ::testing::ElementsAre(1, 2, 3)); } TEST(VariantTest, InPlaceTypeInitializerList) { using Var = variant<int, std::string, NonCopyable, MoveOnlyWithListConstructor>; Var v1(in_place_type_t<MoveOnlyWithListConstructor>(), {1, 2, 3, 4, 5}, 6); ASSERT_TRUE(absl::holds_alternative<MoveOnlyWithListConstructor>(v1)); EXPECT_EQ(6, absl::get<MoveOnlyWithListConstructor>(v1).value); } TEST(VariantTest, InPlaceTypeInitializerListVariabletemplate) { using Var = variant<int, std::string, NonCopyable, MoveOnlyWithListConstructor>; Var v1(in_place_type<MoveOnlyWithListConstructor>, {1, 2, 3, 4, 5}, 6); ASSERT_TRUE(absl::holds_alternative<MoveOnlyWithListConstructor>(v1)); EXPECT_EQ(6, absl::get<MoveOnlyWithListConstructor>(v1).value); } TEST(VariantTest, InPlaceIndex) { using Var = variant<int, std::string, NonCopyable, std::vector<int>>; Var v1(in_place_index_t<0>(), 7); ASSERT_TRUE(absl::holds_alternative<int>(v1)); EXPECT_EQ(7, absl::get<int>(v1)); Var v2(in_place_index_t<1>(), "ABC"); ASSERT_TRUE(absl::holds_alternative<std::string>(v2)); EXPECT_EQ("ABC", absl::get<std::string>(v2)); Var v3(in_place_index_t<1>(), "ABC", 2); ASSERT_TRUE(absl::holds_alternative<std::string>(v3)); EXPECT_EQ("AB", absl::get<std::string>(v3)); Var v4(in_place_index_t<2>{}); EXPECT_TRUE(absl::holds_alternative<NonCopyable>(v4)); // Verify that a variant with only non-copyables can still be constructed. EXPECT_TRUE(absl::holds_alternative<NonCopyable>( variant<NonCopyable>(in_place_index_t<0>{}))); Var v5(in_place_index_t<3>(), {1, 2, 3}); ASSERT_TRUE(absl::holds_alternative<std::vector<int>>(v5)); EXPECT_THAT(absl::get<std::vector<int>>(v5), ::testing::ElementsAre(1, 2, 3)); } TEST(VariantTest, InPlaceIndexVariableTemplate) { using Var = variant<int, std::string, NonCopyable, std::vector<int>>; Var v1(in_place_index<0>, 7); ASSERT_TRUE(absl::holds_alternative<int>(v1)); EXPECT_EQ(7, absl::get<int>(v1)); Var v2(in_place_index<1>, "ABC"); ASSERT_TRUE(absl::holds_alternative<std::string>(v2)); EXPECT_EQ("ABC", absl::get<std::string>(v2)); Var v3(in_place_index<1>, "ABC", 2); ASSERT_TRUE(absl::holds_alternative<std::string>(v3)); EXPECT_EQ("AB", absl::get<std::string>(v3)); Var v4(in_place_index<2>); EXPECT_TRUE(absl::holds_alternative<NonCopyable>(v4)); // Verify that a variant with only non-copyables can still be constructed. EXPECT_TRUE(absl::holds_alternative<NonCopyable>( variant<NonCopyable>(in_place_index<0>))); Var v5(in_place_index<3>, {1, 2, 3}); ASSERT_TRUE(absl::holds_alternative<std::vector<int>>(v5)); EXPECT_THAT(absl::get<std::vector<int>>(v5), ::testing::ElementsAre(1, 2, 3)); } TEST(VariantTest, InPlaceIndexInitializerList) { using Var = variant<int, std::string, NonCopyable, MoveOnlyWithListConstructor>; Var v1(in_place_index_t<3>(), {1, 2, 3, 4, 5}, 6); ASSERT_TRUE(absl::holds_alternative<MoveOnlyWithListConstructor>(v1)); EXPECT_EQ(6, absl::get<MoveOnlyWithListConstructor>(v1).value); } TEST(VariantTest, InPlaceIndexInitializerListVariableTemplate) { using Var = variant<int, std::string, NonCopyable, MoveOnlyWithListConstructor>; Var v1(in_place_index<3>, {1, 2, 3, 4, 5}, 6); ASSERT_TRUE(absl::holds_alternative<MoveOnlyWithListConstructor>(v1)); EXPECT_EQ(6, absl::get<MoveOnlyWithListConstructor>(v1).value); } //////////////////// // [variant.dtor] // //////////////////// // Make sure that the destructor destroys the contained value TEST(VariantTest, TestDtor) { typedef VariantFactory<IncrementInDtor>::Type Variant; using value_type1 = absl::variant_alternative_t<0, Variant>; using value_type2 = absl::variant_alternative_t<1, Variant>; using value_type3 = absl::variant_alternative_t<2, Variant>; using value_type4 = absl::variant_alternative_t<3, Variant>; int counter = 0; IncrementInDtor counter_adjuster(&counter); EXPECT_EQ(0, counter); value_type1 value1(counter_adjuster); { Variant object(value1); } EXPECT_EQ(1, counter); value_type2 value2(counter_adjuster); { Variant object(value2); } EXPECT_EQ(2, counter); value_type3 value3(counter_adjuster); { Variant object(value3); } EXPECT_EQ(3, counter); value_type4 value4(counter_adjuster); { Variant object(value4); } EXPECT_EQ(4, counter); } #ifdef ABSL_HAVE_EXCEPTIONS // See comment in absl/base/config.h #if defined(ABSL_INTERNAL_MSVC_2017_DBG_MODE) TEST(VariantTest, DISABLED_TestDtorValuelessByException) #else // Test destruction when in the valueless_by_exception state. TEST(VariantTest, TestDtorValuelessByException) #endif { int counter = 0; IncrementInDtor counter_adjuster(&counter); { using Variant = VariantFactory<IncrementInDtor>::Type; Variant v(in_place_index<0>, counter_adjuster); EXPECT_EQ(0, counter); ToValuelessByException(v); ASSERT_TRUE(v.valueless_by_exception()); EXPECT_EQ(1, counter); } EXPECT_EQ(1, counter); } #endif // ABSL_HAVE_EXCEPTIONS ////////////////////// // [variant.assign] // ////////////////////// // Test that self-assignment doesn't destroy the current value TEST(VariantTest, TestSelfAssignment) { typedef VariantFactory<IncrementInDtor>::Type Variant; int counter = 0; IncrementInDtor counter_adjuster(&counter); absl::variant_alternative_t<0, Variant> value(counter_adjuster); Variant object(value); object.operator=(object); EXPECT_EQ(0, counter); // A std::string long enough that it's likely to defeat any inline representation // optimization. const std::string long_str(128, 'a'); std::string foo = long_str; foo = *&foo; EXPECT_EQ(long_str, foo); variant<int, std::string> so = long_str; ASSERT_EQ(1, so.index()); EXPECT_EQ(long_str, absl::get<1>(so)); so = *&so; ASSERT_EQ(1, so.index()); EXPECT_EQ(long_str, absl::get<1>(so)); } // Test that assigning a variant<..., T, ...> to a variant<..., T, ...> produces // a variant<..., T, ...> with the correct value. TYPED_TEST(VariantTypesTest, TestAssignmentCopiesValueSameTypes) { typedef typename VariantFactory<typename TypeParam::value_type>::Type Variant; const TypeParam value(TypeParam::kIndex); const Variant source(value); Variant target(TypeParam(value.value + 1)); ASSERT_TRUE(absl::holds_alternative<TypeParam>(source)); ASSERT_TRUE(absl::holds_alternative<TypeParam>(target)); ASSERT_NE(absl::get<TypeParam>(source), absl::get<TypeParam>(target)); target = source; ASSERT_TRUE(absl::holds_alternative<TypeParam>(source)); ASSERT_TRUE(absl::holds_alternative<TypeParam>(target)); EXPECT_EQ(absl::get<TypeParam>(source), absl::get<TypeParam>(target)); } // Test that assisnging a variant<..., T, ...> to a variant<1, ...> // produces a variant<..., T, ...> with the correct value. TYPED_TEST(VariantTypesTest, TestAssignmentCopiesValuesVaryingSourceType) { typedef typename VariantFactory<typename TypeParam::value_type>::Type Variant; using value_type1 = absl::variant_alternative_t<0, Variant>; const TypeParam value(TypeParam::kIndex); const Variant source(value); ASSERT_TRUE(absl::holds_alternative<TypeParam>(source)); Variant target(value_type1(1)); ASSERT_TRUE(absl::holds_alternative<value_type1>(target)); target = source; EXPECT_TRUE(absl::holds_alternative<TypeParam>(source)); EXPECT_TRUE(absl::holds_alternative<TypeParam>(target)); EXPECT_EQ(absl::get<TypeParam>(source), absl::get<TypeParam>(target)); } // Test that assigning a variant<1, ...> to a variant<..., T, ...> // produces a variant<1, ...> with the correct value. TYPED_TEST(VariantTypesTest, TestAssignmentCopiesValuesVaryingTargetType) { typedef typename VariantFactory<typename TypeParam::value_type>::Type Variant; using value_type1 = absl::variant_alternative_t<0, Variant>; const Variant source(value_type1(1)); ASSERT_TRUE(absl::holds_alternative<value_type1>(source)); const TypeParam value(TypeParam::kIndex); Variant target(value); ASSERT_TRUE(absl::holds_alternative<TypeParam>(target)); target = source; EXPECT_TRUE(absl::holds_alternative<value_type1>(target)); EXPECT_TRUE(absl::holds_alternative<value_type1>(source)); EXPECT_EQ(absl::get<value_type1>(source), absl::get<value_type1>(target)); } // Test that operator=<T> works, that assigning a new value destroys // the old and that assigning the new value again does not redestroy // the old TEST(VariantTest, TestAssign) { typedef VariantFactory<IncrementInDtor>::Type Variant; using value_type1 = absl::variant_alternative_t<0, Variant>; using value_type2 = absl::variant_alternative_t<1, Variant>; using value_type3 = absl::variant_alternative_t<2, Variant>; using value_type4 = absl::variant_alternative_t<3, Variant>; const int kSize = 4; int counter[kSize]; std::unique_ptr<IncrementInDtor> counter_adjustor[kSize]; for (int i = 0; i != kSize; i++) { counter[i] = 0; counter_adjustor[i] = absl::make_unique<IncrementInDtor>(&counter[i]); } value_type1 v1(*counter_adjustor[0]); value_type2 v2(*counter_adjustor[1]); value_type3 v3(*counter_adjustor[2]); value_type4 v4(*counter_adjustor[3]); // Test that reassignment causes destruction of old value { Variant object(v1); object = v2; object = v3; object = v4; object = v1; } EXPECT_EQ(2, counter[0]); EXPECT_EQ(1, counter[1]); EXPECT_EQ(1, counter[2]); EXPECT_EQ(1, counter[3]); std::fill(std::begin(counter), std::end(counter), 0); // Test that self-assignment does not cause destruction of old value { Variant object(v1); object.operator=(object); EXPECT_EQ(0, counter[0]); } { Variant object(v2); object.operator=(object); EXPECT_EQ(0, counter[1]); } { Variant object(v3); object.operator=(object); EXPECT_EQ(0, counter[2]); } { Variant object(v4); object.operator=(object); EXPECT_EQ(0, counter[3]); } EXPECT_EQ(1, counter[0]); EXPECT_EQ(1, counter[1]); EXPECT_EQ(1, counter[2]); EXPECT_EQ(1, counter[3]); } // This tests that we perform a backup if the copy-assign can throw but the move // cannot throw. TEST(VariantTest, TestBackupAssign) { typedef VariantFactory<IncrementInDtorCopyCanThrow>::Type Variant; using value_type1 = absl::variant_alternative_t<0, Variant>; using value_type2 = absl::variant_alternative_t<1, Variant>; using value_type3 = absl::variant_alternative_t<2, Variant>; using value_type4 = absl::variant_alternative_t<3, Variant>; const int kSize = 4; int counter[kSize]; std::unique_ptr<IncrementInDtorCopyCanThrow> counter_adjustor[kSize]; for (int i = 0; i != kSize; i++) { counter[i] = 0; counter_adjustor[i].reset(new IncrementInDtorCopyCanThrow(&counter[i])); } value_type1 v1(*counter_adjustor[0]); value_type2 v2(*counter_adjustor[1]); value_type3 v3(*counter_adjustor[2]); value_type4 v4(*counter_adjustor[3]); // Test that reassignment causes destruction of old value { Variant object(v1); object = v2; object = v3; object = v4; object = v1; } // libstdc++ doesn't pass this test #if !(defined(ABSL_HAVE_STD_VARIANT) && defined(__GLIBCXX__)) EXPECT_EQ(3, counter[0]); EXPECT_EQ(2, counter[1]); EXPECT_EQ(2, counter[2]); EXPECT_EQ(2, counter[3]); #endif std::fill(std::begin(counter), std::end(counter), 0); // Test that self-assignment does not cause destruction of old value { Variant object(v1); object.operator=(object); EXPECT_EQ(0, counter[0]); } { Variant object(v2); object.operator=(object); EXPECT_EQ(0, counter[1]); } { Variant object(v3); object.operator=(object); EXPECT_EQ(0, counter[2]); } { Variant object(v4); object.operator=(object); EXPECT_EQ(0, counter[3]); } EXPECT_EQ(1, counter[0]); EXPECT_EQ(1, counter[1]); EXPECT_EQ(1, counter[2]); EXPECT_EQ(1, counter[3]); } /////////////////// // [variant.mod] // /////////////////// TEST(VariantTest, TestEmplaceBasic) { using Variant = variant<int, char>; Variant v(absl::in_place_index<0>, 0); { char& emplace_result = v.emplace<char>(); ASSERT_TRUE(absl::holds_alternative<char>(v)); EXPECT_EQ(absl::get<char>(v), 0); EXPECT_EQ(&emplace_result, &absl::get<char>(v)); } // Make sure that another emplace does zero-initialization absl::get<char>(v) = 'a'; v.emplace<char>('b'); ASSERT_TRUE(absl::holds_alternative<char>(v)); EXPECT_EQ(absl::get<char>(v), 'b'); { int& emplace_result = v.emplace<int>(); EXPECT_TRUE(absl::holds_alternative<int>(v)); EXPECT_EQ(absl::get<int>(v), 0); EXPECT_EQ(&emplace_result, &absl::get<int>(v)); } } TEST(VariantTest, TestEmplaceInitializerList) { using Var = variant<int, std::string, NonCopyable, MoveOnlyWithListConstructor>; Var v1(absl::in_place_index<0>, 555); MoveOnlyWithListConstructor& emplace_result = v1.emplace<MoveOnlyWithListConstructor>({1, 2, 3, 4, 5}, 6); ASSERT_TRUE(absl::holds_alternative<MoveOnlyWithListConstructor>(v1)); EXPECT_EQ(6, absl::get<MoveOnlyWithListConstructor>(v1).value); EXPECT_EQ(&emplace_result, &absl::get<MoveOnlyWithListConstructor>(v1)); } TEST(VariantTest, TestEmplaceIndex) { using Variant = variant<int, char>; Variant v(absl::in_place_index<0>, 555); { char& emplace_result = v.emplace<1>(); ASSERT_TRUE(absl::holds_alternative<char>(v)); EXPECT_EQ(absl::get<char>(v), 0); EXPECT_EQ(&emplace_result, &absl::get<char>(v)); } // Make sure that another emplace does zero-initialization absl::get<char>(v) = 'a'; v.emplace<1>('b'); ASSERT_TRUE(absl::holds_alternative<char>(v)); EXPECT_EQ(absl::get<char>(v), 'b'); { int& emplace_result = v.emplace<0>(); EXPECT_TRUE(absl::holds_alternative<int>(v)); EXPECT_EQ(absl::get<int>(v), 0); EXPECT_EQ(&emplace_result, &absl::get<int>(v)); } } TEST(VariantTest, TestEmplaceIndexInitializerList) { using Var = variant<int, std::string, NonCopyable, MoveOnlyWithListConstructor>; Var v1(absl::in_place_index<0>, 555); MoveOnlyWithListConstructor& emplace_result = v1.emplace<3>({1, 2, 3, 4, 5}, 6); ASSERT_TRUE(absl::holds_alternative<MoveOnlyWithListConstructor>(v1)); EXPECT_EQ(6, absl::get<MoveOnlyWithListConstructor>(v1).value); EXPECT_EQ(&emplace_result, &absl::get<MoveOnlyWithListConstructor>(v1)); } ////////////////////// // [variant.status] // ////////////////////// TEST(VariantTest, Index) { using Var = variant<int, std::string, double>; Var v = 1; EXPECT_EQ(0, v.index()); v = "str"; EXPECT_EQ(1, v.index()); v = 0.; EXPECT_EQ(2, v.index()); Var v2 = v; EXPECT_EQ(2, v2.index()); v2.emplace<int>(3); EXPECT_EQ(0, v2.index()); } TEST(VariantTest, NotValuelessByException) { using Var = variant<int, std::string, double>; Var v = 1; EXPECT_FALSE(v.valueless_by_exception()); v = "str"; EXPECT_FALSE(v.valueless_by_exception()); v = 0.; EXPECT_FALSE(v.valueless_by_exception()); Var v2 = v; EXPECT_FALSE(v.valueless_by_exception()); v2.emplace<int>(3); EXPECT_FALSE(v.valueless_by_exception()); } #ifdef ABSL_HAVE_EXCEPTIONS TEST(VariantTest, IndexValuelessByException) { using Var = variant<MoveCanThrow, std::string, double>; Var v(absl::in_place_index<0>); EXPECT_EQ(0, v.index()); ToValuelessByException(v); EXPECT_EQ(absl::variant_npos, v.index()); v = "str"; EXPECT_EQ(1, v.index()); } TEST(VariantTest, ValuelessByException) { using Var = variant<MoveCanThrow, std::string, double>; Var v(absl::in_place_index<0>); EXPECT_FALSE(v.valueless_by_exception()); ToValuelessByException(v); EXPECT_TRUE(v.valueless_by_exception()); v = "str"; EXPECT_FALSE(v.valueless_by_exception()); } #endif // ABSL_HAVE_EXCEPTIONS //////////////////// // [variant.swap] // //////////////////// TEST(VariantTest, MemberSwap) { SpecialSwap v1(3); SpecialSwap v2(7); variant<SpecialSwap> a = v1, b = v2; EXPECT_THAT(a, VariantWith<SpecialSwap>(v1)); EXPECT_THAT(b, VariantWith<SpecialSwap>(v2)); a.swap(b); EXPECT_THAT(a, VariantWith<SpecialSwap>(v2)); EXPECT_THAT(b, VariantWith<SpecialSwap>(v1)); EXPECT_TRUE(absl::get<SpecialSwap>(a).special_swap); using V = variant<MoveCanThrow, std::string, int>; int i = 33; std::string s = "abc"; V valueless(in_place_index<0>); ToValuelessByException(valueless); { // lhs and rhs holds different alternative V lhs(i), rhs(s); lhs.swap(rhs); EXPECT_THAT(lhs, VariantWith<std::string>(s)); EXPECT_THAT(rhs, VariantWith<int>(i)); } { // lhs is valueless V lhs(valueless), rhs(i); lhs.swap(rhs); EXPECT_THAT(lhs, VariantWith<int>(i)); EXPECT_TRUE(rhs.valueless_by_exception()); } { // rhs is valueless V lhs(s), rhs(valueless); lhs.swap(rhs); EXPECT_THAT(rhs, VariantWith<std::string>(s)); EXPECT_TRUE(lhs.valueless_by_exception()); } { // both are valueless V lhs(valueless), rhs(valueless); lhs.swap(rhs); EXPECT_TRUE(lhs.valueless_by_exception()); EXPECT_TRUE(rhs.valueless_by_exception()); } } ////////////////////// // [variant.helper] // ////////////////////// TEST(VariantTest, VariantSize) { { using Size1Variant = absl::variant<int>; EXPECT_EQ(1, absl::variant_size<Size1Variant>::value); EXPECT_EQ(1, absl::variant_size<const Size1Variant>::value); EXPECT_EQ(1, absl::variant_size<volatile Size1Variant>::value); EXPECT_EQ(1, absl::variant_size<const volatile Size1Variant>::value); } { using Size3Variant = absl::variant<int, float, int>; EXPECT_EQ(3, absl::variant_size<Size3Variant>::value); EXPECT_EQ(3, absl::variant_size<const Size3Variant>::value); EXPECT_EQ(3, absl::variant_size<volatile Size3Variant>::value); EXPECT_EQ(3, absl::variant_size<const volatile Size3Variant>::value); } } TEST(VariantTest, VariantAlternative) { { using V = absl::variant<float, int, const char*>; EXPECT_TRUE( (std::is_same<float, absl::variant_alternative_t<0, V>>::value)); EXPECT_TRUE((std::is_same<const float, absl::variant_alternative_t<0, const V>>::value)); EXPECT_TRUE( (std::is_same<volatile float, absl::variant_alternative_t<0, volatile V>>::value)); EXPECT_TRUE(( std::is_same<const volatile float, absl::variant_alternative_t<0, const volatile V>>::value)); EXPECT_TRUE((std::is_same<int, absl::variant_alternative_t<1, V>>::value)); EXPECT_TRUE((std::is_same<const int, absl::variant_alternative_t<1, const V>>::value)); EXPECT_TRUE( (std::is_same<volatile int, absl::variant_alternative_t<1, volatile V>>::value)); EXPECT_TRUE(( std::is_same<const volatile int, absl::variant_alternative_t<1, const volatile V>>::value)); EXPECT_TRUE( (std::is_same<const char*, absl::variant_alternative_t<2, V>>::value)); EXPECT_TRUE((std::is_same<const char* const, absl::variant_alternative_t<2, const V>>::value)); EXPECT_TRUE( (std::is_same<const char* volatile, absl::variant_alternative_t<2, volatile V>>::value)); EXPECT_TRUE(( std::is_same<const char* const volatile, absl::variant_alternative_t<2, const volatile V>>::value)); } { using V = absl::variant<float, volatile int, const char*>; EXPECT_TRUE( (std::is_same<float, absl::variant_alternative_t<0, V>>::value)); EXPECT_TRUE((std::is_same<const float, absl::variant_alternative_t<0, const V>>::value)); EXPECT_TRUE( (std::is_same<volatile float, absl::variant_alternative_t<0, volatile V>>::value)); EXPECT_TRUE(( std::is_same<const volatile float, absl::variant_alternative_t<0, const volatile V>>::value)); EXPECT_TRUE( (std::is_same<volatile int, absl::variant_alternative_t<1, V>>::value)); EXPECT_TRUE((std::is_same<const volatile int, absl::variant_alternative_t<1, const V>>::value)); EXPECT_TRUE( (std::is_same<volatile int, absl::variant_alternative_t<1, volatile V>>::value)); EXPECT_TRUE(( std::is_same<const volatile int, absl::variant_alternative_t<1, const volatile V>>::value)); EXPECT_TRUE( (std::is_same<const char*, absl::variant_alternative_t<2, V>>::value)); EXPECT_TRUE((std::is_same<const char* const, absl::variant_alternative_t<2, const V>>::value)); EXPECT_TRUE( (std::is_same<const char* volatile, absl::variant_alternative_t<2, volatile V>>::value)); EXPECT_TRUE(( std::is_same<const char* const volatile, absl::variant_alternative_t<2, const volatile V>>::value)); } } /////////////////// // [variant.get] // /////////////////// TEST(VariantTest, HoldsAlternative) { using Var = variant<int, std::string, double>; Var v = 1; EXPECT_TRUE(absl::holds_alternative<int>(v)); EXPECT_FALSE(absl::holds_alternative<std::string>(v)); EXPECT_FALSE(absl::holds_alternative<double>(v)); v = "str"; EXPECT_FALSE(absl::holds_alternative<int>(v)); EXPECT_TRUE(absl::holds_alternative<std::string>(v)); EXPECT_FALSE(absl::holds_alternative<double>(v)); v = 0.; EXPECT_FALSE(absl::holds_alternative<int>(v)); EXPECT_FALSE(absl::holds_alternative<std::string>(v)); EXPECT_TRUE(absl::holds_alternative<double>(v)); Var v2 = v; EXPECT_FALSE(absl::holds_alternative<int>(v2)); EXPECT_FALSE(absl::holds_alternative<std::string>(v2)); EXPECT_TRUE(absl::holds_alternative<double>(v2)); v2.emplace<int>(3); EXPECT_TRUE(absl::holds_alternative<int>(v2)); EXPECT_FALSE(absl::holds_alternative<std::string>(v2)); EXPECT_FALSE(absl::holds_alternative<double>(v2)); } TEST(VariantTest, GetIndex) { using Var = variant<int, std::string, double, int>; { Var v(absl::in_place_index<0>, 0); using LValueGetType = decltype(absl::get<0>(v)); using RValueGetType = decltype(absl::get<0>(absl::move(v))); EXPECT_TRUE((std::is_same<LValueGetType, int&>::value)); EXPECT_TRUE((std::is_same<RValueGetType, int&&>::value)); EXPECT_EQ(absl::get<0>(v), 0); EXPECT_EQ(absl::get<0>(absl::move(v)), 0); const Var& const_v = v; using ConstLValueGetType = decltype(absl::get<0>(const_v)); using ConstRValueGetType = decltype(absl::get<0>(absl::move(const_v))); EXPECT_TRUE((std::is_same<ConstLValueGetType, const int&>::value)); EXPECT_TRUE((std::is_same<ConstRValueGetType, const int&&>::value)); EXPECT_EQ(absl::get<0>(const_v), 0); EXPECT_EQ(absl::get<0>(absl::move(const_v)), 0); } { Var v = std::string("Hello"); using LValueGetType = decltype(absl::get<1>(v)); using RValueGetType = decltype(absl::get<1>(absl::move(v))); EXPECT_TRUE((std::is_same<LValueGetType, std::string&>::value)); EXPECT_TRUE((std::is_same<RValueGetType, std::string&&>::value)); EXPECT_EQ(absl::get<1>(v), "Hello"); EXPECT_EQ(absl::get<1>(absl::move(v)), "Hello"); const Var& const_v = v; using ConstLValueGetType = decltype(absl::get<1>(const_v)); using ConstRValueGetType = decltype(absl::get<1>(absl::move(const_v))); EXPECT_TRUE((std::is_same<ConstLValueGetType, const std::string&>::value)); EXPECT_TRUE((std::is_same<ConstRValueGetType, const std::string&&>::value)); EXPECT_EQ(absl::get<1>(const_v), "Hello"); EXPECT_EQ(absl::get<1>(absl::move(const_v)), "Hello"); } { Var v = 2.0; using LValueGetType = decltype(absl::get<2>(v)); using RValueGetType = decltype(absl::get<2>(absl::move(v))); EXPECT_TRUE((std::is_same<LValueGetType, double&>::value)); EXPECT_TRUE((std::is_same<RValueGetType, double&&>::value)); EXPECT_EQ(absl::get<2>(v), 2.); EXPECT_EQ(absl::get<2>(absl::move(v)), 2.); const Var& const_v = v; using ConstLValueGetType = decltype(absl::get<2>(const_v)); using ConstRValueGetType = decltype(absl::get<2>(absl::move(const_v))); EXPECT_TRUE((std::is_same<ConstLValueGetType, const double&>::value)); EXPECT_TRUE((std::is_same<ConstRValueGetType, const double&&>::value)); EXPECT_EQ(absl::get<2>(const_v), 2.); EXPECT_EQ(absl::get<2>(absl::move(const_v)), 2.); } { Var v(absl::in_place_index<0>, 0); v.emplace<3>(1); using LValueGetType = decltype(absl::get<3>(v)); using RValueGetType = decltype(absl::get<3>(absl::move(v))); EXPECT_TRUE((std::is_same<LValueGetType, int&>::value)); EXPECT_TRUE((std::is_same<RValueGetType, int&&>::value)); EXPECT_EQ(absl::get<3>(v), 1); EXPECT_EQ(absl::get<3>(absl::move(v)), 1); const Var& const_v = v; using ConstLValueGetType = decltype(absl::get<3>(const_v)); using ConstRValueGetType = decltype(absl::get<3>(absl::move(const_v))); EXPECT_TRUE((std::is_same<ConstLValueGetType, const int&>::value)); EXPECT_TRUE((std::is_same<ConstRValueGetType, const int&&>::value)); EXPECT_EQ(absl::get<3>(const_v), 1); EXPECT_EQ(absl::get<3>(absl::move(const_v)), 1); // NOLINT } } TEST(VariantTest, BadGetIndex) { using Var = variant<int, std::string, double>; { Var v = 1; ABSL_VARIANT_TEST_EXPECT_BAD_VARIANT_ACCESS(absl::get<1>(v)); ABSL_VARIANT_TEST_EXPECT_BAD_VARIANT_ACCESS(absl::get<1>(std::move(v))); const Var& const_v = v; ABSL_VARIANT_TEST_EXPECT_BAD_VARIANT_ACCESS(absl::get<1>(const_v)); ABSL_VARIANT_TEST_EXPECT_BAD_VARIANT_ACCESS( absl::get<1>(std::move(const_v))); // NOLINT } { Var v = std::string("Hello"); ABSL_VARIANT_TEST_EXPECT_BAD_VARIANT_ACCESS(absl::get<0>(v)); ABSL_VARIANT_TEST_EXPECT_BAD_VARIANT_ACCESS(absl::get<0>(std::move(v))); const Var& const_v = v; ABSL_VARIANT_TEST_EXPECT_BAD_VARIANT_ACCESS(absl::get<0>(const_v)); ABSL_VARIANT_TEST_EXPECT_BAD_VARIANT_ACCESS( absl::get<0>(std::move(const_v))); // NOLINT } } TEST(VariantTest, GetType) { using Var = variant<int, std::string, double>; { Var v = 1; using LValueGetType = decltype(absl::get<int>(v)); using RValueGetType = decltype(absl::get<int>(absl::move(v))); EXPECT_TRUE((std::is_same<LValueGetType, int&>::value)); EXPECT_TRUE((std::is_same<RValueGetType, int&&>::value)); EXPECT_EQ(absl::get<int>(v), 1); EXPECT_EQ(absl::get<int>(absl::move(v)), 1); const Var& const_v = v; using ConstLValueGetType = decltype(absl::get<int>(const_v)); using ConstRValueGetType = decltype(absl::get<int>(absl::move(const_v))); EXPECT_TRUE((std::is_same<ConstLValueGetType, const int&>::value)); EXPECT_TRUE((std::is_same<ConstRValueGetType, const int&&>::value)); EXPECT_EQ(absl::get<int>(const_v), 1); EXPECT_EQ(absl::get<int>(absl::move(const_v)), 1); } { Var v = std::string("Hello"); using LValueGetType = decltype(absl::get<1>(v)); using RValueGetType = decltype(absl::get<1>(absl::move(v))); EXPECT_TRUE((std::is_same<LValueGetType, std::string&>::value)); EXPECT_TRUE((std::is_same<RValueGetType, std::string&&>::value)); EXPECT_EQ(absl::get<std::string>(v), "Hello"); EXPECT_EQ(absl::get<std::string>(absl::move(v)), "Hello"); const Var& const_v = v; using ConstLValueGetType = decltype(absl::get<1>(const_v)); using ConstRValueGetType = decltype(absl::get<1>(absl::move(const_v))); EXPECT_TRUE((std::is_same<ConstLValueGetType, const std::string&>::value)); EXPECT_TRUE((std::is_same<ConstRValueGetType, const std::string&&>::value)); EXPECT_EQ(absl::get<std::string>(const_v), "Hello"); EXPECT_EQ(absl::get<std::string>(absl::move(const_v)), "Hello"); } { Var v = 2.0; using LValueGetType = decltype(absl::get<2>(v)); using RValueGetType = decltype(absl::get<2>(absl::move(v))); EXPECT_TRUE((std::is_same<LValueGetType, double&>::value)); EXPECT_TRUE((std::is_same<RValueGetType, double&&>::value)); EXPECT_EQ(absl::get<double>(v), 2.); EXPECT_EQ(absl::get<double>(absl::move(v)), 2.); const Var& const_v = v; using ConstLValueGetType = decltype(absl::get<2>(const_v)); using ConstRValueGetType = decltype(absl::get<2>(absl::move(const_v))); EXPECT_TRUE((std::is_same<ConstLValueGetType, const double&>::value)); EXPECT_TRUE((std::is_same<ConstRValueGetType, const double&&>::value)); EXPECT_EQ(absl::get<double>(const_v), 2.); EXPECT_EQ(absl::get<double>(absl::move(const_v)), 2.); } } TEST(VariantTest, BadGetType) { using Var = variant<int, std::string, double>; { Var v = 1; ABSL_VARIANT_TEST_EXPECT_BAD_VARIANT_ACCESS(absl::get<std::string>(v)); ABSL_VARIANT_TEST_EXPECT_BAD_VARIANT_ACCESS( absl::get<std::string>(std::move(v))); const Var& const_v = v; ABSL_VARIANT_TEST_EXPECT_BAD_VARIANT_ACCESS( absl::get<std::string>(const_v)); ABSL_VARIANT_TEST_EXPECT_BAD_VARIANT_ACCESS( absl::get<std::string>(std::move(const_v))); // NOLINT } { Var v = std::string("Hello"); ABSL_VARIANT_TEST_EXPECT_BAD_VARIANT_ACCESS(absl::get<int>(v)); ABSL_VARIANT_TEST_EXPECT_BAD_VARIANT_ACCESS(absl::get<int>(std::move(v))); const Var& const_v = v; ABSL_VARIANT_TEST_EXPECT_BAD_VARIANT_ACCESS(absl::get<int>(const_v)); ABSL_VARIANT_TEST_EXPECT_BAD_VARIANT_ACCESS( absl::get<int>(std::move(const_v))); // NOLINT } } TEST(VariantTest, GetIfIndex) { using Var = variant<int, std::string, double, int>; { Var v(absl::in_place_index<0>, 0); EXPECT_TRUE(noexcept(absl::get_if<0>(&v))); { auto* elem = absl::get_if<0>(&v); EXPECT_TRUE((std::is_same<decltype(elem), int*>::value)); ASSERT_NE(elem, nullptr); EXPECT_EQ(*elem, 0); { auto* bad_elem = absl::get_if<1>(&v); EXPECT_TRUE((std::is_same<decltype(bad_elem), std::string*>::value)); EXPECT_EQ(bad_elem, nullptr); } { auto* bad_elem = absl::get_if<2>(&v); EXPECT_TRUE((std::is_same<decltype(bad_elem), double*>::value)); EXPECT_EQ(bad_elem, nullptr); } { auto* bad_elem = absl::get_if<3>(&v); EXPECT_TRUE((std::is_same<decltype(bad_elem), int*>::value)); EXPECT_EQ(bad_elem, nullptr); } } const Var& const_v = v; EXPECT_TRUE(noexcept(absl::get_if<0>(&const_v))); { auto* elem = absl::get_if<0>(&const_v); EXPECT_TRUE((std::is_same<decltype(elem), const int*>::value)); ASSERT_NE(elem, nullptr); EXPECT_EQ(*elem, 0); { auto* bad_elem = absl::get_if<1>(&const_v); EXPECT_TRUE( (std::is_same<decltype(bad_elem), const std::string*>::value)); EXPECT_EQ(bad_elem, nullptr); } { auto* bad_elem = absl::get_if<2>(&const_v); EXPECT_TRUE((std::is_same<decltype(bad_elem), const double*>::value)); EXPECT_EQ(bad_elem, nullptr); } { auto* bad_elem = absl::get_if<3>(&const_v); EXPECT_EQ(bad_elem, nullptr); EXPECT_TRUE((std::is_same<decltype(bad_elem), const int*>::value)); } } } { Var v = std::string("Hello"); EXPECT_TRUE(noexcept(absl::get_if<1>(&v))); { auto* elem = absl::get_if<1>(&v); EXPECT_TRUE((std::is_same<decltype(elem), std::string*>::value)); ASSERT_NE(elem, nullptr); EXPECT_EQ(*elem, "Hello"); { auto* bad_elem = absl::get_if<0>(&v); EXPECT_TRUE((std::is_same<decltype(bad_elem), int*>::value)); EXPECT_EQ(bad_elem, nullptr); } { auto* bad_elem = absl::get_if<2>(&v); EXPECT_TRUE((std::is_same<decltype(bad_elem), double*>::value)); EXPECT_EQ(bad_elem, nullptr); } { auto* bad_elem = absl::get_if<3>(&v); EXPECT_TRUE((std::is_same<decltype(bad_elem), int*>::value)); EXPECT_EQ(bad_elem, nullptr); } } const Var& const_v = v; EXPECT_TRUE(noexcept(absl::get_if<1>(&const_v))); { auto* elem = absl::get_if<1>(&const_v); EXPECT_TRUE((std::is_same<decltype(elem), const std::string*>::value)); ASSERT_NE(elem, nullptr); EXPECT_EQ(*elem, "Hello"); { auto* bad_elem = absl::get_if<0>(&const_v); EXPECT_TRUE((std::is_same<decltype(bad_elem), const int*>::value)); EXPECT_EQ(bad_elem, nullptr); } { auto* bad_elem = absl::get_if<2>(&const_v); EXPECT_TRUE((std::is_same<decltype(bad_elem), const double*>::value)); EXPECT_EQ(bad_elem, nullptr); } { auto* bad_elem = absl::get_if<3>(&const_v); EXPECT_EQ(bad_elem, nullptr); EXPECT_TRUE((std::is_same<decltype(bad_elem), const int*>::value)); } } } { Var v = 2.0; EXPECT_TRUE(noexcept(absl::get_if<2>(&v))); { auto* elem = absl::get_if<2>(&v); EXPECT_TRUE((std::is_same<decltype(elem), double*>::value)); ASSERT_NE(elem, nullptr); EXPECT_EQ(*elem, 2.0); { auto* bad_elem = absl::get_if<0>(&v); EXPECT_TRUE((std::is_same<decltype(bad_elem), int*>::value)); EXPECT_EQ(bad_elem, nullptr); } { auto* bad_elem = absl::get_if<1>(&v); EXPECT_TRUE((std::is_same<decltype(bad_elem), std::string*>::value)); EXPECT_EQ(bad_elem, nullptr); } { auto* bad_elem = absl::get_if<3>(&v); EXPECT_TRUE((std::is_same<decltype(bad_elem), int*>::value)); EXPECT_EQ(bad_elem, nullptr); } } const Var& const_v = v; EXPECT_TRUE(noexcept(absl::get_if<2>(&const_v))); { auto* elem = absl::get_if<2>(&const_v); EXPECT_TRUE((std::is_same<decltype(elem), const double*>::value)); ASSERT_NE(elem, nullptr); EXPECT_EQ(*elem, 2.0); { auto* bad_elem = absl::get_if<0>(&const_v); EXPECT_TRUE((std::is_same<decltype(bad_elem), const int*>::value)); EXPECT_EQ(bad_elem, nullptr); } { auto* bad_elem = absl::get_if<1>(&const_v); EXPECT_TRUE( (std::is_same<decltype(bad_elem), const std::string*>::value)); EXPECT_EQ(bad_elem, nullptr); } { auto* bad_elem = absl::get_if<3>(&const_v); EXPECT_EQ(bad_elem, nullptr); EXPECT_TRUE((std::is_same<decltype(bad_elem), const int*>::value)); } } } { Var v(absl::in_place_index<0>, 0); v.emplace<3>(1); EXPECT_TRUE(noexcept(absl::get_if<3>(&v))); { auto* elem = absl::get_if<3>(&v); EXPECT_TRUE((std::is_same<decltype(elem), int*>::value)); ASSERT_NE(elem, nullptr); EXPECT_EQ(*elem, 1); { auto* bad_elem = absl::get_if<0>(&v); EXPECT_TRUE((std::is_same<decltype(bad_elem), int*>::value)); EXPECT_EQ(bad_elem, nullptr); } { auto* bad_elem = absl::get_if<1>(&v); EXPECT_TRUE((std::is_same<decltype(bad_elem), std::string*>::value)); EXPECT_EQ(bad_elem, nullptr); } { auto* bad_elem = absl::get_if<2>(&v); EXPECT_TRUE((std::is_same<decltype(bad_elem), double*>::value)); EXPECT_EQ(bad_elem, nullptr); } } const Var& const_v = v; EXPECT_TRUE(noexcept(absl::get_if<3>(&const_v))); { auto* elem = absl::get_if<3>(&const_v); EXPECT_TRUE((std::is_same<decltype(elem), const int*>::value)); ASSERT_NE(elem, nullptr); EXPECT_EQ(*elem, 1); { auto* bad_elem = absl::get_if<0>(&const_v); EXPECT_TRUE((std::is_same<decltype(bad_elem), const int*>::value)); EXPECT_EQ(bad_elem, nullptr); } { auto* bad_elem = absl::get_if<1>(&const_v); EXPECT_TRUE( (std::is_same<decltype(bad_elem), const std::string*>::value)); EXPECT_EQ(bad_elem, nullptr); } { auto* bad_elem = absl::get_if<2>(&const_v); EXPECT_EQ(bad_elem, nullptr); EXPECT_TRUE((std::is_same<decltype(bad_elem), const double*>::value)); } } } } ////////////////////// // [variant.relops] // ////////////////////// TEST(VariantTest, OperatorEquals) { variant<int, std::string> a(1), b(1); EXPECT_TRUE(a == b); EXPECT_TRUE(b == a); EXPECT_FALSE(a != b); EXPECT_FALSE(b != a); b = "str"; EXPECT_FALSE(a == b); EXPECT_FALSE(b == a); EXPECT_TRUE(a != b); EXPECT_TRUE(b != a); b = 0; EXPECT_FALSE(a == b); EXPECT_FALSE(b == a); EXPECT_TRUE(a != b); EXPECT_TRUE(b != a); a = b = "foo"; EXPECT_TRUE(a == b); EXPECT_TRUE(b == a); EXPECT_FALSE(a != b); EXPECT_FALSE(b != a); a = "bar"; EXPECT_FALSE(a == b); EXPECT_FALSE(b == a); EXPECT_TRUE(a != b); EXPECT_TRUE(b != a); } TEST(VariantTest, OperatorRelational) { variant<int, std::string> a(1), b(1); EXPECT_FALSE(a < b); EXPECT_FALSE(b < a); EXPECT_FALSE(a > b); EXPECT_FALSE(b > a); EXPECT_TRUE(a <= b); EXPECT_TRUE(b <= a); EXPECT_TRUE(a >= b); EXPECT_TRUE(b >= a); b = "str"; EXPECT_TRUE(a < b); EXPECT_FALSE(b < a); EXPECT_FALSE(a > b); EXPECT_TRUE(b > a); EXPECT_TRUE(a <= b); EXPECT_FALSE(b <= a); EXPECT_FALSE(a >= b); EXPECT_TRUE(b >= a); b = 0; EXPECT_FALSE(a < b); EXPECT_TRUE(b < a); EXPECT_TRUE(a > b); EXPECT_FALSE(b > a); EXPECT_FALSE(a <= b); EXPECT_TRUE(b <= a); EXPECT_TRUE(a >= b); EXPECT_FALSE(b >= a); a = b = "foo"; EXPECT_FALSE(a < b); EXPECT_FALSE(b < a); EXPECT_FALSE(a > b); EXPECT_FALSE(b > a); EXPECT_TRUE(a <= b); EXPECT_TRUE(b <= a); EXPECT_TRUE(a >= b); EXPECT_TRUE(b >= a); a = "bar"; EXPECT_TRUE(a < b); EXPECT_FALSE(b < a); EXPECT_FALSE(a > b); EXPECT_TRUE(b > a); EXPECT_TRUE(a <= b); EXPECT_FALSE(b <= a); EXPECT_FALSE(a >= b); EXPECT_TRUE(b >= a); } #ifdef ABSL_HAVE_EXCEPTIONS TEST(VariantTest, ValuelessOperatorEquals) { variant<MoveCanThrow, std::string> int_v(1), string_v("Hello"), valueless(absl::in_place_index<0>), other_valueless(absl::in_place_index<0>); ToValuelessByException(valueless); ToValuelessByException(other_valueless); EXPECT_TRUE(valueless == other_valueless); EXPECT_TRUE(other_valueless == valueless); EXPECT_FALSE(valueless == int_v); EXPECT_FALSE(valueless == string_v); EXPECT_FALSE(int_v == valueless); EXPECT_FALSE(string_v == valueless); EXPECT_FALSE(valueless != other_valueless); EXPECT_FALSE(other_valueless != valueless); EXPECT_TRUE(valueless != int_v); EXPECT_TRUE(valueless != string_v); EXPECT_TRUE(int_v != valueless); EXPECT_TRUE(string_v != valueless); } TEST(VariantTest, ValuelessOperatorRelational) { variant<MoveCanThrow, std::string> int_v(1), string_v("Hello"), valueless(absl::in_place_index<0>), other_valueless(absl::in_place_index<0>); ToValuelessByException(valueless); ToValuelessByException(other_valueless); EXPECT_FALSE(valueless < other_valueless); EXPECT_FALSE(other_valueless < valueless); EXPECT_TRUE(valueless < int_v); EXPECT_TRUE(valueless < string_v); EXPECT_FALSE(int_v < valueless); EXPECT_FALSE(string_v < valueless); EXPECT_TRUE(valueless <= other_valueless); EXPECT_TRUE(other_valueless <= valueless); EXPECT_TRUE(valueless <= int_v); EXPECT_TRUE(valueless <= string_v); EXPECT_FALSE(int_v <= valueless); EXPECT_FALSE(string_v <= valueless); EXPECT_TRUE(valueless >= other_valueless); EXPECT_TRUE(other_valueless >= valueless); EXPECT_FALSE(valueless >= int_v); EXPECT_FALSE(valueless >= string_v); EXPECT_TRUE(int_v >= valueless); EXPECT_TRUE(string_v >= valueless); EXPECT_FALSE(valueless > other_valueless); EXPECT_FALSE(other_valueless > valueless); EXPECT_FALSE(valueless > int_v); EXPECT_FALSE(valueless > string_v); EXPECT_TRUE(int_v > valueless); EXPECT_TRUE(string_v > valueless); } #endif ///////////////////// // [variant.visit] // ///////////////////// template <typename T> struct ConvertTo { template <typename U> T operator()(const U& u) const { return u; } }; TEST(VariantTest, VisitSimple) { variant<std::string, const char*> v = "A"; std::string str = absl::visit(ConvertTo<std::string>{}, v); EXPECT_EQ("A", str); v = std::string("B"); absl::string_view piece = absl::visit(ConvertTo<absl::string_view>{}, v); EXPECT_EQ("B", piece); struct StrLen { int operator()(const char* s) const { return strlen(s); } int operator()(const std::string& s) const { return s.size(); } }; v = "SomeStr"; EXPECT_EQ(7, absl::visit(StrLen{}, v)); v = std::string("VeryLargeThisTime"); EXPECT_EQ(17, absl::visit(StrLen{}, v)); } TEST(VariantTest, VisitRValue) { variant<std::string> v = std::string("X"); struct Visitor { bool operator()(const std::string&) const { return false; } bool operator()(std::string&&) const { return true; } // NOLINT int operator()(const std::string&, const std::string&) const { return 0; } int operator()(const std::string&, std::string&&) const { return 1; } // NOLINT int operator()(std::string&&, const std::string&) const { return 2; } // NOLINT int operator()(std::string&&, std::string&&) const { return 3; } // NOLINT }; EXPECT_FALSE(absl::visit(Visitor{}, v)); EXPECT_TRUE(absl::visit(Visitor{}, absl::move(v))); // Also test the variadic overload. EXPECT_EQ(0, absl::visit(Visitor{}, v, v)); EXPECT_EQ(1, absl::visit(Visitor{}, v, absl::move(v))); EXPECT_EQ(2, absl::visit(Visitor{}, absl::move(v), v)); EXPECT_EQ(3, absl::visit(Visitor{}, absl::move(v), absl::move(v))); } TEST(VariantTest, VisitRValueVisitor) { variant<std::string> v = std::string("X"); struct Visitor { bool operator()(const std::string&) const& { return false; } bool operator()(const std::string&) && { return true; } }; Visitor visitor; EXPECT_FALSE(absl::visit(visitor, v)); EXPECT_TRUE(absl::visit(Visitor{}, v)); } TEST(VariantTest, VisitResultTypeDifferent) { variant<std::string> v = std::string("X"); struct LValue_LValue {}; struct RValue_LValue {}; struct LValue_RValue {}; struct RValue_RValue {}; struct Visitor { LValue_LValue operator()(const std::string&) const& { return {}; } RValue_LValue operator()(std::string&&) const& { return {}; } // NOLINT LValue_RValue operator()(const std::string&) && { return {}; } RValue_RValue operator()(std::string&&) && { return {}; } // NOLINT } visitor; EXPECT_TRUE( (std::is_same<LValue_LValue, decltype(absl::visit(visitor, v))>::value)); EXPECT_TRUE( (std::is_same<RValue_LValue, decltype(absl::visit(visitor, absl::move(v)))>::value)); EXPECT_TRUE(( std::is_same<LValue_RValue, decltype(absl::visit(Visitor{}, v))>::value)); EXPECT_TRUE( (std::is_same<RValue_RValue, decltype(absl::visit(Visitor{}, absl::move(v)))>::value)); } TEST(VariantTest, VisitVariadic) { using A = variant<int, std::string>; using B = variant<std::unique_ptr<int>, absl::string_view>; struct Visitor { std::pair<int, int> operator()(int a, std::unique_ptr<int> b) const { return {a, *b}; } std::pair<int, int> operator()(absl::string_view a, std::unique_ptr<int> b) const { return {static_cast<int>(a.size()), static_cast<int>(*b)}; } std::pair<int, int> operator()(int a, absl::string_view b) const { return {a, static_cast<int>(b.size())}; } std::pair<int, int> operator()(absl::string_view a, absl::string_view b) const { return {static_cast<int>(a.size()), static_cast<int>(b.size())}; } }; EXPECT_THAT(absl::visit(Visitor(), A(1), B(std::unique_ptr<int>(new int(7)))), ::testing::Pair(1, 7)); EXPECT_THAT(absl::visit(Visitor(), A(1), B(absl::string_view("ABC"))), ::testing::Pair(1, 3)); EXPECT_THAT(absl::visit(Visitor(), A(std::string("BBBBB")), B(std::unique_ptr<int>(new int(7)))), ::testing::Pair(5, 7)); EXPECT_THAT(absl::visit(Visitor(), A(std::string("BBBBB")), B(absl::string_view("ABC"))), ::testing::Pair(5, 3)); } TEST(VariantTest, VisitNoArgs) { EXPECT_EQ(5, absl::visit([] { return 5; })); } struct ConstFunctor { int operator()(int a, int b) const { return a - b; } }; struct MutableFunctor { int operator()(int a, int b) { return a - b; } }; struct Class { int Method(int a, int b) { return a - b; } int ConstMethod(int a, int b) const { return a - b; } int member; }; TEST(VariantTest, VisitReferenceWrapper) { ConstFunctor cf; MutableFunctor mf; absl::variant<int> three = 3; absl::variant<int> two = 2; EXPECT_EQ(1, absl::visit(std::cref(cf), three, two)); EXPECT_EQ(1, absl::visit(std::ref(cf), three, two)); EXPECT_EQ(1, absl::visit(std::ref(mf), three, two)); } // libstdc++ std::variant doesn't support the INVOKE semantics. #if !(defined(ABSL_HAVE_STD_VARIANT) && defined(__GLIBCXX__)) TEST(VariantTest, VisitMemberFunction) { absl::variant<std::unique_ptr<Class>> p(absl::make_unique<Class>()); absl::variant<std::unique_ptr<const Class>> cp( absl::make_unique<const Class>()); absl::variant<int> three = 3; absl::variant<int> two = 2; EXPECT_EQ(1, absl::visit(&Class::Method, p, three, two)); EXPECT_EQ(1, absl::visit(&Class::ConstMethod, p, three, two)); EXPECT_EQ(1, absl::visit(&Class::ConstMethod, cp, three, two)); } TEST(VariantTest, VisitDataMember) { absl::variant<std::unique_ptr<Class>> p(absl::make_unique<Class>(Class{42})); absl::variant<std::unique_ptr<const Class>> cp( absl::make_unique<const Class>(Class{42})); EXPECT_EQ(42, absl::visit(&Class::member, p)); absl::visit(&Class::member, p) = 5; EXPECT_EQ(5, absl::visit(&Class::member, p)); EXPECT_EQ(42, absl::visit(&Class::member, cp)); } #endif // !(defined(ABSL_HAVE_STD_VARIANT) && defined(__GLIBCXX__)) ///////////////////////// // [variant.monostate] // ///////////////////////// TEST(VariantTest, MonostateBasic) { absl::monostate mono; (void)mono; // TODO(mattcalabrese) Expose move triviality metafunctions in absl. EXPECT_TRUE(absl::is_trivially_default_constructible<absl::monostate>::value); EXPECT_TRUE(is_trivially_move_constructible<absl::monostate>::value); EXPECT_TRUE(absl::is_trivially_copy_constructible<absl::monostate>::value); EXPECT_TRUE(is_trivially_move_assignable<absl::monostate>::value); EXPECT_TRUE(absl::is_trivially_copy_assignable<absl::monostate>::value); EXPECT_TRUE(absl::is_trivially_destructible<absl::monostate>::value); } TEST(VariantTest, VariantMonostateDefaultConstruction) { absl::variant<absl::monostate, NonDefaultConstructible> var; EXPECT_EQ(var.index(), 0); } //////////////////////////////// // [variant.monostate.relops] // //////////////////////////////// TEST(VariantTest, MonostateComparisons) { absl::monostate lhs, rhs; EXPECT_EQ(lhs, lhs); EXPECT_EQ(lhs, rhs); EXPECT_FALSE(lhs != lhs); EXPECT_FALSE(lhs != rhs); EXPECT_FALSE(lhs < lhs); EXPECT_FALSE(lhs < rhs); EXPECT_FALSE(lhs > lhs); EXPECT_FALSE(lhs > rhs); EXPECT_LE(lhs, lhs); EXPECT_LE(lhs, rhs); EXPECT_GE(lhs, lhs); EXPECT_GE(lhs, rhs); EXPECT_TRUE(noexcept(std::declval<absl::monostate>() == std::declval<absl::monostate>())); EXPECT_TRUE(noexcept(std::declval<absl::monostate>() != std::declval<absl::monostate>())); EXPECT_TRUE(noexcept(std::declval<absl::monostate>() < std::declval<absl::monostate>())); EXPECT_TRUE(noexcept(std::declval<absl::monostate>() > std::declval<absl::monostate>())); EXPECT_TRUE(noexcept(std::declval<absl::monostate>() <= std::declval<absl::monostate>())); EXPECT_TRUE(noexcept(std::declval<absl::monostate>() >= std::declval<absl::monostate>())); } /////////////////////// // [variant.specalg] // /////////////////////// TEST(VariantTest, NonmemberSwap) { using std::swap; SpecialSwap v1(3); SpecialSwap v2(7); variant<SpecialSwap> a = v1, b = v2; EXPECT_THAT(a, VariantWith<SpecialSwap>(v1)); EXPECT_THAT(b, VariantWith<SpecialSwap>(v2)); std::swap(a, b); EXPECT_THAT(a, VariantWith<SpecialSwap>(v2)); EXPECT_THAT(b, VariantWith<SpecialSwap>(v1)); #ifndef ABSL_HAVE_STD_VARIANT EXPECT_FALSE(absl::get<SpecialSwap>(a).special_swap); #endif swap(a, b); EXPECT_THAT(a, VariantWith<SpecialSwap>(v1)); EXPECT_THAT(b, VariantWith<SpecialSwap>(v2)); EXPECT_TRUE(absl::get<SpecialSwap>(b).special_swap); } ////////////////////////// // [variant.bad.access] // ////////////////////////// TEST(VariantTest, BadAccess) { EXPECT_TRUE(noexcept(absl::bad_variant_access())); absl::bad_variant_access exception_obj; std::exception* base = &exception_obj; (void)base; } //////////////////// // [variant.hash] // //////////////////// TEST(VariantTest, MonostateHash) { absl::monostate mono, other_mono; std::hash<absl::monostate> const hasher{}; static_assert(std::is_same<decltype(hasher(mono)), std::size_t>::value, ""); EXPECT_EQ(hasher(mono), hasher(other_mono)); } TEST(VariantTest, Hash) { static_assert(type_traits_internal::IsHashable<variant<int>>::value, ""); static_assert(type_traits_internal::IsHashable<variant<Hashable>>::value, ""); static_assert(type_traits_internal::IsHashable<variant<int, Hashable>>::value, ""); #if ABSL_META_INTERNAL_STD_HASH_SFINAE_FRIENDLY_ static_assert(!type_traits_internal::IsHashable<variant<NonHashable>>::value, ""); static_assert( !type_traits_internal::IsHashable<variant<Hashable, NonHashable>>::value, ""); #endif // MSVC std::hash<std::variant> does not use the index, thus produce the same // result on the same value as different alternative. #if !(defined(_MSC_VER) && defined(ABSL_HAVE_STD_VARIANT)) { // same value as different alternative variant<int, int> v0(in_place_index<0>, 42); variant<int, int> v1(in_place_index<1>, 42); std::hash<variant<int, int>> hash; EXPECT_NE(hash(v0), hash(v1)); } #endif // !(defined(_MSC_VER) && defined(ABSL_HAVE_STD_VARIANT)) { std::hash<variant<int>> hash; std::set<size_t> hashcodes; for (int i = 0; i < 100; ++i) { hashcodes.insert(hash(i)); } EXPECT_GT(hashcodes.size(), 90); // test const-qualified static_assert(type_traits_internal::IsHashable<variant<const int>>::value, ""); static_assert( type_traits_internal::IsHashable<variant<const Hashable>>::value, ""); std::hash<absl::variant<const int>> c_hash; for (int i = 0; i < 100; ++i) { EXPECT_EQ(hash(i), c_hash(i)); } } } //////////////////////////////////////// // Miscellaneous and deprecated tests // //////////////////////////////////////// // Test that a set requiring a basic type conversion works correctly. TEST(VariantTest, TestConvertingSet) { typedef variant<double> Variant; Variant v(1.0); const int two = 2; v = two; EXPECT_TRUE(absl::holds_alternative<double>(v)); ASSERT_TRUE(nullptr != absl::get_if<double>(&v)); EXPECT_DOUBLE_EQ(2, absl::get<double>(v)); } // Test that a vector of variants behaves reasonably. TEST(VariantTest, Container) { typedef variant<int, float> Variant; // Creation of vector should work std::vector<Variant> vec; vec.push_back(Variant(10)); vec.push_back(Variant(20.0f)); // Vector resizing should work if we supply a value for new slots vec.resize(10, Variant(0)); } // Test that a variant with a non-copyable type can be constructed and // manipulated to some degree. TEST(VariantTest, TestVariantWithNonCopyableType) { typedef variant<int, NonCopyable> Variant; const int kValue = 1; Variant v(kValue); ASSERT_TRUE(absl::holds_alternative<int>(v)); EXPECT_EQ(kValue, absl::get<int>(v)); } // Test that a variant with a non-copyable type can be transformed to // the non-copyable type with a call to `emplace` for different numbers // of arguments. We do not need to test this for each of T1 ... T8 // because `emplace` does not overload on T1 ... to T8, so if this // works for any one of T1 ... T8, then it works for all of them. We // do need to test that it works with varying numbers of parameters // though. TEST(VariantTest, TestEmplace) { typedef variant<int, NonCopyable> Variant; const int kValue = 1; Variant v(kValue); ASSERT_TRUE(absl::holds_alternative<int>(v)); EXPECT_EQ(kValue, absl::get<int>(v)); // emplace with zero arguments, then back to 'int' v.emplace<NonCopyable>(); ASSERT_TRUE(absl::holds_alternative<NonCopyable>(v)); EXPECT_EQ(0, absl::get<NonCopyable>(v).value); v = kValue; ASSERT_TRUE(absl::holds_alternative<int>(v)); // emplace with one argument: v.emplace<NonCopyable>(1); ASSERT_TRUE(absl::holds_alternative<NonCopyable>(v)); EXPECT_EQ(1, absl::get<NonCopyable>(v).value); v = kValue; ASSERT_TRUE(absl::holds_alternative<int>(v)); // emplace with two arguments: v.emplace<NonCopyable>(1, 2); ASSERT_TRUE(absl::holds_alternative<NonCopyable>(v)); EXPECT_EQ(3, absl::get<NonCopyable>(v).value); v = kValue; ASSERT_TRUE(absl::holds_alternative<int>(v)); // emplace with three arguments v.emplace<NonCopyable>(1, 2, 3); ASSERT_TRUE(absl::holds_alternative<NonCopyable>(v)); EXPECT_EQ(6, absl::get<NonCopyable>(v).value); v = kValue; ASSERT_TRUE(absl::holds_alternative<int>(v)); // emplace with four arguments v.emplace<NonCopyable>(1, 2, 3, 4); ASSERT_TRUE(absl::holds_alternative<NonCopyable>(v)); EXPECT_EQ(10, absl::get<NonCopyable>(v).value); v = kValue; ASSERT_TRUE(absl::holds_alternative<int>(v)); } TEST(VariantTest, TestEmplaceDestroysCurrentValue) { typedef variant<int, IncrementInDtor, NonCopyable> Variant; int counter = 0; Variant v(0); ASSERT_TRUE(absl::holds_alternative<int>(v)); v.emplace<IncrementInDtor>(&counter); ASSERT_TRUE(absl::holds_alternative<IncrementInDtor>(v)); ASSERT_EQ(0, counter); v.emplace<NonCopyable>(); ASSERT_TRUE(absl::holds_alternative<NonCopyable>(v)); EXPECT_EQ(1, counter); } TEST(VariantTest, TestMoveSemantics) { typedef variant<std::unique_ptr<int>, std::unique_ptr<std::string>> Variant; // Construct a variant by moving from an element value. Variant v(absl::WrapUnique(new int(10))); EXPECT_TRUE(absl::holds_alternative<std::unique_ptr<int>>(v)); // Construct a variant by moving from another variant. Variant v2(absl::move(v)); ASSERT_TRUE(absl::holds_alternative<std::unique_ptr<int>>(v2)); ASSERT_NE(nullptr, absl::get<std::unique_ptr<int>>(v2)); EXPECT_EQ(10, *absl::get<std::unique_ptr<int>>(v2)); // Moving from a variant object leaves it holding moved-from value of the // same element type. EXPECT_TRUE(absl::holds_alternative<std::unique_ptr<int>>(v)); ASSERT_NE(nullptr, absl::get_if<std::unique_ptr<int>>(&v)); EXPECT_EQ(nullptr, absl::get<std::unique_ptr<int>>(v)); // Assign a variant from an element value by move. v = absl::make_unique<std::string>("foo"); ASSERT_TRUE(absl::holds_alternative<std::unique_ptr<std::string>>(v)); EXPECT_EQ("foo", *absl::get<std::unique_ptr<std::string>>(v)); // Move-assign a variant. v2 = absl::move(v); ASSERT_TRUE(absl::holds_alternative<std::unique_ptr<std::string>>(v2)); EXPECT_EQ("foo", *absl::get<std::unique_ptr<std::string>>(v2)); EXPECT_TRUE(absl::holds_alternative<std::unique_ptr<std::string>>(v)); } variant<int, std::string> PassThrough(const variant<int, std::string>& arg) { return arg; } TEST(VariantTest, TestImplicitConversion) { EXPECT_TRUE(absl::holds_alternative<int>(PassThrough(0))); // We still need the explicit cast for std::string, because C++ won't apply // two user-defined implicit conversions in a row. EXPECT_TRUE( absl::holds_alternative<std::string>(PassThrough(std::string("foo")))); } struct Convertible2; struct Convertible1 { Convertible1() {} Convertible1(const Convertible1&) {} Convertible1& operator=(const Convertible1&) { return *this; } // implicit conversion from Convertible2 Convertible1(const Convertible2&) {} // NOLINT(runtime/explicit) }; struct Convertible2 { Convertible2() {} Convertible2(const Convertible2&) {} Convertible2& operator=(const Convertible2&) { return *this; } // implicit conversion from Convertible1 Convertible2(const Convertible1&) {} // NOLINT(runtime/explicit) }; TEST(VariantTest, TestRvalueConversion) { variant<double, std::string> var( ConvertVariantTo<variant<double, std::string>>( variant<std::string, int>(0))); ASSERT_TRUE(absl::holds_alternative<double>(var)); EXPECT_EQ(0.0, absl::get<double>(var)); var = ConvertVariantTo<variant<double, std::string>>( variant<const char*, float>("foo")); ASSERT_TRUE(absl::holds_alternative<std::string>(var)); EXPECT_EQ("foo", absl::get<std::string>(var)); variant<double> singleton( ConvertVariantTo<variant<double>>(variant<int, float>(42))); ASSERT_TRUE(absl::holds_alternative<double>(singleton)); EXPECT_EQ(42.0, absl::get<double>(singleton)); singleton = ConvertVariantTo<variant<double>>(variant<int, float>(3.14f)); ASSERT_TRUE(absl::holds_alternative<double>(singleton)); EXPECT_FLOAT_EQ(3.14f, static_cast<float>(absl::get<double>(singleton))); singleton = ConvertVariantTo<variant<double>>(variant<int>(0)); ASSERT_TRUE(absl::holds_alternative<double>(singleton)); EXPECT_EQ(0.0, absl::get<double>(singleton)); variant<int32_t, uint32_t> variant2( ConvertVariantTo<variant<int32_t, uint32_t>>(variant<int32_t>(42))); ASSERT_TRUE(absl::holds_alternative<int32_t>(variant2)); EXPECT_EQ(42, absl::get<int32_t>(variant2)); variant2 = ConvertVariantTo<variant<int32_t, uint32_t>>(variant<uint32_t>(42)); ASSERT_TRUE(absl::holds_alternative<uint32_t>(variant2)); EXPECT_EQ(42, absl::get<uint32_t>(variant2)); variant<Convertible1, Convertible2> variant3( ConvertVariantTo<variant<Convertible1, Convertible2>>( (variant<Convertible2, Convertible1>(Convertible1())))); ASSERT_TRUE(absl::holds_alternative<Convertible1>(variant3)); variant3 = ConvertVariantTo<variant<Convertible1, Convertible2>>( variant<Convertible2, Convertible1>(Convertible2())); ASSERT_TRUE(absl::holds_alternative<Convertible2>(variant3)); } TEST(VariantTest, TestLvalueConversion) { variant<std::string, int> source1 = 0; variant<double, std::string> destination( ConvertVariantTo<variant<double, std::string>>(source1)); ASSERT_TRUE(absl::holds_alternative<double>(destination)); EXPECT_EQ(0.0, absl::get<double>(destination)); variant<const char*, float> source2 = "foo"; destination = ConvertVariantTo<variant<double, std::string>>(source2); ASSERT_TRUE(absl::holds_alternative<std::string>(destination)); EXPECT_EQ("foo", absl::get<std::string>(destination)); variant<int, float> source3(42); variant<double> singleton(ConvertVariantTo<variant<double>>(source3)); ASSERT_TRUE(absl::holds_alternative<double>(singleton)); EXPECT_EQ(42.0, absl::get<double>(singleton)); source3 = 3.14f; singleton = ConvertVariantTo<variant<double>>(source3); ASSERT_TRUE(absl::holds_alternative<double>(singleton)); EXPECT_FLOAT_EQ(3.14f, static_cast<float>(absl::get<double>(singleton))); variant<int> source4(0); singleton = ConvertVariantTo<variant<double>>(source4); ASSERT_TRUE(absl::holds_alternative<double>(singleton)); EXPECT_EQ(0.0, absl::get<double>(singleton)); variant<int32_t> source5(42); variant<int32_t, uint32_t> variant2( ConvertVariantTo<variant<int32_t, uint32_t>>(source5)); ASSERT_TRUE(absl::holds_alternative<int32_t>(variant2)); EXPECT_EQ(42, absl::get<int32_t>(variant2)); variant<uint32_t> source6(42); variant2 = ConvertVariantTo<variant<int32_t, uint32_t>>(source6); ASSERT_TRUE(absl::holds_alternative<uint32_t>(variant2)); EXPECT_EQ(42, absl::get<uint32_t>(variant2)); variant<Convertible2, Convertible1> source7((Convertible1())); variant<Convertible1, Convertible2> variant3( ConvertVariantTo<variant<Convertible1, Convertible2>>(source7)); ASSERT_TRUE(absl::holds_alternative<Convertible1>(variant3)); source7 = Convertible2(); variant3 = ConvertVariantTo<variant<Convertible1, Convertible2>>(source7); ASSERT_TRUE(absl::holds_alternative<Convertible2>(variant3)); } TEST(VariantTest, TestMoveConversion) { using Variant = variant<std::unique_ptr<const int>, std::unique_ptr<const std::string>>; using OtherVariant = variant<std::unique_ptr<int>, std::unique_ptr<std::string>>; Variant var( ConvertVariantTo<Variant>(OtherVariant{absl::make_unique<int>(0)})); ASSERT_TRUE(absl::holds_alternative<std::unique_ptr<const int>>(var)); ASSERT_NE(absl::get<std::unique_ptr<const int>>(var), nullptr); EXPECT_EQ(0, *absl::get<std::unique_ptr<const int>>(var)); var = ConvertVariantTo<Variant>( OtherVariant(absl::make_unique<std::string>("foo"))); ASSERT_TRUE(absl::holds_alternative<std::unique_ptr<const std::string>>(var)); EXPECT_EQ("foo", *absl::get<std::unique_ptr<const std::string>>(var)); } TEST(VariantTest, DoesNotMoveFromLvalues) { // We use shared_ptr here because it's both copyable and movable, and // a moved-from shared_ptr is guaranteed to be null, so we can detect // whether moving or copying has occurred. using Variant = variant<std::shared_ptr<const int>, std::shared_ptr<const std::string>>; using OtherVariant = variant<std::shared_ptr<int>, std::shared_ptr<std::string>>; Variant v1(std::make_shared<const int>(0)); // Test copy constructor Variant v2(v1); EXPECT_EQ(absl::get<std::shared_ptr<const int>>(v1), absl::get<std::shared_ptr<const int>>(v2)); // Test copy-assignment operator v1 = std::make_shared<const std::string>("foo"); v2 = v1; EXPECT_EQ(absl::get<std::shared_ptr<const std::string>>(v1), absl::get<std::shared_ptr<const std::string>>(v2)); // Test converting copy constructor OtherVariant other(std::make_shared<int>(0)); Variant v3(ConvertVariantTo<Variant>(other)); EXPECT_EQ(absl::get<std::shared_ptr<int>>(other), absl::get<std::shared_ptr<const int>>(v3)); other = std::make_shared<std::string>("foo"); v3 = ConvertVariantTo<Variant>(other); EXPECT_EQ(absl::get<std::shared_ptr<std::string>>(other), absl::get<std::shared_ptr<const std::string>>(v3)); } TEST(VariantTest, TestRvalueConversionViaConvertVariantTo) { variant<double, std::string> var( ConvertVariantTo<variant<double, std::string>>( variant<std::string, int>(3))); EXPECT_THAT(absl::get_if<double>(&var), Pointee(3.0)); var = ConvertVariantTo<variant<double, std::string>>( variant<const char*, float>("foo")); EXPECT_THAT(absl::get_if<std::string>(&var), Pointee(std::string("foo"))); variant<double> singleton( ConvertVariantTo<variant<double>>(variant<int, float>(42))); EXPECT_THAT(absl::get_if<double>(&singleton), Pointee(42.0)); singleton = ConvertVariantTo<variant<double>>(variant<int, float>(3.14f)); EXPECT_THAT(absl::get_if<double>(&singleton), Pointee(DoubleEq(3.14f))); singleton = ConvertVariantTo<variant<double>>(variant<int>(3)); EXPECT_THAT(absl::get_if<double>(&singleton), Pointee(3.0)); variant<int32_t, uint32_t> variant2( ConvertVariantTo<variant<int32_t, uint32_t>>(variant<int32_t>(42))); EXPECT_THAT(absl::get_if<int32_t>(&variant2), Pointee(42)); variant2 = ConvertVariantTo<variant<int32_t, uint32_t>>(variant<uint32_t>(42)); EXPECT_THAT(absl::get_if<uint32_t>(&variant2), Pointee(42)); variant<Convertible1, Convertible2> variant3( ConvertVariantTo<variant<Convertible1, Convertible2>>( (variant<Convertible2, Convertible1>(Convertible1())))); ASSERT_TRUE(absl::holds_alternative<Convertible1>(variant3)); variant3 = ConvertVariantTo<variant<Convertible1, Convertible2>>( variant<Convertible2, Convertible1>(Convertible2())); ASSERT_TRUE(absl::holds_alternative<Convertible2>(variant3)); } TEST(VariantTest, TestLvalueConversionViaConvertVariantTo) { variant<std::string, int> source1 = 3; variant<double, std::string> destination( ConvertVariantTo<variant<double, std::string>>(source1)); EXPECT_THAT(absl::get_if<double>(&destination), Pointee(3.0)); variant<const char*, float> source2 = "foo"; destination = ConvertVariantTo<variant<double, std::string>>(source2); EXPECT_THAT(absl::get_if<std::string>(&destination), Pointee(std::string("foo"))); variant<int, float> source3(42); variant<double> singleton(ConvertVariantTo<variant<double>>(source3)); EXPECT_THAT(absl::get_if<double>(&singleton), Pointee(42.0)); source3 = 3.14f; singleton = ConvertVariantTo<variant<double>>(source3); EXPECT_FLOAT_EQ(3.14f, static_cast<float>(absl::get<double>(singleton))); EXPECT_THAT(absl::get_if<double>(&singleton), Pointee(DoubleEq(3.14f))); variant<int> source4(3); singleton = ConvertVariantTo<variant<double>>(source4); EXPECT_THAT(absl::get_if<double>(&singleton), Pointee(3.0)); variant<int32_t> source5(42); variant<int32_t, uint32_t> variant2( ConvertVariantTo<variant<int32_t, uint32_t>>(source5)); EXPECT_THAT(absl::get_if<int32_t>(&variant2), Pointee(42)); variant<uint32_t> source6(42); variant2 = ConvertVariantTo<variant<int32_t, uint32_t>>(source6); EXPECT_THAT(absl::get_if<uint32_t>(&variant2), Pointee(42)); variant<Convertible2, Convertible1> source7((Convertible1())); variant<Convertible1, Convertible2> variant3( ConvertVariantTo<variant<Convertible1, Convertible2>>(source7)); ASSERT_TRUE(absl::holds_alternative<Convertible1>(variant3)); source7 = Convertible2(); variant3 = ConvertVariantTo<variant<Convertible1, Convertible2>>(source7); ASSERT_TRUE(absl::holds_alternative<Convertible2>(variant3)); } TEST(VariantTest, TestMoveConversionViaConvertVariantTo) { using Variant = variant<std::unique_ptr<const int>, std::unique_ptr<const std::string>>; using OtherVariant = variant<std::unique_ptr<int>, std::unique_ptr<std::string>>; Variant var( ConvertVariantTo<Variant>(OtherVariant{absl::make_unique<int>(3)})); EXPECT_THAT(absl::get_if<std::unique_ptr<const int>>(&var), Pointee(Pointee(3))); var = ConvertVariantTo<Variant>( OtherVariant(absl::make_unique<std::string>("foo"))); EXPECT_THAT(absl::get_if<std::unique_ptr<const std::string>>(&var), Pointee(Pointee(std::string("foo")))); } // If all alternatives are trivially copy/move constructible, variant should // also be trivially copy/move constructible. This is not required by the // standard and we know that libstdc++ variant doesn't have this feature. // For more details see the paper: // http://open-std.org/JTC1/SC22/WG21/docs/papers/2017/p0602r0.html #if !(defined(ABSL_HAVE_STD_VARIANT) && defined(__GLIBCXX__)) #define ABSL_VARIANT_PROPAGATE_COPY_MOVE_TRIVIALITY 1 #endif TEST(VariantTest, TestCopyAndMoveTypeTraits) { EXPECT_TRUE(std::is_copy_constructible<variant<std::string>>::value); EXPECT_TRUE(absl::is_copy_assignable<variant<std::string>>::value); EXPECT_TRUE(std::is_move_constructible<variant<std::string>>::value); EXPECT_TRUE(absl::is_move_assignable<variant<std::string>>::value); EXPECT_TRUE(std::is_move_constructible<variant<std::unique_ptr<int>>>::value); EXPECT_TRUE(absl::is_move_assignable<variant<std::unique_ptr<int>>>::value); EXPECT_FALSE( std::is_copy_constructible<variant<std::unique_ptr<int>>>::value); EXPECT_FALSE(absl::is_copy_assignable<variant<std::unique_ptr<int>>>::value); EXPECT_FALSE( absl::is_trivially_copy_constructible<variant<std::string>>::value); EXPECT_FALSE(absl::is_trivially_copy_assignable<variant<std::string>>::value); #if ABSL_VARIANT_PROPAGATE_COPY_MOVE_TRIVIALITY EXPECT_TRUE(absl::is_trivially_copy_constructible<variant<int>>::value); EXPECT_TRUE(absl::is_trivially_copy_assignable<variant<int>>::value); EXPECT_TRUE(is_trivially_move_constructible<variant<int>>::value); EXPECT_TRUE(is_trivially_move_assignable<variant<int>>::value); #endif // ABSL_VARIANT_PROPAGATE_COPY_MOVE_TRIVIALITY } TEST(VariantTest, TestVectorOfMoveonlyVariant) { // Verify that variant<MoveonlyType> works correctly as a std::vector element. std::vector<variant<std::unique_ptr<int>, std::string>> vec; vec.push_back(absl::make_unique<int>(42)); vec.emplace_back("Hello"); vec.reserve(3); auto another_vec = absl::move(vec); // As a sanity check, verify vector contents. ASSERT_EQ(2, another_vec.size()); EXPECT_EQ(42, *absl::get<std::unique_ptr<int>>(another_vec[0])); EXPECT_EQ("Hello", absl::get<std::string>(another_vec[1])); } TEST(VariantTest, NestedVariant) { #if ABSL_VARIANT_PROPAGATE_COPY_MOVE_TRIVIALITY static_assert(absl::is_trivially_copy_constructible<variant<int>>(), ""); static_assert(absl::is_trivially_copy_assignable<variant<int>>(), ""); static_assert(is_trivially_move_constructible<variant<int>>(), ""); static_assert(is_trivially_move_assignable<variant<int>>(), ""); static_assert(absl::is_trivially_copy_constructible<variant<variant<int>>>(), ""); static_assert(absl::is_trivially_copy_assignable<variant<variant<int>>>(), ""); static_assert(is_trivially_move_constructible<variant<variant<int>>>(), ""); static_assert(is_trivially_move_assignable<variant<variant<int>>>(), ""); #endif // ABSL_VARIANT_PROPAGATE_COPY_MOVE_TRIVIALITY variant<int> x(42); variant<variant<int>> y(x); variant<variant<int>> z(y); EXPECT_TRUE(absl::holds_alternative<variant<int>>(z)); EXPECT_EQ(x, absl::get<variant<int>>(z)); } struct TriviallyDestructible { TriviallyDestructible(TriviallyDestructible&&) {} TriviallyDestructible(const TriviallyDestructible&) {} TriviallyDestructible& operator=(TriviallyDestructible&&) { return *this; } TriviallyDestructible& operator=(const TriviallyDestructible&) { return *this; } }; struct TriviallyMovable { TriviallyMovable(TriviallyMovable&&) = default; TriviallyMovable(TriviallyMovable const&) {} TriviallyMovable& operator=(const TriviallyMovable&) { return *this; } }; struct TriviallyCopyable { TriviallyCopyable(const TriviallyCopyable&) = default; TriviallyCopyable& operator=(const TriviallyCopyable&) { return *this; } }; struct TriviallyMoveAssignable { TriviallyMoveAssignable(TriviallyMoveAssignable&&) = default; TriviallyMoveAssignable(const TriviallyMoveAssignable&) {} TriviallyMoveAssignable& operator=(TriviallyMoveAssignable&&) = default; TriviallyMoveAssignable& operator=(const TriviallyMoveAssignable&) { return *this; } }; struct TriviallyCopyAssignable {}; #if ABSL_VARIANT_PROPAGATE_COPY_MOVE_TRIVIALITY TEST(VariantTest, TestTriviality) { { using TrivDestVar = absl::variant<TriviallyDestructible>; EXPECT_FALSE(is_trivially_move_constructible<TrivDestVar>::value); EXPECT_FALSE(absl::is_trivially_copy_constructible<TrivDestVar>::value); EXPECT_FALSE(is_trivially_move_assignable<TrivDestVar>::value); EXPECT_FALSE(absl::is_trivially_copy_assignable<TrivDestVar>::value); EXPECT_TRUE(absl::is_trivially_destructible<TrivDestVar>::value); } { using TrivMoveVar = absl::variant<TriviallyMovable>; EXPECT_TRUE(is_trivially_move_constructible<TrivMoveVar>::value); EXPECT_FALSE(absl::is_trivially_copy_constructible<TrivMoveVar>::value); EXPECT_FALSE(is_trivially_move_assignable<TrivMoveVar>::value); EXPECT_FALSE(absl::is_trivially_copy_assignable<TrivMoveVar>::value); EXPECT_TRUE(absl::is_trivially_destructible<TrivMoveVar>::value); } { using TrivCopyVar = absl::variant<TriviallyCopyable>; EXPECT_TRUE(is_trivially_move_constructible<TrivCopyVar>::value); EXPECT_TRUE(absl::is_trivially_copy_constructible<TrivCopyVar>::value); EXPECT_FALSE(is_trivially_move_assignable<TrivCopyVar>::value); EXPECT_FALSE(absl::is_trivially_copy_assignable<TrivCopyVar>::value); EXPECT_TRUE(absl::is_trivially_destructible<TrivCopyVar>::value); } { using TrivMoveAssignVar = absl::variant<TriviallyMoveAssignable>; EXPECT_TRUE(is_trivially_move_constructible<TrivMoveAssignVar>::value); EXPECT_FALSE( absl::is_trivially_copy_constructible<TrivMoveAssignVar>::value); EXPECT_TRUE(is_trivially_move_assignable<TrivMoveAssignVar>::value); EXPECT_FALSE(absl::is_trivially_copy_assignable<TrivMoveAssignVar>::value); EXPECT_TRUE(absl::is_trivially_destructible<TrivMoveAssignVar>::value); } { using TrivCopyAssignVar = absl::variant<TriviallyCopyAssignable>; EXPECT_TRUE(is_trivially_move_constructible<TrivCopyAssignVar>::value); EXPECT_TRUE( absl::is_trivially_copy_constructible<TrivCopyAssignVar>::value); EXPECT_TRUE(is_trivially_move_assignable<TrivCopyAssignVar>::value); EXPECT_TRUE(absl::is_trivially_copy_assignable<TrivCopyAssignVar>::value); EXPECT_TRUE(absl::is_trivially_destructible<TrivCopyAssignVar>::value); } } #endif // ABSL_VARIANT_PROPAGATE_COPY_MOVE_TRIVIALITY // To verify that absl::variant correctly use the nontrivial move ctor of its // member rather than use the trivial copy constructor. TEST(VariantTest, MoveCtorBug) { // To simulate std::tuple in libstdc++. struct TrivialCopyNontrivialMove { TrivialCopyNontrivialMove() = default; TrivialCopyNontrivialMove(const TrivialCopyNontrivialMove&) = default; TrivialCopyNontrivialMove(TrivialCopyNontrivialMove&&) { called = true; } bool called = false; }; { using V = absl::variant<TrivialCopyNontrivialMove, int>; V v1(absl::in_place_index<0>); // this should invoke the move ctor, rather than the trivial copy ctor. V v2(std::move(v1)); EXPECT_TRUE(absl::get<0>(v2).called); } { // this case failed to compile before our fix due to a GCC bug. using V = absl::variant<int, TrivialCopyNontrivialMove>; V v1(absl::in_place_index<1>); // this should invoke the move ctor, rather than the trivial copy ctor. V v2(std::move(v1)); EXPECT_TRUE(absl::get<1>(v2).called); } } } // namespace } // namespace absl
Become a Patron
Sponsor on GitHub
Donate via PayPal
Source on GitHub
Mailing list
Installed libraries
Wiki
Report an issue
How it works
Contact the author
CE on Mastodon
About the author
Statistics
Changelog
Version tree