Thanks for using Compiler Explorer
Sponsors
Jakt
C++
Ada
Analysis
Android Java
Android Kotlin
Assembly
C
C3
Carbon
C++ (Circle)
CIRCT
Clean
CMake
CMakeScript
COBOL
C++ for OpenCL
MLIR
Cppx
Cppx-Blue
Cppx-Gold
Cpp2-cppfront
Crystal
C#
CUDA C++
D
Dart
Elixir
Erlang
Fortran
F#
GLSL
Go
Haskell
HLSL
Hook
Hylo
IL
ispc
Java
Julia
Kotlin
LLVM IR
LLVM MIR
Modula-2
Nim
Objective-C
Objective-C++
OCaml
OpenCL C
Pascal
Pony
Python
Racket
Ruby
Rust
Snowball
Scala
Solidity
Spice
SPIR-V
Swift
LLVM TableGen
Toit
TypeScript Native
V
Vala
Visual Basic
WASM
Zig
Javascript
GIMPLE
Ygen
c++ source #1
Output
Compile to binary object
Link to binary
Execute the code
Intel asm syntax
Demangle identifiers
Verbose demangling
Filters
Unused labels
Library functions
Directives
Comments
Horizontal whitespace
Debug intrinsics
Compiler
6502-c++ 11.1.0
ARM GCC 10.2.0
ARM GCC 10.3.0
ARM GCC 10.4.0
ARM GCC 10.5.0
ARM GCC 11.1.0
ARM GCC 11.2.0
ARM GCC 11.3.0
ARM GCC 11.4.0
ARM GCC 12.1.0
ARM GCC 12.2.0
ARM GCC 12.3.0
ARM GCC 12.4.0
ARM GCC 13.1.0
ARM GCC 13.2.0
ARM GCC 13.2.0 (unknown-eabi)
ARM GCC 13.3.0
ARM GCC 13.3.0 (unknown-eabi)
ARM GCC 14.1.0
ARM GCC 14.1.0 (unknown-eabi)
ARM GCC 14.2.0
ARM GCC 14.2.0 (unknown-eabi)
ARM GCC 4.5.4
ARM GCC 4.6.4
ARM GCC 5.4
ARM GCC 6.3.0
ARM GCC 6.4.0
ARM GCC 7.3.0
ARM GCC 7.5.0
ARM GCC 8.2.0
ARM GCC 8.5.0
ARM GCC 9.3.0
ARM GCC 9.4.0
ARM GCC 9.5.0
ARM GCC trunk
ARM gcc 10.2.1 (none)
ARM gcc 10.3.1 (2021.07 none)
ARM gcc 10.3.1 (2021.10 none)
ARM gcc 11.2.1 (none)
ARM gcc 5.4.1 (none)
ARM gcc 7.2.1 (none)
ARM gcc 8.2 (WinCE)
ARM gcc 8.3.1 (none)
ARM gcc 9.2.1 (none)
ARM msvc v19.0 (WINE)
ARM msvc v19.10 (WINE)
ARM msvc v19.14 (WINE)
ARM64 Morello gcc 10.1 Alpha 2
ARM64 gcc 10.2
ARM64 gcc 10.3
ARM64 gcc 10.4
ARM64 gcc 10.5.0
ARM64 gcc 11.1
ARM64 gcc 11.2
ARM64 gcc 11.3
ARM64 gcc 11.4.0
ARM64 gcc 12.1
ARM64 gcc 12.2.0
ARM64 gcc 12.3.0
ARM64 gcc 12.4.0
ARM64 gcc 13.1.0
ARM64 gcc 13.2.0
ARM64 gcc 13.3.0
ARM64 gcc 14.1.0
ARM64 gcc 14.2.0
ARM64 gcc 4.9.4
ARM64 gcc 5.4
ARM64 gcc 5.5.0
ARM64 gcc 6.3
ARM64 gcc 6.4
ARM64 gcc 7.3
ARM64 gcc 7.5
ARM64 gcc 8.2
ARM64 gcc 8.5
ARM64 gcc 9.3
ARM64 gcc 9.4
ARM64 gcc 9.5
ARM64 gcc trunk
ARM64 msvc v19.14 (WINE)
AVR gcc 10.3.0
AVR gcc 11.1.0
AVR gcc 12.1.0
AVR gcc 12.2.0
AVR gcc 12.3.0
AVR gcc 12.4.0
AVR gcc 13.1.0
AVR gcc 13.2.0
AVR gcc 13.3.0
AVR gcc 14.1.0
AVR gcc 14.2.0
AVR gcc 4.5.4
AVR gcc 4.6.4
AVR gcc 5.4.0
AVR gcc 9.2.0
AVR gcc 9.3.0
Arduino Mega (1.8.9)
Arduino Uno (1.8.9)
BPF clang (trunk)
BPF clang 13.0.0
BPF clang 14.0.0
BPF clang 15.0.0
BPF clang 16.0.0
BPF clang 17.0.1
BPF clang 18.1.0
BPF clang 19.1.0
BPF gcc 13.1.0
BPF gcc 13.2.0
BPF gcc 13.3.0
BPF gcc trunk
EDG (experimental reflection)
EDG 6.5
EDG 6.5 (GNU mode gcc 13)
EDG 6.6
EDG 6.6 (GNU mode gcc 13)
FRC 2019
FRC 2020
FRC 2023
HPPA gcc 14.2.0
KVX ACB 4.1.0 (GCC 7.5.0)
KVX ACB 4.1.0-cd1 (GCC 7.5.0)
KVX ACB 4.10.0 (GCC 10.3.1)
KVX ACB 4.11.1 (GCC 10.3.1)
KVX ACB 4.12.0 (GCC 11.3.0)
KVX ACB 4.2.0 (GCC 7.5.0)
KVX ACB 4.3.0 (GCC 7.5.0)
KVX ACB 4.4.0 (GCC 7.5.0)
KVX ACB 4.6.0 (GCC 9.4.1)
KVX ACB 4.8.0 (GCC 9.4.1)
KVX ACB 4.9.0 (GCC 9.4.1)
KVX ACB 5.0.0 (GCC 12.2.1)
KVX ACB 5.2.0 (GCC 13.2.1)
LoongArch64 clang (trunk)
LoongArch64 clang 17.0.1
LoongArch64 clang 18.1.0
LoongArch64 clang 19.1.0
M68K gcc 13.1.0
M68K gcc 13.2.0
M68K gcc 13.3.0
M68K gcc 14.1.0
M68K gcc 14.2.0
M68k clang (trunk)
MRISC32 gcc (trunk)
MSP430 gcc 4.5.3
MSP430 gcc 5.3.0
MSP430 gcc 6.2.1
MinGW clang 14.0.3
MinGW clang 14.0.6
MinGW clang 15.0.7
MinGW clang 16.0.0
MinGW clang 16.0.2
MinGW gcc 11.3.0
MinGW gcc 12.1.0
MinGW gcc 12.2.0
MinGW gcc 13.1.0
RISC-V (32-bits) gcc (trunk)
RISC-V (32-bits) gcc 10.2.0
RISC-V (32-bits) gcc 10.3.0
RISC-V (32-bits) gcc 11.2.0
RISC-V (32-bits) gcc 11.3.0
RISC-V (32-bits) gcc 11.4.0
RISC-V (32-bits) gcc 12.1.0
RISC-V (32-bits) gcc 12.2.0
RISC-V (32-bits) gcc 12.3.0
RISC-V (32-bits) gcc 12.4.0
RISC-V (32-bits) gcc 13.1.0
RISC-V (32-bits) gcc 13.2.0
RISC-V (32-bits) gcc 13.3.0
RISC-V (32-bits) gcc 14.1.0
RISC-V (32-bits) gcc 14.2.0
RISC-V (32-bits) gcc 8.2.0
RISC-V (32-bits) gcc 8.5.0
RISC-V (32-bits) gcc 9.4.0
RISC-V (64-bits) gcc (trunk)
RISC-V (64-bits) gcc 10.2.0
RISC-V (64-bits) gcc 10.3.0
RISC-V (64-bits) gcc 11.2.0
RISC-V (64-bits) gcc 11.3.0
RISC-V (64-bits) gcc 11.4.0
RISC-V (64-bits) gcc 12.1.0
RISC-V (64-bits) gcc 12.2.0
RISC-V (64-bits) gcc 12.3.0
RISC-V (64-bits) gcc 12.4.0
RISC-V (64-bits) gcc 13.1.0
RISC-V (64-bits) gcc 13.2.0
RISC-V (64-bits) gcc 13.3.0
RISC-V (64-bits) gcc 14.1.0
RISC-V (64-bits) gcc 14.2.0
RISC-V (64-bits) gcc 8.2.0
RISC-V (64-bits) gcc 8.5.0
RISC-V (64-bits) gcc 9.4.0
RISC-V rv32gc clang (trunk)
RISC-V rv32gc clang 10.0.0
RISC-V rv32gc clang 10.0.1
RISC-V rv32gc clang 11.0.0
RISC-V rv32gc clang 11.0.1
RISC-V rv32gc clang 12.0.0
RISC-V rv32gc clang 12.0.1
RISC-V rv32gc clang 13.0.0
RISC-V rv32gc clang 13.0.1
RISC-V rv32gc clang 14.0.0
RISC-V rv32gc clang 15.0.0
RISC-V rv32gc clang 16.0.0
RISC-V rv32gc clang 17.0.1
RISC-V rv32gc clang 18.1.0
RISC-V rv32gc clang 19.1.0
RISC-V rv32gc clang 9.0.0
RISC-V rv32gc clang 9.0.1
RISC-V rv64gc clang (trunk)
RISC-V rv64gc clang 10.0.0
RISC-V rv64gc clang 10.0.1
RISC-V rv64gc clang 11.0.0
RISC-V rv64gc clang 11.0.1
RISC-V rv64gc clang 12.0.0
RISC-V rv64gc clang 12.0.1
RISC-V rv64gc clang 13.0.0
RISC-V rv64gc clang 13.0.1
RISC-V rv64gc clang 14.0.0
RISC-V rv64gc clang 15.0.0
RISC-V rv64gc clang 16.0.0
RISC-V rv64gc clang 17.0.1
RISC-V rv64gc clang 18.1.0
RISC-V rv64gc clang 19.1.0
RISC-V rv64gc clang 9.0.0
RISC-V rv64gc clang 9.0.1
Raspbian Buster
Raspbian Stretch
SPARC LEON gcc 12.2.0
SPARC LEON gcc 12.3.0
SPARC LEON gcc 12.4.0
SPARC LEON gcc 13.1.0
SPARC LEON gcc 13.2.0
SPARC LEON gcc 13.3.0
SPARC LEON gcc 14.1.0
SPARC LEON gcc 14.2.0
SPARC gcc 12.2.0
SPARC gcc 12.3.0
SPARC gcc 12.4.0
SPARC gcc 13.1.0
SPARC gcc 13.2.0
SPARC gcc 13.3.0
SPARC gcc 14.1.0
SPARC gcc 14.2.0
SPARC64 gcc 12.2.0
SPARC64 gcc 12.3.0
SPARC64 gcc 12.4.0
SPARC64 gcc 13.1.0
SPARC64 gcc 13.2.0
SPARC64 gcc 13.3.0
SPARC64 gcc 14.1.0
SPARC64 gcc 14.2.0
TI C6x gcc 12.2.0
TI C6x gcc 12.3.0
TI C6x gcc 12.4.0
TI C6x gcc 13.1.0
TI C6x gcc 13.2.0
TI C6x gcc 13.3.0
TI C6x gcc 14.1.0
TI C6x gcc 14.2.0
TI CL430 21.6.1
VAX gcc NetBSDELF 10.4.0
VAX gcc NetBSDELF 10.5.0 (Nov 15 03:50:22 2023)
WebAssembly clang (trunk)
Xtensa ESP32 gcc 11.2.0 (2022r1)
Xtensa ESP32 gcc 12.2.0 (20230208)
Xtensa ESP32 gcc 8.2.0 (2019r2)
Xtensa ESP32 gcc 8.2.0 (2020r1)
Xtensa ESP32 gcc 8.2.0 (2020r2)
Xtensa ESP32 gcc 8.4.0 (2020r3)
Xtensa ESP32 gcc 8.4.0 (2021r1)
Xtensa ESP32 gcc 8.4.0 (2021r2)
Xtensa ESP32-S2 gcc 11.2.0 (2022r1)
Xtensa ESP32-S2 gcc 12.2.0 (20230208)
Xtensa ESP32-S2 gcc 8.2.0 (2019r2)
Xtensa ESP32-S2 gcc 8.2.0 (2020r1)
Xtensa ESP32-S2 gcc 8.2.0 (2020r2)
Xtensa ESP32-S2 gcc 8.4.0 (2020r3)
Xtensa ESP32-S2 gcc 8.4.0 (2021r1)
Xtensa ESP32-S2 gcc 8.4.0 (2021r2)
Xtensa ESP32-S3 gcc 11.2.0 (2022r1)
Xtensa ESP32-S3 gcc 12.2.0 (20230208)
Xtensa ESP32-S3 gcc 8.4.0 (2020r3)
Xtensa ESP32-S3 gcc 8.4.0 (2021r1)
Xtensa ESP32-S3 gcc 8.4.0 (2021r2)
arm64 msvc v19.20 VS16.0
arm64 msvc v19.21 VS16.1
arm64 msvc v19.22 VS16.2
arm64 msvc v19.23 VS16.3
arm64 msvc v19.24 VS16.4
arm64 msvc v19.25 VS16.5
arm64 msvc v19.27 VS16.7
arm64 msvc v19.28 VS16.8
arm64 msvc v19.28 VS16.9
arm64 msvc v19.29 VS16.10
arm64 msvc v19.29 VS16.11
arm64 msvc v19.30 VS17.0
arm64 msvc v19.31 VS17.1
arm64 msvc v19.32 VS17.2
arm64 msvc v19.33 VS17.3
arm64 msvc v19.34 VS17.4
arm64 msvc v19.35 VS17.5
arm64 msvc v19.36 VS17.6
arm64 msvc v19.37 VS17.7
arm64 msvc v19.38 VS17.8
arm64 msvc v19.39 VS17.9
arm64 msvc v19.40 VS17.10
arm64 msvc v19.latest
armv7-a clang (trunk)
armv7-a clang 10.0.0
armv7-a clang 10.0.1
armv7-a clang 11.0.0
armv7-a clang 11.0.1
armv7-a clang 12.0.0
armv7-a clang 12.0.1
armv7-a clang 13.0.0
armv7-a clang 13.0.1
armv7-a clang 14.0.0
armv7-a clang 15.0.0
armv7-a clang 16.0.0
armv7-a clang 17.0.1
armv7-a clang 18.1.0
armv7-a clang 19.1.0
armv7-a clang 9.0.0
armv7-a clang 9.0.1
armv8-a clang (all architectural features, trunk)
armv8-a clang (trunk)
armv8-a clang 10.0.0
armv8-a clang 10.0.1
armv8-a clang 11.0.0
armv8-a clang 11.0.1
armv8-a clang 12.0.0
armv8-a clang 13.0.0
armv8-a clang 14.0.0
armv8-a clang 15.0.0
armv8-a clang 16.0.0
armv8-a clang 17.0.1
armv8-a clang 18.1.0
armv8-a clang 19.1.0
armv8-a clang 9.0.0
armv8-a clang 9.0.1
clang-cl 18.1.0
ellcc 0.1.33
ellcc 0.1.34
ellcc 2017-07-16
hexagon-clang 16.0.5
llvm-mos atari2600-3e
llvm-mos atari2600-4k
llvm-mos atari2600-common
llvm-mos atari5200-supercart
llvm-mos atari8-cart-megacart
llvm-mos atari8-cart-std
llvm-mos atari8-cart-xegs
llvm-mos atari8-common
llvm-mos atari8-dos
llvm-mos c128
llvm-mos c64
llvm-mos commodore
llvm-mos cpm65
llvm-mos cx16
llvm-mos dodo
llvm-mos eater
llvm-mos mega65
llvm-mos nes
llvm-mos nes-action53
llvm-mos nes-cnrom
llvm-mos nes-gtrom
llvm-mos nes-mmc1
llvm-mos nes-mmc3
llvm-mos nes-nrom
llvm-mos nes-unrom
llvm-mos nes-unrom-512
llvm-mos osi-c1p
llvm-mos pce
llvm-mos pce-cd
llvm-mos pce-common
llvm-mos pet
llvm-mos rp6502
llvm-mos rpc8e
llvm-mos supervision
llvm-mos vic20
loongarch64 gcc 12.2.0
loongarch64 gcc 12.3.0
loongarch64 gcc 12.4.0
loongarch64 gcc 13.1.0
loongarch64 gcc 13.2.0
loongarch64 gcc 13.3.0
loongarch64 gcc 14.1.0
loongarch64 gcc 14.2.0
mips clang 13.0.0
mips clang 14.0.0
mips clang 15.0.0
mips clang 16.0.0
mips clang 17.0.1
mips clang 18.1.0
mips clang 19.1.0
mips gcc 11.2.0
mips gcc 12.1.0
mips gcc 12.2.0
mips gcc 12.3.0
mips gcc 12.4.0
mips gcc 13.1.0
mips gcc 13.2.0
mips gcc 13.3.0
mips gcc 14.1.0
mips gcc 14.2.0
mips gcc 4.9.4
mips gcc 5.4
mips gcc 5.5.0
mips gcc 9.3.0 (codescape)
mips gcc 9.5.0
mips64 (el) gcc 12.1.0
mips64 (el) gcc 12.2.0
mips64 (el) gcc 12.3.0
mips64 (el) gcc 12.4.0
mips64 (el) gcc 13.1.0
mips64 (el) gcc 13.2.0
mips64 (el) gcc 13.3.0
mips64 (el) gcc 14.1.0
mips64 (el) gcc 14.2.0
mips64 (el) gcc 4.9.4
mips64 (el) gcc 5.4.0
mips64 (el) gcc 5.5.0
mips64 (el) gcc 9.5.0
mips64 clang 13.0.0
mips64 clang 14.0.0
mips64 clang 15.0.0
mips64 clang 16.0.0
mips64 clang 17.0.1
mips64 clang 18.1.0
mips64 clang 19.1.0
mips64 gcc 11.2.0
mips64 gcc 12.1.0
mips64 gcc 12.2.0
mips64 gcc 12.3.0
mips64 gcc 12.4.0
mips64 gcc 13.1.0
mips64 gcc 13.2.0
mips64 gcc 13.3.0
mips64 gcc 14.1.0
mips64 gcc 14.2.0
mips64 gcc 4.9.4
mips64 gcc 5.4.0
mips64 gcc 5.5.0
mips64 gcc 9.5.0
mips64el clang 13.0.0
mips64el clang 14.0.0
mips64el clang 15.0.0
mips64el clang 16.0.0
mips64el clang 17.0.1
mips64el clang 18.1.0
mips64el clang 19.1.0
mipsel clang 13.0.0
mipsel clang 14.0.0
mipsel clang 15.0.0
mipsel clang 16.0.0
mipsel clang 17.0.1
mipsel clang 18.1.0
mipsel clang 19.1.0
mipsel gcc 12.1.0
mipsel gcc 12.2.0
mipsel gcc 12.3.0
mipsel gcc 12.4.0
mipsel gcc 13.1.0
mipsel gcc 13.2.0
mipsel gcc 13.3.0
mipsel gcc 14.1.0
mipsel gcc 14.2.0
mipsel gcc 4.9.4
mipsel gcc 5.4.0
mipsel gcc 5.5.0
mipsel gcc 9.5.0
nanoMIPS gcc 6.3.0 (mtk)
power gcc 11.2.0
power gcc 12.1.0
power gcc 12.2.0
power gcc 12.3.0
power gcc 12.4.0
power gcc 13.1.0
power gcc 13.2.0
power gcc 13.3.0
power gcc 14.1.0
power gcc 14.2.0
power gcc 4.8.5
power64 AT12.0 (gcc8)
power64 AT13.0 (gcc9)
power64 gcc 11.2.0
power64 gcc 12.1.0
power64 gcc 12.2.0
power64 gcc 12.3.0
power64 gcc 12.4.0
power64 gcc 13.1.0
power64 gcc 13.2.0
power64 gcc 13.3.0
power64 gcc 14.1.0
power64 gcc 14.2.0
power64 gcc trunk
power64le AT12.0 (gcc8)
power64le AT13.0 (gcc9)
power64le clang (trunk)
power64le gcc 11.2.0
power64le gcc 12.1.0
power64le gcc 12.2.0
power64le gcc 12.3.0
power64le gcc 12.4.0
power64le gcc 13.1.0
power64le gcc 13.2.0
power64le gcc 13.3.0
power64le gcc 14.1.0
power64le gcc 14.2.0
power64le gcc 6.3.0
power64le gcc trunk
powerpc64 clang (trunk)
s390x gcc 11.2.0
s390x gcc 12.1.0
s390x gcc 12.2.0
s390x gcc 12.3.0
s390x gcc 12.4.0
s390x gcc 13.1.0
s390x gcc 13.2.0
s390x gcc 13.3.0
s390x gcc 14.1.0
s390x gcc 14.2.0
sh gcc 12.2.0
sh gcc 12.3.0
sh gcc 12.4.0
sh gcc 13.1.0
sh gcc 13.2.0
sh gcc 13.3.0
sh gcc 14.1.0
sh gcc 14.2.0
sh gcc 4.9.4
sh gcc 9.5.0
vast (trunk)
x64 msvc v19.0 (WINE)
x64 msvc v19.10 (WINE)
x64 msvc v19.14 (WINE)
x64 msvc v19.20 VS16.0
x64 msvc v19.21 VS16.1
x64 msvc v19.22 VS16.2
x64 msvc v19.23 VS16.3
x64 msvc v19.24 VS16.4
x64 msvc v19.25 VS16.5
x64 msvc v19.27 VS16.7
x64 msvc v19.28 VS16.8
x64 msvc v19.28 VS16.9
x64 msvc v19.29 VS16.10
x64 msvc v19.29 VS16.11
x64 msvc v19.30 VS17.0
x64 msvc v19.31 VS17.1
x64 msvc v19.32 VS17.2
x64 msvc v19.33 VS17.3
x64 msvc v19.34 VS17.4
x64 msvc v19.35 VS17.5
x64 msvc v19.36 VS17.6
x64 msvc v19.37 VS17.7
x64 msvc v19.38 VS17.8
x64 msvc v19.39 VS17.9
x64 msvc v19.40 VS17.10
x64 msvc v19.latest
x86 djgpp 4.9.4
x86 djgpp 5.5.0
x86 djgpp 6.4.0
x86 djgpp 7.2.0
x86 msvc v19.0 (WINE)
x86 msvc v19.10 (WINE)
x86 msvc v19.14 (WINE)
x86 msvc v19.20 VS16.0
x86 msvc v19.21 VS16.1
x86 msvc v19.22 VS16.2
x86 msvc v19.23 VS16.3
x86 msvc v19.24 VS16.4
x86 msvc v19.25 VS16.5
x86 msvc v19.27 VS16.7
x86 msvc v19.28 VS16.8
x86 msvc v19.28 VS16.9
x86 msvc v19.29 VS16.10
x86 msvc v19.29 VS16.11
x86 msvc v19.30 VS17.0
x86 msvc v19.31 VS17.1
x86 msvc v19.32 VS17.2
x86 msvc v19.33 VS17.3
x86 msvc v19.34 VS17.4
x86 msvc v19.35 VS17.5
x86 msvc v19.36 VS17.6
x86 msvc v19.37 VS17.7
x86 msvc v19.38 VS17.8
x86 msvc v19.39 VS17.9
x86 msvc v19.40 VS17.10
x86 msvc v19.latest
x86 nvc++ 22.11
x86 nvc++ 22.7
x86 nvc++ 22.9
x86 nvc++ 23.1
x86 nvc++ 23.11
x86 nvc++ 23.3
x86 nvc++ 23.5
x86 nvc++ 23.7
x86 nvc++ 23.9
x86 nvc++ 24.1
x86 nvc++ 24.3
x86 nvc++ 24.5
x86 nvc++ 24.7
x86 nvc++ 24.9
x86-64 Zapcc 190308
x86-64 clang (EricWF contracts)
x86-64 clang (amd-staging)
x86-64 clang (assertions trunk)
x86-64 clang (clangir)
x86-64 clang (dascandy contracts)
x86-64 clang (experimental -Wlifetime)
x86-64 clang (experimental P1061)
x86-64 clang (experimental P1144)
x86-64 clang (experimental P1221)
x86-64 clang (experimental P2996)
x86-64 clang (experimental P3068)
x86-64 clang (experimental P3309)
x86-64 clang (experimental P3367)
x86-64 clang (experimental P3372)
x86-64 clang (experimental metaprogramming - P2632)
x86-64 clang (old concepts branch)
x86-64 clang (p1974)
x86-64 clang (pattern matching - P2688)
x86-64 clang (reflection)
x86-64 clang (resugar)
x86-64 clang (string interpolation - P3412)
x86-64 clang (thephd.dev)
x86-64 clang (trunk)
x86-64 clang (variadic friends - P2893)
x86-64 clang (widberg)
x86-64 clang 10.0.0
x86-64 clang 10.0.0 (assertions)
x86-64 clang 10.0.1
x86-64 clang 11.0.0
x86-64 clang 11.0.0 (assertions)
x86-64 clang 11.0.1
x86-64 clang 12.0.0
x86-64 clang 12.0.0 (assertions)
x86-64 clang 12.0.1
x86-64 clang 13.0.0
x86-64 clang 13.0.0 (assertions)
x86-64 clang 13.0.1
x86-64 clang 14.0.0
x86-64 clang 14.0.0 (assertions)
x86-64 clang 15.0.0
x86-64 clang 15.0.0 (assertions)
x86-64 clang 16.0.0
x86-64 clang 16.0.0 (assertions)
x86-64 clang 17.0.1
x86-64 clang 17.0.1 (assertions)
x86-64 clang 18.1.0
x86-64 clang 18.1.0 (assertions)
x86-64 clang 19.1.0
x86-64 clang 19.1.0 (assertions)
x86-64 clang 2.6.0 (assertions)
x86-64 clang 2.7.0 (assertions)
x86-64 clang 2.8.0 (assertions)
x86-64 clang 2.9.0 (assertions)
x86-64 clang 3.0.0
x86-64 clang 3.0.0 (assertions)
x86-64 clang 3.1
x86-64 clang 3.1 (assertions)
x86-64 clang 3.2
x86-64 clang 3.2 (assertions)
x86-64 clang 3.3
x86-64 clang 3.3 (assertions)
x86-64 clang 3.4 (assertions)
x86-64 clang 3.4.1
x86-64 clang 3.5
x86-64 clang 3.5 (assertions)
x86-64 clang 3.5.1
x86-64 clang 3.5.2
x86-64 clang 3.6
x86-64 clang 3.6 (assertions)
x86-64 clang 3.7
x86-64 clang 3.7 (assertions)
x86-64 clang 3.7.1
x86-64 clang 3.8
x86-64 clang 3.8 (assertions)
x86-64 clang 3.8.1
x86-64 clang 3.9.0
x86-64 clang 3.9.0 (assertions)
x86-64 clang 3.9.1
x86-64 clang 4.0.0
x86-64 clang 4.0.0 (assertions)
x86-64 clang 4.0.1
x86-64 clang 5.0.0
x86-64 clang 5.0.0 (assertions)
x86-64 clang 5.0.1
x86-64 clang 5.0.2
x86-64 clang 6.0.0
x86-64 clang 6.0.0 (assertions)
x86-64 clang 6.0.1
x86-64 clang 7.0.0
x86-64 clang 7.0.0 (assertions)
x86-64 clang 7.0.1
x86-64 clang 7.1.0
x86-64 clang 8.0.0
x86-64 clang 8.0.0 (assertions)
x86-64 clang 8.0.1
x86-64 clang 9.0.0
x86-64 clang 9.0.0 (assertions)
x86-64 clang 9.0.1
x86-64 clang rocm-4.5.2
x86-64 clang rocm-5.0.2
x86-64 clang rocm-5.1.3
x86-64 clang rocm-5.2.3
x86-64 clang rocm-5.3.3
x86-64 clang rocm-5.7.0
x86-64 clang rocm-6.0.2
x86-64 clang rocm-6.1.2
x86-64 gcc (contract labels)
x86-64 gcc (contracts natural syntax)
x86-64 gcc (contracts)
x86-64 gcc (coroutines)
x86-64 gcc (modules)
x86-64 gcc (trunk)
x86-64 gcc 10.1
x86-64 gcc 10.2
x86-64 gcc 10.3
x86-64 gcc 10.4
x86-64 gcc 10.5
x86-64 gcc 11.1
x86-64 gcc 11.2
x86-64 gcc 11.3
x86-64 gcc 11.4
x86-64 gcc 12.1
x86-64 gcc 12.2
x86-64 gcc 12.3
x86-64 gcc 12.4
x86-64 gcc 13.1
x86-64 gcc 13.2
x86-64 gcc 13.3
x86-64 gcc 14.1
x86-64 gcc 14.2
x86-64 gcc 3.4.6
x86-64 gcc 4.0.4
x86-64 gcc 4.1.2
x86-64 gcc 4.4.7
x86-64 gcc 4.5.3
x86-64 gcc 4.6.4
x86-64 gcc 4.7.1
x86-64 gcc 4.7.2
x86-64 gcc 4.7.3
x86-64 gcc 4.7.4
x86-64 gcc 4.8.1
x86-64 gcc 4.8.2
x86-64 gcc 4.8.3
x86-64 gcc 4.8.4
x86-64 gcc 4.8.5
x86-64 gcc 4.9.0
x86-64 gcc 4.9.1
x86-64 gcc 4.9.2
x86-64 gcc 4.9.3
x86-64 gcc 4.9.4
x86-64 gcc 5.1
x86-64 gcc 5.2
x86-64 gcc 5.3
x86-64 gcc 5.4
x86-64 gcc 5.5
x86-64 gcc 6.1
x86-64 gcc 6.2
x86-64 gcc 6.3
x86-64 gcc 6.4
x86-64 gcc 6.5
x86-64 gcc 7.1
x86-64 gcc 7.2
x86-64 gcc 7.3
x86-64 gcc 7.4
x86-64 gcc 7.5
x86-64 gcc 8.1
x86-64 gcc 8.2
x86-64 gcc 8.3
x86-64 gcc 8.4
x86-64 gcc 8.5
x86-64 gcc 9.1
x86-64 gcc 9.2
x86-64 gcc 9.3
x86-64 gcc 9.4
x86-64 gcc 9.5
x86-64 icc 13.0.1
x86-64 icc 16.0.3
x86-64 icc 17.0.0
x86-64 icc 18.0.0
x86-64 icc 19.0.0
x86-64 icc 19.0.1
x86-64 icc 2021.1.2
x86-64 icc 2021.10.0
x86-64 icc 2021.2.0
x86-64 icc 2021.3.0
x86-64 icc 2021.4.0
x86-64 icc 2021.5.0
x86-64 icc 2021.6.0
x86-64 icc 2021.7.0
x86-64 icc 2021.7.1
x86-64 icc 2021.8.0
x86-64 icc 2021.9.0
x86-64 icx (latest)
x86-64 icx 2021.1.2
x86-64 icx 2021.2.0
x86-64 icx 2021.3.0
x86-64 icx 2021.4.0
x86-64 icx 2022.0.0
x86-64 icx 2022.1.0
x86-64 icx 2022.2.0
x86-64 icx 2022.2.1
x86-64 icx 2023.0.0
x86-64 icx 2023.1.0
x86-64 icx 2023.2.1
x86-64 icx 2024.0.0
x86-64 icx 2024.1.0
x86-64 icx 2024.2.0
zig c++ 0.10.0
zig c++ 0.11.0
zig c++ 0.12.0
zig c++ 0.12.1
zig c++ 0.13.0
zig c++ 0.6.0
zig c++ 0.7.0
zig c++ 0.7.1
zig c++ 0.8.0
zig c++ 0.9.0
zig c++ trunk
Options
Source code
// fast_float by Daniel Lemire // fast_float by JoĂŁo Paulo Magalhaes // // with contributions from Eugene Golushkov // with contributions from Maksim Kita // with contributions from Marcin Wojdyr // with contributions from Neal Richardson // with contributions from Tim Paine // with contributions from Fabio Pellacini // // Licensed under the Apache License, Version 2.0, or the // MIT License at your option. This file may not be copied, // modified, or distributed except according to those terms. // // MIT License Notice // // MIT License // // Copyright (c) 2021 The fast_float authors // // Permission is hereby granted, free of charge, to any // person obtaining a copy of this software and associated // documentation files (the "Software"), to deal in the // Software without restriction, including without // limitation the rights to use, copy, modify, merge, // publish, distribute, sublicense, and/or sell copies of // the Software, and to permit persons to whom the Software // is furnished to do so, subject to the following // conditions: // // The above copyright notice and this permission notice // shall be included in all copies or substantial portions // of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF // ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED // TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A // PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT // SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY // CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION // OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR // IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER // DEALINGS IN THE SOFTWARE. // // Apache License (Version 2.0) Notice // // Copyright 2021 The fast_float authors // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // #ifndef FASTFLOAT_FAST_FLOAT_H #define FASTFLOAT_FAST_FLOAT_H #include <system_error> namespace fast_float { enum chars_format { scientific = 1<<0, fixed = 1<<2, hex = 1<<3, general = fixed | scientific }; struct from_chars_result { const char *ptr; std::errc ec; }; struct parse_options { constexpr explicit parse_options(chars_format fmt = chars_format::general, char dot = '.') : format(fmt), decimal_point(dot) {} /** Which number formats are accepted */ chars_format format; /** The character used as decimal point */ char decimal_point; }; /** * This function parses the character sequence [first,last) for a number. It parses floating-point numbers expecting * a locale-indepent format equivalent to what is used by std::strtod in the default ("C") locale. * The resulting floating-point value is the closest floating-point values (using either float or double), * using the "round to even" convention for values that would otherwise fall right in-between two values. * That is, we provide exact parsing according to the IEEE standard. * * Given a successful parse, the pointer (`ptr`) in the returned value is set to point right after the * parsed number, and the `value` referenced is set to the parsed value. In case of error, the returned * `ec` contains a representative error, otherwise the default (`std::errc()`) value is stored. * * The implementation does not throw and does not allocate memory (e.g., with `new` or `malloc`). * * Like the C++17 standard, the `fast_float::from_chars` functions take an optional last argument of * the type `fast_float::chars_format`. It is a bitset value: we check whether * `fmt & fast_float::chars_format::fixed` and `fmt & fast_float::chars_format::scientific` are set * to determine whether we allow the fixed point and scientific notation respectively. * The default is `fast_float::chars_format::general` which allows both `fixed` and `scientific`. */ template<typename T> from_chars_result from_chars(const char *first, const char *last, T &value, chars_format fmt = chars_format::general) noexcept; /** * Like from_chars, but accepts an `options` argument to govern number parsing. */ template<typename T> from_chars_result from_chars_advanced(const char *first, const char *last, T &value, parse_options options) noexcept; } // namespace fast_float #endif // FASTFLOAT_FAST_FLOAT_H #ifndef FASTFLOAT_FLOAT_COMMON_H #define FASTFLOAT_FLOAT_COMMON_H #include <cfloat> #include <cstdint> #include <cassert> #include <cstring> #include <type_traits> #if (defined(__x86_64) || defined(__x86_64__) || defined(_M_X64) \ || defined(__amd64) || defined(__aarch64__) || defined(_M_ARM64) \ || defined(__MINGW64__) \ || defined(__s390x__) \ || (defined(__ppc64__) || defined(__PPC64__) || defined(__ppc64le__) || defined(__PPC64LE__)) ) #define FASTFLOAT_64BIT 1 #elif (defined(__i386) || defined(__i386__) || defined(_M_IX86) \ || defined(__arm__) || defined(_M_ARM) || defined(__ppc__) \ || defined(__MINGW32__) || defined(__EMSCRIPTEN__)) #define FASTFLOAT_32BIT 1 #else // Need to check incrementally, since SIZE_MAX is a size_t, avoid overflow. // We can never tell the register width, but the SIZE_MAX is a good approximation. // UINTPTR_MAX and INTPTR_MAX are optional, so avoid them for max portability. #if SIZE_MAX == 0xffff #error Unknown platform (16-bit, unsupported) #elif SIZE_MAX == 0xffffffff #define FASTFLOAT_32BIT 1 #elif SIZE_MAX == 0xffffffffffffffff #define FASTFLOAT_64BIT 1 #else #error Unknown platform (not 32-bit, not 64-bit?) #endif #endif #if ((defined(_WIN32) || defined(_WIN64)) && !defined(__clang__)) #include <intrin.h> #endif #if defined(_MSC_VER) && !defined(__clang__) #define FASTFLOAT_VISUAL_STUDIO 1 #endif #if defined __BYTE_ORDER__ && defined __ORDER_BIG_ENDIAN__ #define FASTFLOAT_IS_BIG_ENDIAN (__BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) #elif defined _WIN32 #define FASTFLOAT_IS_BIG_ENDIAN 0 #else #if defined(__APPLE__) || defined(__FreeBSD__) #include <machine/endian.h> #elif defined(sun) || defined(__sun) #include <sys/byteorder.h> #else #ifdef __has_include #if __has_include(<endian.h>) #include <endian.h> #endif //__has_include(<endian.h>) #endif //__has_include #endif # #ifndef __BYTE_ORDER__ // safe choice #define FASTFLOAT_IS_BIG_ENDIAN 0 #endif # #ifndef __ORDER_LITTLE_ENDIAN__ // safe choice #define FASTFLOAT_IS_BIG_ENDIAN 0 #endif # #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ #define FASTFLOAT_IS_BIG_ENDIAN 0 #else #define FASTFLOAT_IS_BIG_ENDIAN 1 #endif #endif #ifdef FASTFLOAT_VISUAL_STUDIO #define fastfloat_really_inline __forceinline #else #define fastfloat_really_inline inline __attribute__((always_inline)) #endif #ifndef FASTFLOAT_ASSERT #define FASTFLOAT_ASSERT(x) { ((void)(x)); } #endif #ifndef FASTFLOAT_DEBUG_ASSERT #define FASTFLOAT_DEBUG_ASSERT(x) { ((void)(x)); } #endif // rust style `try!()` macro, or `?` operator #define FASTFLOAT_TRY(x) { if (!(x)) return false; } // Testing for https://wg21.link/N3652, adopted in C++14 #if __cpp_constexpr >= 201304 #define FASTFLOAT_CONSTEXPR14 constexpr #else #define FASTFLOAT_CONSTEXPR14 #endif namespace fast_float { // Compares two ASCII strings in a case insensitive manner. inline FASTFLOAT_CONSTEXPR14 bool fastfloat_strncasecmp(const char *input1, const char *input2, size_t length) { char running_diff{0}; for (size_t i = 0; i < length; i++) { running_diff |= (input1[i] ^ input2[i]); } return (running_diff == 0) || (running_diff == 32); } #ifndef FLT_EVAL_METHOD #error "FLT_EVAL_METHOD should be defined, please include cfloat." #endif // a pointer and a length to a contiguous block of memory template <typename T> struct span { const T* ptr; size_t length; constexpr span(const T* _ptr, size_t _length) : ptr(_ptr), length(_length) {} constexpr span() : ptr(nullptr), length(0) {} constexpr size_t len() const noexcept { return length; } FASTFLOAT_CONSTEXPR14 const T& operator[](size_t index) const noexcept { FASTFLOAT_DEBUG_ASSERT(index < length); return ptr[index]; } }; struct value128 { uint64_t low; uint64_t high; constexpr value128(uint64_t _low, uint64_t _high) : low(_low), high(_high) {} constexpr value128() : low(0), high(0) {} }; /* result might be undefined when input_num is zero */ fastfloat_really_inline int leading_zeroes(uint64_t input_num) { assert(input_num > 0); #ifdef FASTFLOAT_VISUAL_STUDIO #if defined(_M_X64) || defined(_M_ARM64) unsigned long leading_zero = 0; // Search the mask data from most significant bit (MSB) // to least significant bit (LSB) for a set bit (1). _BitScanReverse64(&leading_zero, input_num); return (int)(63 - leading_zero); #else int last_bit = 0; if(input_num & uint64_t(0xffffffff00000000)) input_num >>= 32, last_bit |= 32; if(input_num & uint64_t( 0xffff0000)) input_num >>= 16, last_bit |= 16; if(input_num & uint64_t( 0xff00)) input_num >>= 8, last_bit |= 8; if(input_num & uint64_t( 0xf0)) input_num >>= 4, last_bit |= 4; if(input_num & uint64_t( 0xc)) input_num >>= 2, last_bit |= 2; if(input_num & uint64_t( 0x2)) input_num >>= 1, last_bit |= 1; return 63 - last_bit; #endif #else return __builtin_clzll(input_num); #endif } #ifdef FASTFLOAT_32BIT // slow emulation routine for 32-bit fastfloat_really_inline constexpr uint64_t emulu(uint32_t x, uint32_t y) { return x * (uint64_t)y; } // slow emulation routine for 32-bit #if !defined(__MINGW64__) fastfloat_really_inline constexpr uint64_t _umul128(uint64_t ab, uint64_t cd, uint64_t *hi) { uint64_t ad = emulu((uint32_t)(ab >> 32), (uint32_t)cd); uint64_t bd = emulu((uint32_t)ab, (uint32_t)cd); uint64_t adbc = ad + emulu((uint32_t)ab, (uint32_t)(cd >> 32)); uint64_t adbc_carry = !!(adbc < ad); uint64_t lo = bd + (adbc << 32); *hi = emulu((uint32_t)(ab >> 32), (uint32_t)(cd >> 32)) + (adbc >> 32) + (adbc_carry << 32) + !!(lo < bd); return lo; } #endif // !__MINGW64__ #endif // FASTFLOAT_32BIT // compute 64-bit a*b fastfloat_really_inline value128 full_multiplication(uint64_t a, uint64_t b) { value128 answer; #if defined(_M_ARM64) && !defined(__MINGW32__) // ARM64 has native support for 64-bit multiplications, no need to emulate // But MinGW on ARM64 doesn't have native support for 64-bit multiplications answer.high = __umulh(a, b); answer.low = a * b; #elif defined(FASTFLOAT_32BIT) || (defined(_WIN64) && !defined(__clang__)) answer.low = _umul128(a, b, &answer.high); // _umul128 not available on ARM64 #elif defined(FASTFLOAT_64BIT) __uint128_t r = ((__uint128_t)a) * b; answer.low = uint64_t(r); answer.high = uint64_t(r >> 64); #else #error Not implemented #endif return answer; } struct adjusted_mantissa { uint64_t mantissa{0}; int32_t power2{0}; // a negative value indicates an invalid result adjusted_mantissa() = default; constexpr bool operator==(const adjusted_mantissa &o) const { return mantissa == o.mantissa && power2 == o.power2; } constexpr bool operator!=(const adjusted_mantissa &o) const { return mantissa != o.mantissa || power2 != o.power2; } }; // Bias so we can get the real exponent with an invalid adjusted_mantissa. constexpr static int32_t invalid_am_bias = -0x8000; constexpr static double powers_of_ten_double[] = { 1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, 1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19, 1e20, 1e21, 1e22}; constexpr static float powers_of_ten_float[] = {1e0f, 1e1f, 1e2f, 1e3f, 1e4f, 1e5f, 1e6f, 1e7f, 1e8f, 1e9f, 1e10f}; // used for max_mantissa_double and max_mantissa_float constexpr uint64_t constant_55555 = 5 * 5 * 5 * 5 * 5; // Largest integer value v so that (5**index * v) <= 1<<53. // 0x10000000000000 == 1 << 53 constexpr static uint64_t max_mantissa_double[] = { 0x10000000000000, 0x10000000000000 / 5, 0x10000000000000 / (5 * 5), 0x10000000000000 / (5 * 5 * 5), 0x10000000000000 / (5 * 5 * 5 * 5), 0x10000000000000 / (constant_55555), 0x10000000000000 / (constant_55555 * 5), 0x10000000000000 / (constant_55555 * 5 * 5), 0x10000000000000 / (constant_55555 * 5 * 5 * 5), 0x10000000000000 / (constant_55555 * 5 * 5 * 5 * 5), 0x10000000000000 / (constant_55555 * constant_55555), 0x10000000000000 / (constant_55555 * constant_55555 * 5), 0x10000000000000 / (constant_55555 * constant_55555 * 5 * 5), 0x10000000000000 / (constant_55555 * constant_55555 * 5 * 5 * 5), 0x10000000000000 / (constant_55555 * constant_55555 * constant_55555), 0x10000000000000 / (constant_55555 * constant_55555 * constant_55555 * 5), 0x10000000000000 / (constant_55555 * constant_55555 * constant_55555 * 5 * 5), 0x10000000000000 / (constant_55555 * constant_55555 * constant_55555 * 5 * 5 * 5), 0x10000000000000 / (constant_55555 * constant_55555 * constant_55555 * 5 * 5 * 5 * 5), 0x10000000000000 / (constant_55555 * constant_55555 * constant_55555 * constant_55555), 0x10000000000000 / (constant_55555 * constant_55555 * constant_55555 * constant_55555 * 5), 0x10000000000000 / (constant_55555 * constant_55555 * constant_55555 * constant_55555 * 5 * 5), 0x10000000000000 / (constant_55555 * constant_55555 * constant_55555 * constant_55555 * 5 * 5 * 5), 0x10000000000000 / (constant_55555 * constant_55555 * constant_55555 * constant_55555 * 5 * 5 * 5 * 5)}; // Largest integer value v so that (5**index * v) <= 1<<24. // 0x1000000 == 1<<24 constexpr static uint64_t max_mantissa_float[] = { 0x1000000, 0x1000000 / 5, 0x1000000 / (5 * 5), 0x1000000 / (5 * 5 * 5), 0x1000000 / (5 * 5 * 5 * 5), 0x1000000 / (constant_55555), 0x1000000 / (constant_55555 * 5), 0x1000000 / (constant_55555 * 5 * 5), 0x1000000 / (constant_55555 * 5 * 5 * 5), 0x1000000 / (constant_55555 * 5 * 5 * 5 * 5), 0x1000000 / (constant_55555 * constant_55555), 0x1000000 / (constant_55555 * constant_55555 * 5)}; template <typename T> struct binary_format { using equiv_uint = typename std::conditional<sizeof(T) == 4, uint32_t, uint64_t>::type; static inline constexpr int mantissa_explicit_bits(); static inline constexpr int minimum_exponent(); static inline constexpr int infinite_power(); static inline constexpr int sign_index(); static inline constexpr int min_exponent_fast_path(); // used when fegetround() == FE_TONEAREST static inline constexpr int max_exponent_fast_path(); static inline constexpr int max_exponent_round_to_even(); static inline constexpr int min_exponent_round_to_even(); static inline constexpr uint64_t max_mantissa_fast_path(int64_t power); static inline constexpr uint64_t max_mantissa_fast_path(); // used when fegetround() == FE_TONEAREST static inline constexpr int largest_power_of_ten(); static inline constexpr int smallest_power_of_ten(); static inline constexpr T exact_power_of_ten(int64_t power); static inline constexpr size_t max_digits(); static inline constexpr equiv_uint exponent_mask(); static inline constexpr equiv_uint mantissa_mask(); static inline constexpr equiv_uint hidden_bit_mask(); }; template <> inline constexpr int binary_format<double>::min_exponent_fast_path() { #if (FLT_EVAL_METHOD != 1) && (FLT_EVAL_METHOD != 0) return 0; #else return -22; #endif } template <> inline constexpr int binary_format<float>::min_exponent_fast_path() { #if (FLT_EVAL_METHOD != 1) && (FLT_EVAL_METHOD != 0) return 0; #else return -10; #endif } template <> inline constexpr int binary_format<double>::mantissa_explicit_bits() { return 52; } template <> inline constexpr int binary_format<float>::mantissa_explicit_bits() { return 23; } template <> inline constexpr int binary_format<double>::max_exponent_round_to_even() { return 23; } template <> inline constexpr int binary_format<float>::max_exponent_round_to_even() { return 10; } template <> inline constexpr int binary_format<double>::min_exponent_round_to_even() { return -4; } template <> inline constexpr int binary_format<float>::min_exponent_round_to_even() { return -17; } template <> inline constexpr int binary_format<double>::minimum_exponent() { return -1023; } template <> inline constexpr int binary_format<float>::minimum_exponent() { return -127; } template <> inline constexpr int binary_format<double>::infinite_power() { return 0x7FF; } template <> inline constexpr int binary_format<float>::infinite_power() { return 0xFF; } template <> inline constexpr int binary_format<double>::sign_index() { return 63; } template <> inline constexpr int binary_format<float>::sign_index() { return 31; } template <> inline constexpr int binary_format<double>::max_exponent_fast_path() { return 22; } template <> inline constexpr int binary_format<float>::max_exponent_fast_path() { return 10; } template <> inline constexpr uint64_t binary_format<double>::max_mantissa_fast_path() { return uint64_t(2) << mantissa_explicit_bits(); } template <> inline constexpr uint64_t binary_format<double>::max_mantissa_fast_path(int64_t power) { // caller is responsible to ensure that // power >= 0 && power <= 22 // return max_mantissa_double[power]; } template <> inline constexpr uint64_t binary_format<float>::max_mantissa_fast_path() { return uint64_t(2) << mantissa_explicit_bits(); } template <> inline constexpr uint64_t binary_format<float>::max_mantissa_fast_path(int64_t power) { // caller is responsible to ensure that // power >= 0 && power <= 10 // return max_mantissa_float[power]; } template <> inline constexpr double binary_format<double>::exact_power_of_ten(int64_t power) { return powers_of_ten_double[power]; } template <> inline constexpr float binary_format<float>::exact_power_of_ten(int64_t power) { return powers_of_ten_float[power]; } template <> inline constexpr int binary_format<double>::largest_power_of_ten() { return 308; } template <> inline constexpr int binary_format<float>::largest_power_of_ten() { return 38; } template <> inline constexpr int binary_format<double>::smallest_power_of_ten() { return -342; } template <> inline constexpr int binary_format<float>::smallest_power_of_ten() { return -65; } template <> inline constexpr size_t binary_format<double>::max_digits() { return 769; } template <> inline constexpr size_t binary_format<float>::max_digits() { return 114; } template <> inline constexpr binary_format<float>::equiv_uint binary_format<float>::exponent_mask() { return 0x7F800000; } template <> inline constexpr binary_format<double>::equiv_uint binary_format<double>::exponent_mask() { return 0x7FF0000000000000; } template <> inline constexpr binary_format<float>::equiv_uint binary_format<float>::mantissa_mask() { return 0x007FFFFF; } template <> inline constexpr binary_format<double>::equiv_uint binary_format<double>::mantissa_mask() { return 0x000FFFFFFFFFFFFF; } template <> inline constexpr binary_format<float>::equiv_uint binary_format<float>::hidden_bit_mask() { return 0x00800000; } template <> inline constexpr binary_format<double>::equiv_uint binary_format<double>::hidden_bit_mask() { return 0x0010000000000000; } template<typename T> fastfloat_really_inline void to_float(bool negative, adjusted_mantissa am, T &value) { #if defined(OLD) uint64_t word = am.mantissa; word |= uint64_t(am.power2) << binary_format<T>::mantissa_explicit_bits(); word = negative ? word | (uint64_t(1) << binary_format<T>::sign_index()) : word; #if FASTFLOAT_IS_BIG_ENDIAN == 1 if (std::is_same<T, float>::value) { ::memcpy(&value, (char *)&word + 4, sizeof(T)); // extract value at offset 4-7 if float on big-endian } else { ::memcpy(&value, &word, sizeof(T)); } #else // For little-endian systems: ::memcpy(&value, &word, sizeof(T)); #endif #elif defined(NEW) using uint = typename binary_format<T>::equiv_uint; uint word = (uint)am.mantissa; word |= uint(am.power2) << binary_format<T>::mantissa_explicit_bits(); word |= uint(negative) << binary_format<T>::sign_index(); ::memcpy(&value, &word, sizeof(T)); #else #error #endif } #if FASTFLOAT_SKIP_WHITE_SPACE // disabled by default template <typename = void> struct space_lut { static constexpr bool value[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; }; template <typename T> constexpr bool space_lut<T>::value[]; inline constexpr bool is_space(uint8_t c) { return space_lut<>::value[c]; } #endif } // namespace fast_float #endif #ifndef FASTFLOAT_ASCII_NUMBER_H #define FASTFLOAT_ASCII_NUMBER_H #include <cctype> #include <cstdint> #include <cstring> #include <iterator> namespace fast_float { // Next function can be micro-optimized, but compilers are entirely // able to optimize it well. fastfloat_really_inline constexpr bool is_integer(char c) noexcept { return c >= '0' && c <= '9'; } fastfloat_really_inline constexpr uint64_t byteswap(uint64_t val) { return (val & 0xFF00000000000000) >> 56 | (val & 0x00FF000000000000) >> 40 | (val & 0x0000FF0000000000) >> 24 | (val & 0x000000FF00000000) >> 8 | (val & 0x00000000FF000000) << 8 | (val & 0x0000000000FF0000) << 24 | (val & 0x000000000000FF00) << 40 | (val & 0x00000000000000FF) << 56; } fastfloat_really_inline uint64_t read_u64(const char *chars) { uint64_t val; ::memcpy(&val, chars, sizeof(uint64_t)); #if FASTFLOAT_IS_BIG_ENDIAN == 1 // Need to read as-if the number was in little-endian order. val = byteswap(val); #endif return val; } fastfloat_really_inline void write_u64(uint8_t *chars, uint64_t val) { #if FASTFLOAT_IS_BIG_ENDIAN == 1 // Need to read as-if the number was in little-endian order. val = byteswap(val); #endif ::memcpy(chars, &val, sizeof(uint64_t)); } // credit @aqrit fastfloat_really_inline FASTFLOAT_CONSTEXPR14 uint32_t parse_eight_digits_unrolled(uint64_t val) { const uint64_t mask = 0x000000FF000000FF; const uint64_t mul1 = 0x000F424000000064; // 100 + (1000000ULL << 32) const uint64_t mul2 = 0x0000271000000001; // 1 + (10000ULL << 32) val -= 0x3030303030303030; val = (val * 10) + (val >> 8); // val = (val * 2561) >> 8; val = (((val & mask) * mul1) + (((val >> 16) & mask) * mul2)) >> 32; return uint32_t(val); } fastfloat_really_inline uint32_t parse_eight_digits_unrolled(const char *chars) noexcept { return parse_eight_digits_unrolled(read_u64(chars)); } // credit @aqrit fastfloat_really_inline constexpr bool is_made_of_eight_digits_fast(uint64_t val) noexcept { return !((((val + 0x4646464646464646) | (val - 0x3030303030303030)) & 0x8080808080808080)); } fastfloat_really_inline bool is_made_of_eight_digits_fast(const char *chars) noexcept { return is_made_of_eight_digits_fast(read_u64(chars)); } typedef span<const char> byte_span; struct parsed_number_string { int64_t exponent{0}; uint64_t mantissa{0}; const char *lastmatch{nullptr}; bool negative{false}; bool valid{false}; bool too_many_digits{false}; // contains the range of the significant digits byte_span integer{}; // non-nullable byte_span fraction{}; // nullable }; // Assuming that you use no more than 19 digits, this will // parse an ASCII string. fastfloat_really_inline parsed_number_string parse_number_string(const char *p, const char *pend, parse_options options) noexcept { const chars_format fmt = options.format; const char decimal_point = options.decimal_point; parsed_number_string answer; answer.valid = false; answer.too_many_digits = false; answer.negative = (*p == '-'); #if FASTFLOAT_ALLOWS_LEADING_PLUS // disabled by default if ((*p == '-') || (*p == '+')) { #else if (*p == '-') { // C++17 20.19.3.(7.1) explicitly forbids '+' sign here #endif ++p; if (p == pend) { return answer; } if (!is_integer(*p) && (*p != decimal_point)) { // a sign must be followed by an integer or the dot return answer; } } const char *const start_digits = p; uint64_t i = 0; // an unsigned int avoids signed overflows (which are bad) while ((p != pend) && is_integer(*p)) { // a multiplication by 10 is cheaper than an arbitrary integer // multiplication i = 10 * i + uint64_t(*p - '0'); // might overflow, we will handle the overflow later ++p; } const char *const end_of_integer_part = p; int64_t digit_count = int64_t(end_of_integer_part - start_digits); answer.integer = byte_span(start_digits, size_t(digit_count)); int64_t exponent = 0; if ((p != pend) && (*p == decimal_point)) { ++p; const char* before = p; // can occur at most twice without overflowing, but let it occur more, since // for integers with many digits, digit parsing is the primary bottleneck. while ((std::distance(p, pend) >= 8) && is_made_of_eight_digits_fast(p)) { i = i * 100000000 + parse_eight_digits_unrolled(p); // in rare cases, this will overflow, but that's ok p += 8; } while ((p != pend) && is_integer(*p)) { uint8_t digit = uint8_t(*p - '0'); ++p; i = i * 10 + digit; // in rare cases, this will overflow, but that's ok } exponent = before - p; answer.fraction = byte_span(before, size_t(p - before)); digit_count -= exponent; } // we must have encountered at least one integer! if (digit_count == 0) { return answer; } int64_t exp_number = 0; // explicit exponential part if ((fmt & chars_format::scientific) && (p != pend) && (('e' == *p) || ('E' == *p))) { const char * location_of_e = p; ++p; bool neg_exp = false; if ((p != pend) && ('-' == *p)) { neg_exp = true; ++p; } else if ((p != pend) && ('+' == *p)) { // '+' on exponent is allowed by C++17 20.19.3.(7.1) ++p; } if ((p == pend) || !is_integer(*p)) { if(!(fmt & chars_format::fixed)) { // We are in error. return answer; } // Otherwise, we will be ignoring the 'e'. p = location_of_e; } else { while ((p != pend) && is_integer(*p)) { uint8_t digit = uint8_t(*p - '0'); if (exp_number < 0x10000000) { exp_number = 10 * exp_number + digit; } ++p; } if(neg_exp) { exp_number = - exp_number; } exponent += exp_number; } } else { // If it scientific and not fixed, we have to bail out. if((fmt & chars_format::scientific) && !(fmt & chars_format::fixed)) { return answer; } } answer.lastmatch = p; answer.valid = true; // If we frequently had to deal with long strings of digits, // we could extend our code by using a 128-bit integer instead // of a 64-bit integer. However, this is uncommon. // // We can deal with up to 19 digits. if (digit_count > 19) { // this is uncommon // It is possible that the integer had an overflow. // We have to handle the case where we have 0.0000somenumber. // We need to be mindful of the case where we only have zeroes... // E.g., 0.000000000...000. const char *start = start_digits; while ((start != pend) && (*start == '0' || *start == decimal_point)) { if(*start == '0') { digit_count --; } start++; } if (digit_count > 19) { answer.too_many_digits = true; // Let us start again, this time, avoiding overflows. // We don't need to check if is_integer, since we use the // pre-tokenized spans from above. i = 0; p = answer.integer.ptr; const char* int_end = p + answer.integer.len(); const uint64_t minimal_nineteen_digit_integer{1000000000000000000}; while((i < minimal_nineteen_digit_integer) && (p != int_end)) { i = i * 10 + uint64_t(*p - '0'); ++p; } if (i >= minimal_nineteen_digit_integer) { // We have a big integers exponent = end_of_integer_part - p + exp_number; } else { // We have a value with a fractional component. p = answer.fraction.ptr; const char* frac_end = p + answer.fraction.len(); while((i < minimal_nineteen_digit_integer) && (p != frac_end)) { i = i * 10 + uint64_t(*p - '0'); ++p; } exponent = answer.fraction.ptr - p + exp_number; } // We have now corrected both exponent and i, to a truncated value } } answer.exponent = exponent; answer.mantissa = i; return answer; } } // namespace fast_float #endif #ifndef FASTFLOAT_FAST_TABLE_H #define FASTFLOAT_FAST_TABLE_H #include <cstdint> namespace fast_float { /** * When mapping numbers from decimal to binary, * we go from w * 10^q to m * 2^p but we have * 10^q = 5^q * 2^q, so effectively * we are trying to match * w * 2^q * 5^q to m * 2^p. Thus the powers of two * are not a concern since they can be represented * exactly using the binary notation, only the powers of five * affect the binary significand. */ /** * The smallest non-zero float (binary64) is 2^-1074. * We take as input numbers of the form w x 10^q where w < 2^64. * We have that w * 10^-343 < 2^(64-344) 5^-343 < 2^-1076. * However, we have that * (2^64-1) * 10^-342 = (2^64-1) * 2^-342 * 5^-342 > 2^-1074. * Thus it is possible for a number of the form w * 10^-342 where * w is a 64-bit value to be a non-zero floating-point number. ********* * Any number of form w * 10^309 where w>= 1 is going to be * infinite in binary64 so we never need to worry about powers * of 5 greater than 308. */ template <class unused = void> struct powers_template { constexpr static int smallest_power_of_five = binary_format<double>::smallest_power_of_ten(); constexpr static int largest_power_of_five = binary_format<double>::largest_power_of_ten(); constexpr static int number_of_entries = 2 * (largest_power_of_five - smallest_power_of_five + 1); // Powers of five from 5^-342 all the way to 5^308 rounded toward one. constexpr static uint64_t power_of_five_128[number_of_entries] = { 0xeef453d6923bd65a,0x113faa2906a13b3f, 0x9558b4661b6565f8,0x4ac7ca59a424c507, 0xbaaee17fa23ebf76,0x5d79bcf00d2df649, 0xe95a99df8ace6f53,0xf4d82c2c107973dc, 0x91d8a02bb6c10594,0x79071b9b8a4be869, 0xb64ec836a47146f9,0x9748e2826cdee284, 0xe3e27a444d8d98b7,0xfd1b1b2308169b25, 0x8e6d8c6ab0787f72,0xfe30f0f5e50e20f7, 0xb208ef855c969f4f,0xbdbd2d335e51a935, 0xde8b2b66b3bc4723,0xad2c788035e61382, 0x8b16fb203055ac76,0x4c3bcb5021afcc31, 0xaddcb9e83c6b1793,0xdf4abe242a1bbf3d, 0xd953e8624b85dd78,0xd71d6dad34a2af0d, 0x87d4713d6f33aa6b,0x8672648c40e5ad68, 0xa9c98d8ccb009506,0x680efdaf511f18c2, 0xd43bf0effdc0ba48,0x212bd1b2566def2, 0x84a57695fe98746d,0x14bb630f7604b57, 0xa5ced43b7e3e9188,0x419ea3bd35385e2d, 0xcf42894a5dce35ea,0x52064cac828675b9, 0x818995ce7aa0e1b2,0x7343efebd1940993, 0xa1ebfb4219491a1f,0x1014ebe6c5f90bf8, 0xca66fa129f9b60a6,0xd41a26e077774ef6, 0xfd00b897478238d0,0x8920b098955522b4, 0x9e20735e8cb16382,0x55b46e5f5d5535b0, 0xc5a890362fddbc62,0xeb2189f734aa831d, 0xf712b443bbd52b7b,0xa5e9ec7501d523e4, 0x9a6bb0aa55653b2d,0x47b233c92125366e, 0xc1069cd4eabe89f8,0x999ec0bb696e840a, 0xf148440a256e2c76,0xc00670ea43ca250d, 0x96cd2a865764dbca,0x380406926a5e5728, 0xbc807527ed3e12bc,0xc605083704f5ecf2, 0xeba09271e88d976b,0xf7864a44c633682e, 0x93445b8731587ea3,0x7ab3ee6afbe0211d, 0xb8157268fdae9e4c,0x5960ea05bad82964, 0xe61acf033d1a45df,0x6fb92487298e33bd, 0x8fd0c16206306bab,0xa5d3b6d479f8e056, 0xb3c4f1ba87bc8696,0x8f48a4899877186c, 0xe0b62e2929aba83c,0x331acdabfe94de87, 0x8c71dcd9ba0b4925,0x9ff0c08b7f1d0b14, 0xaf8e5410288e1b6f,0x7ecf0ae5ee44dd9, 0xdb71e91432b1a24a,0xc9e82cd9f69d6150, 0x892731ac9faf056e,0xbe311c083a225cd2, 0xab70fe17c79ac6ca,0x6dbd630a48aaf406, 0xd64d3d9db981787d,0x92cbbccdad5b108, 0x85f0468293f0eb4e,0x25bbf56008c58ea5, 0xa76c582338ed2621,0xaf2af2b80af6f24e, 0xd1476e2c07286faa,0x1af5af660db4aee1, 0x82cca4db847945ca,0x50d98d9fc890ed4d, 0xa37fce126597973c,0xe50ff107bab528a0, 0xcc5fc196fefd7d0c,0x1e53ed49a96272c8, 0xff77b1fcbebcdc4f,0x25e8e89c13bb0f7a, 0x9faacf3df73609b1,0x77b191618c54e9ac, 0xc795830d75038c1d,0xd59df5b9ef6a2417, 0xf97ae3d0d2446f25,0x4b0573286b44ad1d, 0x9becce62836ac577,0x4ee367f9430aec32, 0xc2e801fb244576d5,0x229c41f793cda73f, 0xf3a20279ed56d48a,0x6b43527578c1110f, 0x9845418c345644d6,0x830a13896b78aaa9, 0xbe5691ef416bd60c,0x23cc986bc656d553, 0xedec366b11c6cb8f,0x2cbfbe86b7ec8aa8, 0x94b3a202eb1c3f39,0x7bf7d71432f3d6a9, 0xb9e08a83a5e34f07,0xdaf5ccd93fb0cc53, 0xe858ad248f5c22c9,0xd1b3400f8f9cff68, 0x91376c36d99995be,0x23100809b9c21fa1, 0xb58547448ffffb2d,0xabd40a0c2832a78a, 0xe2e69915b3fff9f9,0x16c90c8f323f516c, 0x8dd01fad907ffc3b,0xae3da7d97f6792e3, 0xb1442798f49ffb4a,0x99cd11cfdf41779c, 0xdd95317f31c7fa1d,0x40405643d711d583, 0x8a7d3eef7f1cfc52,0x482835ea666b2572, 0xad1c8eab5ee43b66,0xda3243650005eecf, 0xd863b256369d4a40,0x90bed43e40076a82, 0x873e4f75e2224e68,0x5a7744a6e804a291, 0xa90de3535aaae202,0x711515d0a205cb36, 0xd3515c2831559a83,0xd5a5b44ca873e03, 0x8412d9991ed58091,0xe858790afe9486c2, 0xa5178fff668ae0b6,0x626e974dbe39a872, 0xce5d73ff402d98e3,0xfb0a3d212dc8128f, 0x80fa687f881c7f8e,0x7ce66634bc9d0b99, 0xa139029f6a239f72,0x1c1fffc1ebc44e80, 0xc987434744ac874e,0xa327ffb266b56220, 0xfbe9141915d7a922,0x4bf1ff9f0062baa8, 0x9d71ac8fada6c9b5,0x6f773fc3603db4a9, 0xc4ce17b399107c22,0xcb550fb4384d21d3, 0xf6019da07f549b2b,0x7e2a53a146606a48, 0x99c102844f94e0fb,0x2eda7444cbfc426d, 0xc0314325637a1939,0xfa911155fefb5308, 0xf03d93eebc589f88,0x793555ab7eba27ca, 0x96267c7535b763b5,0x4bc1558b2f3458de, 0xbbb01b9283253ca2,0x9eb1aaedfb016f16, 0xea9c227723ee8bcb,0x465e15a979c1cadc, 0x92a1958a7675175f,0xbfacd89ec191ec9, 0xb749faed14125d36,0xcef980ec671f667b, 0xe51c79a85916f484,0x82b7e12780e7401a, 0x8f31cc0937ae58d2,0xd1b2ecb8b0908810, 0xb2fe3f0b8599ef07,0x861fa7e6dcb4aa15, 0xdfbdcece67006ac9,0x67a791e093e1d49a, 0x8bd6a141006042bd,0xe0c8bb2c5c6d24e0, 0xaecc49914078536d,0x58fae9f773886e18, 0xda7f5bf590966848,0xaf39a475506a899e, 0x888f99797a5e012d,0x6d8406c952429603, 0xaab37fd7d8f58178,0xc8e5087ba6d33b83, 0xd5605fcdcf32e1d6,0xfb1e4a9a90880a64, 0x855c3be0a17fcd26,0x5cf2eea09a55067f, 0xa6b34ad8c9dfc06f,0xf42faa48c0ea481e, 0xd0601d8efc57b08b,0xf13b94daf124da26, 0x823c12795db6ce57,0x76c53d08d6b70858, 0xa2cb1717b52481ed,0x54768c4b0c64ca6e, 0xcb7ddcdda26da268,0xa9942f5dcf7dfd09, 0xfe5d54150b090b02,0xd3f93b35435d7c4c, 0x9efa548d26e5a6e1,0xc47bc5014a1a6daf, 0xc6b8e9b0709f109a,0x359ab6419ca1091b, 0xf867241c8cc6d4c0,0xc30163d203c94b62, 0x9b407691d7fc44f8,0x79e0de63425dcf1d, 0xc21094364dfb5636,0x985915fc12f542e4, 0xf294b943e17a2bc4,0x3e6f5b7b17b2939d, 0x979cf3ca6cec5b5a,0xa705992ceecf9c42, 0xbd8430bd08277231,0x50c6ff782a838353, 0xece53cec4a314ebd,0xa4f8bf5635246428, 0x940f4613ae5ed136,0x871b7795e136be99, 0xb913179899f68584,0x28e2557b59846e3f, 0xe757dd7ec07426e5,0x331aeada2fe589cf, 0x9096ea6f3848984f,0x3ff0d2c85def7621, 0xb4bca50b065abe63,0xfed077a756b53a9, 0xe1ebce4dc7f16dfb,0xd3e8495912c62894, 0x8d3360f09cf6e4bd,0x64712dd7abbbd95c, 0xb080392cc4349dec,0xbd8d794d96aacfb3, 0xdca04777f541c567,0xecf0d7a0fc5583a0, 0x89e42caaf9491b60,0xf41686c49db57244, 0xac5d37d5b79b6239,0x311c2875c522ced5, 0xd77485cb25823ac7,0x7d633293366b828b, 0x86a8d39ef77164bc,0xae5dff9c02033197, 0xa8530886b54dbdeb,0xd9f57f830283fdfc, 0xd267caa862a12d66,0xd072df63c324fd7b, 0x8380dea93da4bc60,0x4247cb9e59f71e6d, 0xa46116538d0deb78,0x52d9be85f074e608, 0xcd795be870516656,0x67902e276c921f8b, 0x806bd9714632dff6,0xba1cd8a3db53b6, 0xa086cfcd97bf97f3,0x80e8a40eccd228a4, 0xc8a883c0fdaf7df0,0x6122cd128006b2cd, 0xfad2a4b13d1b5d6c,0x796b805720085f81, 0x9cc3a6eec6311a63,0xcbe3303674053bb0, 0xc3f490aa77bd60fc,0xbedbfc4411068a9c, 0xf4f1b4d515acb93b,0xee92fb5515482d44, 0x991711052d8bf3c5,0x751bdd152d4d1c4a, 0xbf5cd54678eef0b6,0xd262d45a78a0635d, 0xef340a98172aace4,0x86fb897116c87c34, 0x9580869f0e7aac0e,0xd45d35e6ae3d4da0, 0xbae0a846d2195712,0x8974836059cca109, 0xe998d258869facd7,0x2bd1a438703fc94b, 0x91ff83775423cc06,0x7b6306a34627ddcf, 0xb67f6455292cbf08,0x1a3bc84c17b1d542, 0xe41f3d6a7377eeca,0x20caba5f1d9e4a93, 0x8e938662882af53e,0x547eb47b7282ee9c, 0xb23867fb2a35b28d,0xe99e619a4f23aa43, 0xdec681f9f4c31f31,0x6405fa00e2ec94d4, 0x8b3c113c38f9f37e,0xde83bc408dd3dd04, 0xae0b158b4738705e,0x9624ab50b148d445, 0xd98ddaee19068c76,0x3badd624dd9b0957, 0x87f8a8d4cfa417c9,0xe54ca5d70a80e5d6, 0xa9f6d30a038d1dbc,0x5e9fcf4ccd211f4c, 0xd47487cc8470652b,0x7647c3200069671f, 0x84c8d4dfd2c63f3b,0x29ecd9f40041e073, 0xa5fb0a17c777cf09,0xf468107100525890, 0xcf79cc9db955c2cc,0x7182148d4066eeb4, 0x81ac1fe293d599bf,0xc6f14cd848405530, 0xa21727db38cb002f,0xb8ada00e5a506a7c, 0xca9cf1d206fdc03b,0xa6d90811f0e4851c, 0xfd442e4688bd304a,0x908f4a166d1da663, 0x9e4a9cec15763e2e,0x9a598e4e043287fe, 0xc5dd44271ad3cdba,0x40eff1e1853f29fd, 0xf7549530e188c128,0xd12bee59e68ef47c, 0x9a94dd3e8cf578b9,0x82bb74f8301958ce, 0xc13a148e3032d6e7,0xe36a52363c1faf01, 0xf18899b1bc3f8ca1,0xdc44e6c3cb279ac1, 0x96f5600f15a7b7e5,0x29ab103a5ef8c0b9, 0xbcb2b812db11a5de,0x7415d448f6b6f0e7, 0xebdf661791d60f56,0x111b495b3464ad21, 0x936b9fcebb25c995,0xcab10dd900beec34, 0xb84687c269ef3bfb,0x3d5d514f40eea742, 0xe65829b3046b0afa,0xcb4a5a3112a5112, 0x8ff71a0fe2c2e6dc,0x47f0e785eaba72ab, 0xb3f4e093db73a093,0x59ed216765690f56, 0xe0f218b8d25088b8,0x306869c13ec3532c, 0x8c974f7383725573,0x1e414218c73a13fb, 0xafbd2350644eeacf,0xe5d1929ef90898fa, 0xdbac6c247d62a583,0xdf45f746b74abf39, 0x894bc396ce5da772,0x6b8bba8c328eb783, 0xab9eb47c81f5114f,0x66ea92f3f326564, 0xd686619ba27255a2,0xc80a537b0efefebd, 0x8613fd0145877585,0xbd06742ce95f5f36, 0xa798fc4196e952e7,0x2c48113823b73704, 0xd17f3b51fca3a7a0,0xf75a15862ca504c5, 0x82ef85133de648c4,0x9a984d73dbe722fb, 0xa3ab66580d5fdaf5,0xc13e60d0d2e0ebba, 0xcc963fee10b7d1b3,0x318df905079926a8, 0xffbbcfe994e5c61f,0xfdf17746497f7052, 0x9fd561f1fd0f9bd3,0xfeb6ea8bedefa633, 0xc7caba6e7c5382c8,0xfe64a52ee96b8fc0, 0xf9bd690a1b68637b,0x3dfdce7aa3c673b0, 0x9c1661a651213e2d,0x6bea10ca65c084e, 0xc31bfa0fe5698db8,0x486e494fcff30a62, 0xf3e2f893dec3f126,0x5a89dba3c3efccfa, 0x986ddb5c6b3a76b7,0xf89629465a75e01c, 0xbe89523386091465,0xf6bbb397f1135823, 0xee2ba6c0678b597f,0x746aa07ded582e2c, 0x94db483840b717ef,0xa8c2a44eb4571cdc, 0xba121a4650e4ddeb,0x92f34d62616ce413, 0xe896a0d7e51e1566,0x77b020baf9c81d17, 0x915e2486ef32cd60,0xace1474dc1d122e, 0xb5b5ada8aaff80b8,0xd819992132456ba, 0xe3231912d5bf60e6,0x10e1fff697ed6c69, 0x8df5efabc5979c8f,0xca8d3ffa1ef463c1, 0xb1736b96b6fd83b3,0xbd308ff8a6b17cb2, 0xddd0467c64bce4a0,0xac7cb3f6d05ddbde, 0x8aa22c0dbef60ee4,0x6bcdf07a423aa96b, 0xad4ab7112eb3929d,0x86c16c98d2c953c6, 0xd89d64d57a607744,0xe871c7bf077ba8b7, 0x87625f056c7c4a8b,0x11471cd764ad4972, 0xa93af6c6c79b5d2d,0xd598e40d3dd89bcf, 0xd389b47879823479,0x4aff1d108d4ec2c3, 0x843610cb4bf160cb,0xcedf722a585139ba, 0xa54394fe1eedb8fe,0xc2974eb4ee658828, 0xce947a3da6a9273e,0x733d226229feea32, 0x811ccc668829b887,0x806357d5a3f525f, 0xa163ff802a3426a8,0xca07c2dcb0cf26f7, 0xc9bcff6034c13052,0xfc89b393dd02f0b5, 0xfc2c3f3841f17c67,0xbbac2078d443ace2, 0x9d9ba7832936edc0,0xd54b944b84aa4c0d, 0xc5029163f384a931,0xa9e795e65d4df11, 0xf64335bcf065d37d,0x4d4617b5ff4a16d5, 0x99ea0196163fa42e,0x504bced1bf8e4e45, 0xc06481fb9bcf8d39,0xe45ec2862f71e1d6, 0xf07da27a82c37088,0x5d767327bb4e5a4c, 0x964e858c91ba2655,0x3a6a07f8d510f86f, 0xbbe226efb628afea,0x890489f70a55368b, 0xeadab0aba3b2dbe5,0x2b45ac74ccea842e, 0x92c8ae6b464fc96f,0x3b0b8bc90012929d, 0xb77ada0617e3bbcb,0x9ce6ebb40173744, 0xe55990879ddcaabd,0xcc420a6a101d0515, 0x8f57fa54c2a9eab6,0x9fa946824a12232d, 0xb32df8e9f3546564,0x47939822dc96abf9, 0xdff9772470297ebd,0x59787e2b93bc56f7, 0x8bfbea76c619ef36,0x57eb4edb3c55b65a, 0xaefae51477a06b03,0xede622920b6b23f1, 0xdab99e59958885c4,0xe95fab368e45eced, 0x88b402f7fd75539b,0x11dbcb0218ebb414, 0xaae103b5fcd2a881,0xd652bdc29f26a119, 0xd59944a37c0752a2,0x4be76d3346f0495f, 0x857fcae62d8493a5,0x6f70a4400c562ddb, 0xa6dfbd9fb8e5b88e,0xcb4ccd500f6bb952, 0xd097ad07a71f26b2,0x7e2000a41346a7a7, 0x825ecc24c873782f,0x8ed400668c0c28c8, 0xa2f67f2dfa90563b,0x728900802f0f32fa, 0xcbb41ef979346bca,0x4f2b40a03ad2ffb9, 0xfea126b7d78186bc,0xe2f610c84987bfa8, 0x9f24b832e6b0f436,0xdd9ca7d2df4d7c9, 0xc6ede63fa05d3143,0x91503d1c79720dbb, 0xf8a95fcf88747d94,0x75a44c6397ce912a, 0x9b69dbe1b548ce7c,0xc986afbe3ee11aba, 0xc24452da229b021b,0xfbe85badce996168, 0xf2d56790ab41c2a2,0xfae27299423fb9c3, 0x97c560ba6b0919a5,0xdccd879fc967d41a, 0xbdb6b8e905cb600f,0x5400e987bbc1c920, 0xed246723473e3813,0x290123e9aab23b68, 0x9436c0760c86e30b,0xf9a0b6720aaf6521, 0xb94470938fa89bce,0xf808e40e8d5b3e69, 0xe7958cb87392c2c2,0xb60b1d1230b20e04, 0x90bd77f3483bb9b9,0xb1c6f22b5e6f48c2, 0xb4ecd5f01a4aa828,0x1e38aeb6360b1af3, 0xe2280b6c20dd5232,0x25c6da63c38de1b0, 0x8d590723948a535f,0x579c487e5a38ad0e, 0xb0af48ec79ace837,0x2d835a9df0c6d851, 0xdcdb1b2798182244,0xf8e431456cf88e65, 0x8a08f0f8bf0f156b,0x1b8e9ecb641b58ff, 0xac8b2d36eed2dac5,0xe272467e3d222f3f, 0xd7adf884aa879177,0x5b0ed81dcc6abb0f, 0x86ccbb52ea94baea,0x98e947129fc2b4e9, 0xa87fea27a539e9a5,0x3f2398d747b36224, 0xd29fe4b18e88640e,0x8eec7f0d19a03aad, 0x83a3eeeef9153e89,0x1953cf68300424ac, 0xa48ceaaab75a8e2b,0x5fa8c3423c052dd7, 0xcdb02555653131b6,0x3792f412cb06794d, 0x808e17555f3ebf11,0xe2bbd88bbee40bd0, 0xa0b19d2ab70e6ed6,0x5b6aceaeae9d0ec4, 0xc8de047564d20a8b,0xf245825a5a445275, 0xfb158592be068d2e,0xeed6e2f0f0d56712, 0x9ced737bb6c4183d,0x55464dd69685606b, 0xc428d05aa4751e4c,0xaa97e14c3c26b886, 0xf53304714d9265df,0xd53dd99f4b3066a8, 0x993fe2c6d07b7fab,0xe546a8038efe4029, 0xbf8fdb78849a5f96,0xde98520472bdd033, 0xef73d256a5c0f77c,0x963e66858f6d4440, 0x95a8637627989aad,0xdde7001379a44aa8, 0xbb127c53b17ec159,0x5560c018580d5d52, 0xe9d71b689dde71af,0xaab8f01e6e10b4a6, 0x9226712162ab070d,0xcab3961304ca70e8, 0xb6b00d69bb55c8d1,0x3d607b97c5fd0d22, 0xe45c10c42a2b3b05,0x8cb89a7db77c506a, 0x8eb98a7a9a5b04e3,0x77f3608e92adb242, 0xb267ed1940f1c61c,0x55f038b237591ed3, 0xdf01e85f912e37a3,0x6b6c46dec52f6688, 0x8b61313bbabce2c6,0x2323ac4b3b3da015, 0xae397d8aa96c1b77,0xabec975e0a0d081a, 0xd9c7dced53c72255,0x96e7bd358c904a21, 0x881cea14545c7575,0x7e50d64177da2e54, 0xaa242499697392d2,0xdde50bd1d5d0b9e9, 0xd4ad2dbfc3d07787,0x955e4ec64b44e864, 0x84ec3c97da624ab4,0xbd5af13bef0b113e, 0xa6274bbdd0fadd61,0xecb1ad8aeacdd58e, 0xcfb11ead453994ba,0x67de18eda5814af2, 0x81ceb32c4b43fcf4,0x80eacf948770ced7, 0xa2425ff75e14fc31,0xa1258379a94d028d, 0xcad2f7f5359a3b3e,0x96ee45813a04330, 0xfd87b5f28300ca0d,0x8bca9d6e188853fc, 0x9e74d1b791e07e48,0x775ea264cf55347e, 0xc612062576589dda,0x95364afe032a819e, 0xf79687aed3eec551,0x3a83ddbd83f52205, 0x9abe14cd44753b52,0xc4926a9672793543, 0xc16d9a0095928a27,0x75b7053c0f178294, 0xf1c90080baf72cb1,0x5324c68b12dd6339, 0x971da05074da7bee,0xd3f6fc16ebca5e04, 0xbce5086492111aea,0x88f4bb1ca6bcf585, 0xec1e4a7db69561a5,0x2b31e9e3d06c32e6, 0x9392ee8e921d5d07,0x3aff322e62439fd0, 0xb877aa3236a4b449,0x9befeb9fad487c3, 0xe69594bec44de15b,0x4c2ebe687989a9b4, 0x901d7cf73ab0acd9,0xf9d37014bf60a11, 0xb424dc35095cd80f,0x538484c19ef38c95, 0xe12e13424bb40e13,0x2865a5f206b06fba, 0x8cbccc096f5088cb,0xf93f87b7442e45d4, 0xafebff0bcb24aafe,0xf78f69a51539d749, 0xdbe6fecebdedd5be,0xb573440e5a884d1c, 0x89705f4136b4a597,0x31680a88f8953031, 0xabcc77118461cefc,0xfdc20d2b36ba7c3e, 0xd6bf94d5e57a42bc,0x3d32907604691b4d, 0x8637bd05af6c69b5,0xa63f9a49c2c1b110, 0xa7c5ac471b478423,0xfcf80dc33721d54, 0xd1b71758e219652b,0xd3c36113404ea4a9, 0x83126e978d4fdf3b,0x645a1cac083126ea, 0xa3d70a3d70a3d70a,0x3d70a3d70a3d70a4, 0xcccccccccccccccc,0xcccccccccccccccd, 0x8000000000000000,0x0, 0xa000000000000000,0x0, 0xc800000000000000,0x0, 0xfa00000000000000,0x0, 0x9c40000000000000,0x0, 0xc350000000000000,0x0, 0xf424000000000000,0x0, 0x9896800000000000,0x0, 0xbebc200000000000,0x0, 0xee6b280000000000,0x0, 0x9502f90000000000,0x0, 0xba43b74000000000,0x0, 0xe8d4a51000000000,0x0, 0x9184e72a00000000,0x0, 0xb5e620f480000000,0x0, 0xe35fa931a0000000,0x0, 0x8e1bc9bf04000000,0x0, 0xb1a2bc2ec5000000,0x0, 0xde0b6b3a76400000,0x0, 0x8ac7230489e80000,0x0, 0xad78ebc5ac620000,0x0, 0xd8d726b7177a8000,0x0, 0x878678326eac9000,0x0, 0xa968163f0a57b400,0x0, 0xd3c21bcecceda100,0x0, 0x84595161401484a0,0x0, 0xa56fa5b99019a5c8,0x0, 0xcecb8f27f4200f3a,0x0, 0x813f3978f8940984,0x4000000000000000, 0xa18f07d736b90be5,0x5000000000000000, 0xc9f2c9cd04674ede,0xa400000000000000, 0xfc6f7c4045812296,0x4d00000000000000, 0x9dc5ada82b70b59d,0xf020000000000000, 0xc5371912364ce305,0x6c28000000000000, 0xf684df56c3e01bc6,0xc732000000000000, 0x9a130b963a6c115c,0x3c7f400000000000, 0xc097ce7bc90715b3,0x4b9f100000000000, 0xf0bdc21abb48db20,0x1e86d40000000000, 0x96769950b50d88f4,0x1314448000000000, 0xbc143fa4e250eb31,0x17d955a000000000, 0xeb194f8e1ae525fd,0x5dcfab0800000000, 0x92efd1b8d0cf37be,0x5aa1cae500000000, 0xb7abc627050305ad,0xf14a3d9e40000000, 0xe596b7b0c643c719,0x6d9ccd05d0000000, 0x8f7e32ce7bea5c6f,0xe4820023a2000000, 0xb35dbf821ae4f38b,0xdda2802c8a800000, 0xe0352f62a19e306e,0xd50b2037ad200000, 0x8c213d9da502de45,0x4526f422cc340000, 0xaf298d050e4395d6,0x9670b12b7f410000, 0xdaf3f04651d47b4c,0x3c0cdd765f114000, 0x88d8762bf324cd0f,0xa5880a69fb6ac800, 0xab0e93b6efee0053,0x8eea0d047a457a00, 0xd5d238a4abe98068,0x72a4904598d6d880, 0x85a36366eb71f041,0x47a6da2b7f864750, 0xa70c3c40a64e6c51,0x999090b65f67d924, 0xd0cf4b50cfe20765,0xfff4b4e3f741cf6d, 0x82818f1281ed449f,0xbff8f10e7a8921a4, 0xa321f2d7226895c7,0xaff72d52192b6a0d, 0xcbea6f8ceb02bb39,0x9bf4f8a69f764490, 0xfee50b7025c36a08,0x2f236d04753d5b4, 0x9f4f2726179a2245,0x1d762422c946590, 0xc722f0ef9d80aad6,0x424d3ad2b7b97ef5, 0xf8ebad2b84e0d58b,0xd2e0898765a7deb2, 0x9b934c3b330c8577,0x63cc55f49f88eb2f, 0xc2781f49ffcfa6d5,0x3cbf6b71c76b25fb, 0xf316271c7fc3908a,0x8bef464e3945ef7a, 0x97edd871cfda3a56,0x97758bf0e3cbb5ac, 0xbde94e8e43d0c8ec,0x3d52eeed1cbea317, 0xed63a231d4c4fb27,0x4ca7aaa863ee4bdd, 0x945e455f24fb1cf8,0x8fe8caa93e74ef6a, 0xb975d6b6ee39e436,0xb3e2fd538e122b44, 0xe7d34c64a9c85d44,0x60dbbca87196b616, 0x90e40fbeea1d3a4a,0xbc8955e946fe31cd, 0xb51d13aea4a488dd,0x6babab6398bdbe41, 0xe264589a4dcdab14,0xc696963c7eed2dd1, 0x8d7eb76070a08aec,0xfc1e1de5cf543ca2, 0xb0de65388cc8ada8,0x3b25a55f43294bcb, 0xdd15fe86affad912,0x49ef0eb713f39ebe, 0x8a2dbf142dfcc7ab,0x6e3569326c784337, 0xacb92ed9397bf996,0x49c2c37f07965404, 0xd7e77a8f87daf7fb,0xdc33745ec97be906, 0x86f0ac99b4e8dafd,0x69a028bb3ded71a3, 0xa8acd7c0222311bc,0xc40832ea0d68ce0c, 0xd2d80db02aabd62b,0xf50a3fa490c30190, 0x83c7088e1aab65db,0x792667c6da79e0fa, 0xa4b8cab1a1563f52,0x577001b891185938, 0xcde6fd5e09abcf26,0xed4c0226b55e6f86, 0x80b05e5ac60b6178,0x544f8158315b05b4, 0xa0dc75f1778e39d6,0x696361ae3db1c721, 0xc913936dd571c84c,0x3bc3a19cd1e38e9, 0xfb5878494ace3a5f,0x4ab48a04065c723, 0x9d174b2dcec0e47b,0x62eb0d64283f9c76, 0xc45d1df942711d9a,0x3ba5d0bd324f8394, 0xf5746577930d6500,0xca8f44ec7ee36479, 0x9968bf6abbe85f20,0x7e998b13cf4e1ecb, 0xbfc2ef456ae276e8,0x9e3fedd8c321a67e, 0xefb3ab16c59b14a2,0xc5cfe94ef3ea101e, 0x95d04aee3b80ece5,0xbba1f1d158724a12, 0xbb445da9ca61281f,0x2a8a6e45ae8edc97, 0xea1575143cf97226,0xf52d09d71a3293bd, 0x924d692ca61be758,0x593c2626705f9c56, 0xb6e0c377cfa2e12e,0x6f8b2fb00c77836c, 0xe498f455c38b997a,0xb6dfb9c0f956447, 0x8edf98b59a373fec,0x4724bd4189bd5eac, 0xb2977ee300c50fe7,0x58edec91ec2cb657, 0xdf3d5e9bc0f653e1,0x2f2967b66737e3ed, 0x8b865b215899f46c,0xbd79e0d20082ee74, 0xae67f1e9aec07187,0xecd8590680a3aa11, 0xda01ee641a708de9,0xe80e6f4820cc9495, 0x884134fe908658b2,0x3109058d147fdcdd, 0xaa51823e34a7eede,0xbd4b46f0599fd415, 0xd4e5e2cdc1d1ea96,0x6c9e18ac7007c91a, 0x850fadc09923329e,0x3e2cf6bc604ddb0, 0xa6539930bf6bff45,0x84db8346b786151c, 0xcfe87f7cef46ff16,0xe612641865679a63, 0x81f14fae158c5f6e,0x4fcb7e8f3f60c07e, 0xa26da3999aef7749,0xe3be5e330f38f09d, 0xcb090c8001ab551c,0x5cadf5bfd3072cc5, 0xfdcb4fa002162a63,0x73d9732fc7c8f7f6, 0x9e9f11c4014dda7e,0x2867e7fddcdd9afa, 0xc646d63501a1511d,0xb281e1fd541501b8, 0xf7d88bc24209a565,0x1f225a7ca91a4226, 0x9ae757596946075f,0x3375788de9b06958, 0xc1a12d2fc3978937,0x52d6b1641c83ae, 0xf209787bb47d6b84,0xc0678c5dbd23a49a, 0x9745eb4d50ce6332,0xf840b7ba963646e0, 0xbd176620a501fbff,0xb650e5a93bc3d898, 0xec5d3fa8ce427aff,0xa3e51f138ab4cebe, 0x93ba47c980e98cdf,0xc66f336c36b10137, 0xb8a8d9bbe123f017,0xb80b0047445d4184, 0xe6d3102ad96cec1d,0xa60dc059157491e5, 0x9043ea1ac7e41392,0x87c89837ad68db2f, 0xb454e4a179dd1877,0x29babe4598c311fb, 0xe16a1dc9d8545e94,0xf4296dd6fef3d67a, 0x8ce2529e2734bb1d,0x1899e4a65f58660c, 0xb01ae745b101e9e4,0x5ec05dcff72e7f8f, 0xdc21a1171d42645d,0x76707543f4fa1f73, 0x899504ae72497eba,0x6a06494a791c53a8, 0xabfa45da0edbde69,0x487db9d17636892, 0xd6f8d7509292d603,0x45a9d2845d3c42b6, 0x865b86925b9bc5c2,0xb8a2392ba45a9b2, 0xa7f26836f282b732,0x8e6cac7768d7141e, 0xd1ef0244af2364ff,0x3207d795430cd926, 0x8335616aed761f1f,0x7f44e6bd49e807b8, 0xa402b9c5a8d3a6e7,0x5f16206c9c6209a6, 0xcd036837130890a1,0x36dba887c37a8c0f, 0x802221226be55a64,0xc2494954da2c9789, 0xa02aa96b06deb0fd,0xf2db9baa10b7bd6c, 0xc83553c5c8965d3d,0x6f92829494e5acc7, 0xfa42a8b73abbf48c,0xcb772339ba1f17f9, 0x9c69a97284b578d7,0xff2a760414536efb, 0xc38413cf25e2d70d,0xfef5138519684aba, 0xf46518c2ef5b8cd1,0x7eb258665fc25d69, 0x98bf2f79d5993802,0xef2f773ffbd97a61, 0xbeeefb584aff8603,0xaafb550ffacfd8fa, 0xeeaaba2e5dbf6784,0x95ba2a53f983cf38, 0x952ab45cfa97a0b2,0xdd945a747bf26183, 0xba756174393d88df,0x94f971119aeef9e4, 0xe912b9d1478ceb17,0x7a37cd5601aab85d, 0x91abb422ccb812ee,0xac62e055c10ab33a, 0xb616a12b7fe617aa,0x577b986b314d6009, 0xe39c49765fdf9d94,0xed5a7e85fda0b80b, 0x8e41ade9fbebc27d,0x14588f13be847307, 0xb1d219647ae6b31c,0x596eb2d8ae258fc8, 0xde469fbd99a05fe3,0x6fca5f8ed9aef3bb, 0x8aec23d680043bee,0x25de7bb9480d5854, 0xada72ccc20054ae9,0xaf561aa79a10ae6a, 0xd910f7ff28069da4,0x1b2ba1518094da04, 0x87aa9aff79042286,0x90fb44d2f05d0842, 0xa99541bf57452b28,0x353a1607ac744a53, 0xd3fa922f2d1675f2,0x42889b8997915ce8, 0x847c9b5d7c2e09b7,0x69956135febada11, 0xa59bc234db398c25,0x43fab9837e699095, 0xcf02b2c21207ef2e,0x94f967e45e03f4bb, 0x8161afb94b44f57d,0x1d1be0eebac278f5, 0xa1ba1ba79e1632dc,0x6462d92a69731732, 0xca28a291859bbf93,0x7d7b8f7503cfdcfe, 0xfcb2cb35e702af78,0x5cda735244c3d43e, 0x9defbf01b061adab,0x3a0888136afa64a7, 0xc56baec21c7a1916,0x88aaa1845b8fdd0, 0xf6c69a72a3989f5b,0x8aad549e57273d45, 0x9a3c2087a63f6399,0x36ac54e2f678864b, 0xc0cb28a98fcf3c7f,0x84576a1bb416a7dd, 0xf0fdf2d3f3c30b9f,0x656d44a2a11c51d5, 0x969eb7c47859e743,0x9f644ae5a4b1b325, 0xbc4665b596706114,0x873d5d9f0dde1fee, 0xeb57ff22fc0c7959,0xa90cb506d155a7ea, 0x9316ff75dd87cbd8,0x9a7f12442d588f2, 0xb7dcbf5354e9bece,0xc11ed6d538aeb2f, 0xe5d3ef282a242e81,0x8f1668c8a86da5fa, 0x8fa475791a569d10,0xf96e017d694487bc, 0xb38d92d760ec4455,0x37c981dcc395a9ac, 0xe070f78d3927556a,0x85bbe253f47b1417, 0x8c469ab843b89562,0x93956d7478ccec8e, 0xaf58416654a6babb,0x387ac8d1970027b2, 0xdb2e51bfe9d0696a,0x6997b05fcc0319e, 0x88fcf317f22241e2,0x441fece3bdf81f03, 0xab3c2fddeeaad25a,0xd527e81cad7626c3, 0xd60b3bd56a5586f1,0x8a71e223d8d3b074, 0x85c7056562757456,0xf6872d5667844e49, 0xa738c6bebb12d16c,0xb428f8ac016561db, 0xd106f86e69d785c7,0xe13336d701beba52, 0x82a45b450226b39c,0xecc0024661173473, 0xa34d721642b06084,0x27f002d7f95d0190, 0xcc20ce9bd35c78a5,0x31ec038df7b441f4, 0xff290242c83396ce,0x7e67047175a15271, 0x9f79a169bd203e41,0xf0062c6e984d386, 0xc75809c42c684dd1,0x52c07b78a3e60868, 0xf92e0c3537826145,0xa7709a56ccdf8a82, 0x9bbcc7a142b17ccb,0x88a66076400bb691, 0xc2abf989935ddbfe,0x6acff893d00ea435, 0xf356f7ebf83552fe,0x583f6b8c4124d43, 0x98165af37b2153de,0xc3727a337a8b704a, 0xbe1bf1b059e9a8d6,0x744f18c0592e4c5c, 0xeda2ee1c7064130c,0x1162def06f79df73, 0x9485d4d1c63e8be7,0x8addcb5645ac2ba8, 0xb9a74a0637ce2ee1,0x6d953e2bd7173692, 0xe8111c87c5c1ba99,0xc8fa8db6ccdd0437, 0x910ab1d4db9914a0,0x1d9c9892400a22a2, 0xb54d5e4a127f59c8,0x2503beb6d00cab4b, 0xe2a0b5dc971f303a,0x2e44ae64840fd61d, 0x8da471a9de737e24,0x5ceaecfed289e5d2, 0xb10d8e1456105dad,0x7425a83e872c5f47, 0xdd50f1996b947518,0xd12f124e28f77719, 0x8a5296ffe33cc92f,0x82bd6b70d99aaa6f, 0xace73cbfdc0bfb7b,0x636cc64d1001550b, 0xd8210befd30efa5a,0x3c47f7e05401aa4e, 0x8714a775e3e95c78,0x65acfaec34810a71, 0xa8d9d1535ce3b396,0x7f1839a741a14d0d, 0xd31045a8341ca07c,0x1ede48111209a050, 0x83ea2b892091e44d,0x934aed0aab460432, 0xa4e4b66b68b65d60,0xf81da84d5617853f, 0xce1de40642e3f4b9,0x36251260ab9d668e, 0x80d2ae83e9ce78f3,0xc1d72b7c6b426019, 0xa1075a24e4421730,0xb24cf65b8612f81f, 0xc94930ae1d529cfc,0xdee033f26797b627, 0xfb9b7cd9a4a7443c,0x169840ef017da3b1, 0x9d412e0806e88aa5,0x8e1f289560ee864e, 0xc491798a08a2ad4e,0xf1a6f2bab92a27e2, 0xf5b5d7ec8acb58a2,0xae10af696774b1db, 0x9991a6f3d6bf1765,0xacca6da1e0a8ef29, 0xbff610b0cc6edd3f,0x17fd090a58d32af3, 0xeff394dcff8a948e,0xddfc4b4cef07f5b0, 0x95f83d0a1fb69cd9,0x4abdaf101564f98e, 0xbb764c4ca7a4440f,0x9d6d1ad41abe37f1, 0xea53df5fd18d5513,0x84c86189216dc5ed, 0x92746b9be2f8552c,0x32fd3cf5b4e49bb4, 0xb7118682dbb66a77,0x3fbc8c33221dc2a1, 0xe4d5e82392a40515,0xfabaf3feaa5334a, 0x8f05b1163ba6832d,0x29cb4d87f2a7400e, 0xb2c71d5bca9023f8,0x743e20e9ef511012, 0xdf78e4b2bd342cf6,0x914da9246b255416, 0x8bab8eefb6409c1a,0x1ad089b6c2f7548e, 0xae9672aba3d0c320,0xa184ac2473b529b1, 0xda3c0f568cc4f3e8,0xc9e5d72d90a2741e, 0x8865899617fb1871,0x7e2fa67c7a658892, 0xaa7eebfb9df9de8d,0xddbb901b98feeab7, 0xd51ea6fa85785631,0x552a74227f3ea565, 0x8533285c936b35de,0xd53a88958f87275f, 0xa67ff273b8460356,0x8a892abaf368f137, 0xd01fef10a657842c,0x2d2b7569b0432d85, 0x8213f56a67f6b29b,0x9c3b29620e29fc73, 0xa298f2c501f45f42,0x8349f3ba91b47b8f, 0xcb3f2f7642717713,0x241c70a936219a73, 0xfe0efb53d30dd4d7,0xed238cd383aa0110, 0x9ec95d1463e8a506,0xf4363804324a40aa, 0xc67bb4597ce2ce48,0xb143c6053edcd0d5, 0xf81aa16fdc1b81da,0xdd94b7868e94050a, 0x9b10a4e5e9913128,0xca7cf2b4191c8326, 0xc1d4ce1f63f57d72,0xfd1c2f611f63a3f0, 0xf24a01a73cf2dccf,0xbc633b39673c8cec, 0x976e41088617ca01,0xd5be0503e085d813, 0xbd49d14aa79dbc82,0x4b2d8644d8a74e18, 0xec9c459d51852ba2,0xddf8e7d60ed1219e, 0x93e1ab8252f33b45,0xcabb90e5c942b503, 0xb8da1662e7b00a17,0x3d6a751f3b936243, 0xe7109bfba19c0c9d,0xcc512670a783ad4, 0x906a617d450187e2,0x27fb2b80668b24c5, 0xb484f9dc9641e9da,0xb1f9f660802dedf6, 0xe1a63853bbd26451,0x5e7873f8a0396973, 0x8d07e33455637eb2,0xdb0b487b6423e1e8, 0xb049dc016abc5e5f,0x91ce1a9a3d2cda62, 0xdc5c5301c56b75f7,0x7641a140cc7810fb, 0x89b9b3e11b6329ba,0xa9e904c87fcb0a9d, 0xac2820d9623bf429,0x546345fa9fbdcd44, 0xd732290fbacaf133,0xa97c177947ad4095, 0x867f59a9d4bed6c0,0x49ed8eabcccc485d, 0xa81f301449ee8c70,0x5c68f256bfff5a74, 0xd226fc195c6a2f8c,0x73832eec6fff3111, 0x83585d8fd9c25db7,0xc831fd53c5ff7eab, 0xa42e74f3d032f525,0xba3e7ca8b77f5e55, 0xcd3a1230c43fb26f,0x28ce1bd2e55f35eb, 0x80444b5e7aa7cf85,0x7980d163cf5b81b3, 0xa0555e361951c366,0xd7e105bcc332621f, 0xc86ab5c39fa63440,0x8dd9472bf3fefaa7, 0xfa856334878fc150,0xb14f98f6f0feb951, 0x9c935e00d4b9d8d2,0x6ed1bf9a569f33d3, 0xc3b8358109e84f07,0xa862f80ec4700c8, 0xf4a642e14c6262c8,0xcd27bb612758c0fa, 0x98e7e9cccfbd7dbd,0x8038d51cb897789c, 0xbf21e44003acdd2c,0xe0470a63e6bd56c3, 0xeeea5d5004981478,0x1858ccfce06cac74, 0x95527a5202df0ccb,0xf37801e0c43ebc8, 0xbaa718e68396cffd,0xd30560258f54e6ba, 0xe950df20247c83fd,0x47c6b82ef32a2069, 0x91d28b7416cdd27e,0x4cdc331d57fa5441, 0xb6472e511c81471d,0xe0133fe4adf8e952, 0xe3d8f9e563a198e5,0x58180fddd97723a6, 0x8e679c2f5e44ff8f,0x570f09eaa7ea7648,}; }; template <class unused> constexpr uint64_t powers_template<unused>::power_of_five_128[number_of_entries]; using powers = powers_template<>; } // namespace fast_float #endif #ifndef FASTFLOAT_DECIMAL_TO_BINARY_H #define FASTFLOAT_DECIMAL_TO_BINARY_H #include <cfloat> #include <cinttypes> #include <cmath> #include <cstdint> #include <cstdlib> #include <cstring> namespace fast_float { // This will compute or rather approximate w * 5**q and return a pair of 64-bit words approximating // the result, with the "high" part corresponding to the most significant bits and the // low part corresponding to the least significant bits. // template <int bit_precision> fastfloat_really_inline value128 compute_product_approximation(int64_t q, uint64_t w) { const int index = 2 * int(q - powers::smallest_power_of_five); // For small values of q, e.g., q in [0,27], the answer is always exact because // The line value128 firstproduct = full_multiplication(w, power_of_five_128[index]); // gives the exact answer. value128 firstproduct = full_multiplication(w, powers::power_of_five_128[index]); static_assert((bit_precision >= 0) && (bit_precision <= 64), " precision should be in (0,64]"); constexpr uint64_t precision_mask = (bit_precision < 64) ? (uint64_t(0xFFFFFFFFFFFFFFFF) >> bit_precision) : uint64_t(0xFFFFFFFFFFFFFFFF); if((firstproduct.high & precision_mask) == precision_mask) { // could further guard with (lower + w < lower) // regarding the second product, we only need secondproduct.high, but our expectation is that the compiler will optimize this extra work away if needed. value128 secondproduct = full_multiplication(w, powers::power_of_five_128[index + 1]); firstproduct.low += secondproduct.high; if(secondproduct.high > firstproduct.low) { firstproduct.high++; } } return firstproduct; } namespace detail { /** * For q in (0,350), we have that * f = (((152170 + 65536) * q ) >> 16); * is equal to * floor(p) + q * where * p = log(5**q)/log(2) = q * log(5)/log(2) * * For negative values of q in (-400,0), we have that * f = (((152170 + 65536) * q ) >> 16); * is equal to * -ceil(p) + q * where * p = log(5**-q)/log(2) = -q * log(5)/log(2) */ constexpr fastfloat_really_inline int32_t power(int32_t q) noexcept { return (((152170 + 65536) * q) >> 16) + 63; } } // namespace detail // create an adjusted mantissa, biased by the invalid power2 // for significant digits already multiplied by 10 ** q. template <typename binary> fastfloat_really_inline FASTFLOAT_CONSTEXPR14 adjusted_mantissa compute_error_scaled(int64_t q, uint64_t w, int lz) noexcept { int hilz = int(w >> 63) ^ 1; adjusted_mantissa answer; answer.mantissa = w << hilz; int bias = binary::mantissa_explicit_bits() - binary::minimum_exponent(); answer.power2 = int32_t(detail::power(int32_t(q)) + bias - hilz - lz - 62 + invalid_am_bias); return answer; } // w * 10 ** q, without rounding the representation up. // the power2 in the exponent will be adjusted by invalid_am_bias. template <typename binary> fastfloat_really_inline adjusted_mantissa compute_error(int64_t q, uint64_t w) noexcept { int lz = leading_zeroes(w); w <<= lz; value128 product = compute_product_approximation<binary::mantissa_explicit_bits() + 3>(q, w); return compute_error_scaled<binary>(q, product.high, lz); } // w * 10 ** q // The returned value should be a valid ieee64 number that simply need to be packed. // However, in some very rare cases, the computation will fail. In such cases, we // return an adjusted_mantissa with a negative power of 2: the caller should recompute // in such cases. template <typename binary> fastfloat_really_inline adjusted_mantissa compute_float(int64_t q, uint64_t w) noexcept { adjusted_mantissa answer; if ((w == 0) || (q < binary::smallest_power_of_ten())) { answer.power2 = 0; answer.mantissa = 0; // result should be zero return answer; } if (q > binary::largest_power_of_ten()) { // we want to get infinity: answer.power2 = binary::infinite_power(); answer.mantissa = 0; return answer; } // At this point in time q is in [powers::smallest_power_of_five, powers::largest_power_of_five]. // We want the most significant bit of i to be 1. Shift if needed. int lz = leading_zeroes(w); w <<= lz; // The required precision is binary::mantissa_explicit_bits() + 3 because // 1. We need the implicit bit // 2. We need an extra bit for rounding purposes // 3. We might lose a bit due to the "upperbit" routine (result too small, requiring a shift) value128 product = compute_product_approximation<binary::mantissa_explicit_bits() + 3>(q, w); // The computed 'product' is always sufficient. // Mathematical proof: // Noble Mushtak and Daniel Lemire, Fast Number Parsing Without Fallback (to appear) // See script/mushtak_lemire.py // The "compute_product_approximation" function can be slightly slower than a branchless approach: // value128 product = compute_product(q, w); // but in practice, we can win big with the compute_product_approximation if its additional branch // is easily predicted. Which is best is data specific. int upperbit = int(product.high >> 63); answer.mantissa = product.high >> (upperbit + 64 - binary::mantissa_explicit_bits() - 3); answer.power2 = int32_t(detail::power(int32_t(q)) + upperbit - lz - binary::minimum_exponent()); if (answer.power2 <= 0) { // we have a subnormal? // Here have that answer.power2 <= 0 so -answer.power2 >= 0 if(-answer.power2 + 1 >= 64) { // if we have more than 64 bits below the minimum exponent, you have a zero for sure. answer.power2 = 0; answer.mantissa = 0; // result should be zero return answer; } // next line is safe because -answer.power2 + 1 < 64 answer.mantissa >>= -answer.power2 + 1; // Thankfully, we can't have both "round-to-even" and subnormals because // "round-to-even" only occurs for powers close to 0. answer.mantissa += (answer.mantissa & 1); // round up answer.mantissa >>= 1; // There is a weird scenario where we don't have a subnormal but just. // Suppose we start with 2.2250738585072013e-308, we end up // with 0x3fffffffffffff x 2^-1023-53 which is technically subnormal // whereas 0x40000000000000 x 2^-1023-53 is normal. Now, we need to round // up 0x3fffffffffffff x 2^-1023-53 and once we do, we are no longer // subnormal, but we can only know this after rounding. // So we only declare a subnormal if we are smaller than the threshold. answer.power2 = (answer.mantissa < (uint64_t(1) << binary::mantissa_explicit_bits())) ? 0 : 1; return answer; } // usually, we round *up*, but if we fall right in between and and we have an // even basis, we need to round down // We are only concerned with the cases where 5**q fits in single 64-bit word. if ((product.low <= 1) && (q >= binary::min_exponent_round_to_even()) && (q <= binary::max_exponent_round_to_even()) && ((answer.mantissa & 3) == 1) ) { // we may fall between two floats! // To be in-between two floats we need that in doing // answer.mantissa = product.high >> (upperbit + 64 - binary::mantissa_explicit_bits() - 3); // ... we dropped out only zeroes. But if this happened, then we can go back!!! if((answer.mantissa << (upperbit + 64 - binary::mantissa_explicit_bits() - 3)) == product.high) { answer.mantissa &= ~uint64_t(1); // flip it so that we do not round up } } answer.mantissa += (answer.mantissa & 1); // round up answer.mantissa >>= 1; if (answer.mantissa >= (uint64_t(2) << binary::mantissa_explicit_bits())) { answer.mantissa = (uint64_t(1) << binary::mantissa_explicit_bits()); answer.power2++; // undo previous addition } answer.mantissa &= ~(uint64_t(1) << binary::mantissa_explicit_bits()); if (answer.power2 >= binary::infinite_power()) { // infinity answer.power2 = binary::infinite_power(); answer.mantissa = 0; } return answer; } } // namespace fast_float #endif #ifndef FASTFLOAT_BIGINT_H #define FASTFLOAT_BIGINT_H #include <algorithm> #include <cstdint> #include <climits> #include <cstring> namespace fast_float { // the limb width: we want efficient multiplication of double the bits in // limb, or for 64-bit limbs, at least 64-bit multiplication where we can // extract the high and low parts efficiently. this is every 64-bit // architecture except for sparc, which emulates 128-bit multiplication. // we might have platforms where `CHAR_BIT` is not 8, so let's avoid // doing `8 * sizeof(limb)`. #if defined(FASTFLOAT_64BIT) && !defined(__sparc) #define FASTFLOAT_64BIT_LIMB 1 typedef uint64_t limb; constexpr size_t limb_bits = 64; #else #define FASTFLOAT_32BIT_LIMB typedef uint32_t limb; constexpr size_t limb_bits = 32; #endif typedef span<limb> limb_span; // number of bits in a bigint. this needs to be at least the number // of bits required to store the largest bigint, which is // `log2(10**(digits + max_exp))`, or `log2(10**(767 + 342))`, or // ~3600 bits, so we round to 4000. constexpr size_t bigint_bits = 4000; constexpr size_t bigint_limbs = bigint_bits / limb_bits; // vector-like type that is allocated on the stack. the entire // buffer is pre-allocated, and only the length changes. template <uint16_t size> struct stackvec { limb data[size]; // we never need more than 150 limbs uint16_t length{0}; stackvec() = default; stackvec(const stackvec &) = delete; stackvec &operator=(const stackvec &) = delete; stackvec(stackvec &&) = delete; stackvec &operator=(stackvec &&other) = delete; // create stack vector from existing limb span. stackvec(limb_span s) { FASTFLOAT_ASSERT(try_extend(s)); } FASTFLOAT_CONSTEXPR14 limb& operator[](size_t index) noexcept { FASTFLOAT_DEBUG_ASSERT(index < length); return data[index]; } FASTFLOAT_CONSTEXPR14 const limb& operator[](size_t index) const noexcept { FASTFLOAT_DEBUG_ASSERT(index < length); return data[index]; } // index from the end of the container FASTFLOAT_CONSTEXPR14 const limb& rindex(size_t index) const noexcept { FASTFLOAT_DEBUG_ASSERT(index < length); size_t rindex = length - index - 1; return data[rindex]; } // set the length, without bounds checking. FASTFLOAT_CONSTEXPR14 void set_len(size_t len) noexcept { length = uint16_t(len); } constexpr size_t len() const noexcept { return length; } constexpr bool is_empty() const noexcept { return length == 0; } constexpr size_t capacity() const noexcept { return size; } // append item to vector, without bounds checking FASTFLOAT_CONSTEXPR14 void push_unchecked(limb value) noexcept { data[length] = value; length++; } // append item to vector, returning if item was added FASTFLOAT_CONSTEXPR14 bool try_push(limb value) noexcept { if (len() < capacity()) { push_unchecked(value); return true; } else { return false; } } // add items to the vector, from a span, without bounds checking void extend_unchecked(limb_span s) noexcept { limb* ptr = data + length; ::memcpy((void*)ptr, (const void*)s.ptr, sizeof(limb) * s.len()); set_len(len() + s.len()); } // try to add items to the vector, returning if items were added bool try_extend(limb_span s) noexcept { if (len() + s.len() <= capacity()) { extend_unchecked(s); return true; } else { return false; } } // resize the vector, without bounds checking // if the new size is longer than the vector, assign value to each // appended item. void resize_unchecked(size_t new_len, limb value) noexcept { if (new_len > len()) { size_t count = new_len - len(); limb* first = data + len(); limb* last = first + count; ::std::fill(first, last, value); set_len(new_len); } else { set_len(new_len); } } // try to resize the vector, returning if the vector was resized. bool try_resize(size_t new_len, limb value) noexcept { if (new_len > capacity()) { return false; } else { resize_unchecked(new_len, value); return true; } } // check if any limbs are non-zero after the given index. // this needs to be done in reverse order, since the index // is relative to the most significant limbs. FASTFLOAT_CONSTEXPR14 bool nonzero(size_t index) const noexcept { while (index < len()) { if (rindex(index) != 0) { return true; } index++; } return false; } // normalize the big integer, so most-significant zero limbs are removed. FASTFLOAT_CONSTEXPR14 void normalize() noexcept { while (len() > 0 && rindex(0) == 0) { length--; } } }; fastfloat_really_inline FASTFLOAT_CONSTEXPR14 uint64_t empty_hi64(bool& truncated) noexcept { truncated = false; return 0; } fastfloat_really_inline uint64_t uint64_hi64(uint64_t r0, bool& truncated) noexcept { truncated = false; int shl = leading_zeroes(r0); return r0 << shl; } fastfloat_really_inline uint64_t uint64_hi64(uint64_t r0, uint64_t r1, bool& truncated) noexcept { int shl = leading_zeroes(r0); if (shl == 0) { truncated = r1 != 0; return r0; } else { int shr = 64 - shl; truncated = (r1 << shl) != 0; return (r0 << shl) | (r1 >> shr); } } fastfloat_really_inline uint64_t uint32_hi64(uint32_t r0, bool& truncated) noexcept { return uint64_hi64(r0, truncated); } fastfloat_really_inline uint64_t uint32_hi64(uint32_t r0, uint32_t r1, bool& truncated) noexcept { uint64_t x0 = r0; uint64_t x1 = r1; return uint64_hi64((x0 << 32) | x1, truncated); } fastfloat_really_inline uint64_t uint32_hi64(uint32_t r0, uint32_t r1, uint32_t r2, bool& truncated) noexcept { uint64_t x0 = r0; uint64_t x1 = r1; uint64_t x2 = r2; return uint64_hi64(x0, (x1 << 32) | x2, truncated); } // add two small integers, checking for overflow. // we want an efficient operation. for msvc, where // we don't have built-in intrinsics, this is still // pretty fast. fastfloat_really_inline limb scalar_add(limb x, limb y, bool& overflow) noexcept { limb z; // gcc and clang #if defined(__has_builtin) #if __has_builtin(__builtin_add_overflow) overflow = __builtin_add_overflow(x, y, &z); return z; #endif #endif // generic, this still optimizes correctly on MSVC. z = x + y; overflow = z < x; return z; } // multiply two small integers, getting both the high and low bits. fastfloat_really_inline limb scalar_mul(limb x, limb y, limb& carry) noexcept { #ifdef FASTFLOAT_64BIT_LIMB #if defined(__SIZEOF_INT128__) // GCC and clang both define it as an extension. __uint128_t z = __uint128_t(x) * __uint128_t(y) + __uint128_t(carry); carry = limb(z >> limb_bits); return limb(z); #else // fallback, no native 128-bit integer multiplication with carry. // on msvc, this optimizes identically, somehow. value128 z = full_multiplication(x, y); bool overflow; z.low = scalar_add(z.low, carry, overflow); z.high += uint64_t(overflow); // cannot overflow carry = z.high; return z.low; #endif #else uint64_t z = uint64_t(x) * uint64_t(y) + uint64_t(carry); carry = limb(z >> limb_bits); return limb(z); #endif } // add scalar value to bigint starting from offset. // used in grade school multiplication template <uint16_t size> inline bool small_add_from(stackvec<size>& vec, limb y, size_t start) noexcept { size_t index = start; limb carry = y; bool overflow; while (carry != 0 && index < vec.len()) { vec[index] = scalar_add(vec[index], carry, overflow); carry = limb(overflow); index += 1; } if (carry != 0) { FASTFLOAT_TRY(vec.try_push(carry)); } return true; } // add scalar value to bigint. template <uint16_t size> fastfloat_really_inline bool small_add(stackvec<size>& vec, limb y) noexcept { return small_add_from(vec, y, 0); } // multiply bigint by scalar value. template <uint16_t size> inline bool small_mul(stackvec<size>& vec, limb y) noexcept { limb carry = 0; for (size_t index = 0; index < vec.len(); index++) { vec[index] = scalar_mul(vec[index], y, carry); } if (carry != 0) { FASTFLOAT_TRY(vec.try_push(carry)); } return true; } // add bigint to bigint starting from index. // used in grade school multiplication template <uint16_t size> bool large_add_from(stackvec<size>& x, limb_span y, size_t start) noexcept { // the effective x buffer is from `xstart..x.len()`, so exit early // if we can't get that current range. if (x.len() < start || y.len() > x.len() - start) { FASTFLOAT_TRY(x.try_resize(y.len() + start, 0)); } bool carry = false; for (size_t index = 0; index < y.len(); index++) { limb xi = x[index + start]; limb yi = y[index]; bool c1 = false; bool c2 = false; xi = scalar_add(xi, yi, c1); if (carry) { xi = scalar_add(xi, 1, c2); } x[index + start] = xi; carry = c1 | c2; } // handle overflow if (carry) { FASTFLOAT_TRY(small_add_from(x, 1, y.len() + start)); } return true; } // add bigint to bigint. template <uint16_t size> fastfloat_really_inline bool large_add_from(stackvec<size>& x, limb_span y) noexcept { return large_add_from(x, y, 0); } // grade-school multiplication algorithm template <uint16_t size> bool long_mul(stackvec<size>& x, limb_span y) noexcept { limb_span xs = limb_span(x.data, x.len()); stackvec<size> z(xs); limb_span zs = limb_span(z.data, z.len()); if (y.len() != 0) { limb y0 = y[0]; FASTFLOAT_TRY(small_mul(x, y0)); for (size_t index = 1; index < y.len(); index++) { limb yi = y[index]; stackvec<size> zi; if (yi != 0) { // re-use the same buffer throughout zi.set_len(0); FASTFLOAT_TRY(zi.try_extend(zs)); FASTFLOAT_TRY(small_mul(zi, yi)); limb_span zis = limb_span(zi.data, zi.len()); FASTFLOAT_TRY(large_add_from(x, zis, index)); } } } x.normalize(); return true; } // grade-school multiplication algorithm template <uint16_t size> bool large_mul(stackvec<size>& x, limb_span y) noexcept { if (y.len() == 1) { FASTFLOAT_TRY(small_mul(x, y[0])); } else { FASTFLOAT_TRY(long_mul(x, y)); } return true; } // big integer type. implements a small subset of big integer // arithmetic, using simple algorithms since asymptotically // faster algorithms are slower for a small number of limbs. // all operations assume the big-integer is normalized. struct bigint { // storage of the limbs, in little-endian order. stackvec<bigint_limbs> vec; bigint(): vec() {} bigint(const bigint &) = delete; bigint &operator=(const bigint &) = delete; bigint(bigint &&) = delete; bigint &operator=(bigint &&other) = delete; bigint(uint64_t value): vec() { #ifdef FASTFLOAT_64BIT_LIMB vec.push_unchecked(value); #else vec.push_unchecked(uint32_t(value)); vec.push_unchecked(uint32_t(value >> 32)); #endif vec.normalize(); } // get the high 64 bits from the vector, and if bits were truncated. // this is to get the significant digits for the float. uint64_t hi64(bool& truncated) const noexcept { #ifdef FASTFLOAT_64BIT_LIMB if (vec.len() == 0) { return empty_hi64(truncated); } else if (vec.len() == 1) { return uint64_hi64(vec.rindex(0), truncated); } else { uint64_t result = uint64_hi64(vec.rindex(0), vec.rindex(1), truncated); truncated |= vec.nonzero(2); return result; } #else if (vec.len() == 0) { return empty_hi64(truncated); } else if (vec.len() == 1) { return uint32_hi64(vec.rindex(0), truncated); } else if (vec.len() == 2) { return uint32_hi64(vec.rindex(0), vec.rindex(1), truncated); } else { uint64_t result = uint32_hi64(vec.rindex(0), vec.rindex(1), vec.rindex(2), truncated); truncated |= vec.nonzero(3); return result; } #endif } // compare two big integers, returning the large value. // assumes both are normalized. if the return value is // negative, other is larger, if the return value is // positive, this is larger, otherwise they are equal. // the limbs are stored in little-endian order, so we // must compare the limbs in ever order. int compare(const bigint& other) const noexcept { if (vec.len() > other.vec.len()) { return 1; } else if (vec.len() < other.vec.len()) { return -1; } else { for (size_t index = vec.len(); index > 0; index--) { limb xi = vec[index - 1]; limb yi = other.vec[index - 1]; if (xi > yi) { return 1; } else if (xi < yi) { return -1; } } return 0; } } // shift left each limb n bits, carrying over to the new limb // returns true if we were able to shift all the digits. bool shl_bits(size_t n) noexcept { // Internally, for each item, we shift left by n, and add the previous // right shifted limb-bits. // For example, we transform (for u8) shifted left 2, to: // b10100100 b01000010 // b10 b10010001 b00001000 FASTFLOAT_DEBUG_ASSERT(n != 0); FASTFLOAT_DEBUG_ASSERT(n < sizeof(limb) * 8); size_t shl = n; size_t shr = limb_bits - shl; limb prev = 0; for (size_t index = 0; index < vec.len(); index++) { limb xi = vec[index]; vec[index] = (xi << shl) | (prev >> shr); prev = xi; } limb carry = prev >> shr; if (carry != 0) { return vec.try_push(carry); } return true; } // move the limbs left by `n` limbs. bool shl_limbs(size_t n) noexcept { FASTFLOAT_DEBUG_ASSERT(n != 0); if (n + vec.len() > vec.capacity()) { return false; } else if (!vec.is_empty()) { // move limbs limb* dst = vec.data + n; const limb* src = vec.data; ::memmove(dst, src, sizeof(limb) * vec.len()); // fill in empty limbs limb* first = vec.data; limb* last = first + n; ::std::fill(first, last, 0); vec.set_len(n + vec.len()); return true; } else { return true; } } // move the limbs left by `n` bits. bool shl(size_t n) noexcept { size_t rem = n % limb_bits; size_t div = n / limb_bits; if (rem != 0) { FASTFLOAT_TRY(shl_bits(rem)); } if (div != 0) { FASTFLOAT_TRY(shl_limbs(div)); } return true; } // get the number of leading zeros in the bigint. int ctlz() const noexcept { if (vec.is_empty()) { return 0; } else { #ifdef FASTFLOAT_64BIT_LIMB return leading_zeroes(vec.rindex(0)); #else // no use defining a specialized leading_zeroes for a 32-bit type. uint64_t r0 = vec.rindex(0); return leading_zeroes(r0 << 32); #endif } } // get the number of bits in the bigint. int bit_length() const noexcept { int lz = ctlz(); return int(limb_bits * vec.len()) - lz; } bool mul(limb y) noexcept { return small_mul(vec, y); } bool add(limb y) noexcept { return small_add(vec, y); } // multiply as if by 2 raised to a power. bool pow2(uint32_t exp) noexcept { return shl(exp); } // multiply as if by 5 raised to a power. bool pow5(uint32_t exp) noexcept { // multiply by a power of 5 static constexpr uint32_t large_step = 135; static constexpr uint64_t small_power_of_5[] = { 1UL, 5UL, 25UL, 125UL, 625UL, 3125UL, 15625UL, 78125UL, 390625UL, 1953125UL, 9765625UL, 48828125UL, 244140625UL, 1220703125UL, 6103515625UL, 30517578125UL, 152587890625UL, 762939453125UL, 3814697265625UL, 19073486328125UL, 95367431640625UL, 476837158203125UL, 2384185791015625UL, 11920928955078125UL, 59604644775390625UL, 298023223876953125UL, 1490116119384765625UL, 7450580596923828125UL, }; #ifdef FASTFLOAT_64BIT_LIMB constexpr static limb large_power_of_5[] = { 1414648277510068013UL, 9180637584431281687UL, 4539964771860779200UL, 10482974169319127550UL, 198276706040285095UL}; #else constexpr static limb large_power_of_5[] = { 4279965485U, 329373468U, 4020270615U, 2137533757U, 4287402176U, 1057042919U, 1071430142U, 2440757623U, 381945767U, 46164893U}; #endif size_t large_length = sizeof(large_power_of_5) / sizeof(limb); limb_span large = limb_span(large_power_of_5, large_length); while (exp >= large_step) { FASTFLOAT_TRY(large_mul(vec, large)); exp -= large_step; } #ifdef FASTFLOAT_64BIT_LIMB uint32_t small_step = 27; limb max_native = 7450580596923828125UL; #else uint32_t small_step = 13; limb max_native = 1220703125U; #endif while (exp >= small_step) { FASTFLOAT_TRY(small_mul(vec, max_native)); exp -= small_step; } if (exp != 0) { FASTFLOAT_TRY(small_mul(vec, limb(small_power_of_5[exp]))); } return true; } // multiply as if by 10 raised to a power. bool pow10(uint32_t exp) noexcept { FASTFLOAT_TRY(pow5(exp)); return pow2(exp); } }; } // namespace fast_float #endif #ifndef FASTFLOAT_ASCII_NUMBER_H #define FASTFLOAT_ASCII_NUMBER_H #include <cctype> #include <cstdint> #include <cstring> #include <iterator> namespace fast_float { // Next function can be micro-optimized, but compilers are entirely // able to optimize it well. fastfloat_really_inline constexpr bool is_integer(char c) noexcept { return c >= '0' && c <= '9'; } fastfloat_really_inline constexpr uint64_t byteswap(uint64_t val) { return (val & 0xFF00000000000000) >> 56 | (val & 0x00FF000000000000) >> 40 | (val & 0x0000FF0000000000) >> 24 | (val & 0x000000FF00000000) >> 8 | (val & 0x00000000FF000000) << 8 | (val & 0x0000000000FF0000) << 24 | (val & 0x000000000000FF00) << 40 | (val & 0x00000000000000FF) << 56; } fastfloat_really_inline uint64_t read_u64(const char *chars) { uint64_t val; ::memcpy(&val, chars, sizeof(uint64_t)); #if FASTFLOAT_IS_BIG_ENDIAN == 1 // Need to read as-if the number was in little-endian order. val = byteswap(val); #endif return val; } fastfloat_really_inline void write_u64(uint8_t *chars, uint64_t val) { #if FASTFLOAT_IS_BIG_ENDIAN == 1 // Need to read as-if the number was in little-endian order. val = byteswap(val); #endif ::memcpy(chars, &val, sizeof(uint64_t)); } // credit @aqrit fastfloat_really_inline FASTFLOAT_CONSTEXPR14 uint32_t parse_eight_digits_unrolled(uint64_t val) { const uint64_t mask = 0x000000FF000000FF; const uint64_t mul1 = 0x000F424000000064; // 100 + (1000000ULL << 32) const uint64_t mul2 = 0x0000271000000001; // 1 + (10000ULL << 32) val -= 0x3030303030303030; val = (val * 10) + (val >> 8); // val = (val * 2561) >> 8; val = (((val & mask) * mul1) + (((val >> 16) & mask) * mul2)) >> 32; return uint32_t(val); } fastfloat_really_inline uint32_t parse_eight_digits_unrolled(const char *chars) noexcept { return parse_eight_digits_unrolled(read_u64(chars)); } // credit @aqrit fastfloat_really_inline constexpr bool is_made_of_eight_digits_fast(uint64_t val) noexcept { return !((((val + 0x4646464646464646) | (val - 0x3030303030303030)) & 0x8080808080808080)); } fastfloat_really_inline bool is_made_of_eight_digits_fast(const char *chars) noexcept { return is_made_of_eight_digits_fast(read_u64(chars)); } typedef span<const char> byte_span; struct parsed_number_string { int64_t exponent{0}; uint64_t mantissa{0}; const char *lastmatch{nullptr}; bool negative{false}; bool valid{false}; bool too_many_digits{false}; // contains the range of the significant digits byte_span integer{}; // non-nullable byte_span fraction{}; // nullable }; // Assuming that you use no more than 19 digits, this will // parse an ASCII string. fastfloat_really_inline parsed_number_string parse_number_string(const char *p, const char *pend, parse_options options) noexcept { const chars_format fmt = options.format; const char decimal_point = options.decimal_point; parsed_number_string answer; answer.valid = false; answer.too_many_digits = false; answer.negative = (*p == '-'); #if FASTFLOAT_ALLOWS_LEADING_PLUS // disabled by default if ((*p == '-') || (*p == '+')) { #else if (*p == '-') { // C++17 20.19.3.(7.1) explicitly forbids '+' sign here #endif ++p; if (p == pend) { return answer; } if (!is_integer(*p) && (*p != decimal_point)) { // a sign must be followed by an integer or the dot return answer; } } const char *const start_digits = p; uint64_t i = 0; // an unsigned int avoids signed overflows (which are bad) while ((p != pend) && is_integer(*p)) { // a multiplication by 10 is cheaper than an arbitrary integer // multiplication i = 10 * i + uint64_t(*p - '0'); // might overflow, we will handle the overflow later ++p; } const char *const end_of_integer_part = p; int64_t digit_count = int64_t(end_of_integer_part - start_digits); answer.integer = byte_span(start_digits, size_t(digit_count)); int64_t exponent = 0; if ((p != pend) && (*p == decimal_point)) { ++p; const char* before = p; // can occur at most twice without overflowing, but let it occur more, since // for integers with many digits, digit parsing is the primary bottleneck. while ((std::distance(p, pend) >= 8) && is_made_of_eight_digits_fast(p)) { i = i * 100000000 + parse_eight_digits_unrolled(p); // in rare cases, this will overflow, but that's ok p += 8; } while ((p != pend) && is_integer(*p)) { uint8_t digit = uint8_t(*p - '0'); ++p; i = i * 10 + digit; // in rare cases, this will overflow, but that's ok } exponent = before - p; answer.fraction = byte_span(before, size_t(p - before)); digit_count -= exponent; } // we must have encountered at least one integer! if (digit_count == 0) { return answer; } int64_t exp_number = 0; // explicit exponential part if ((fmt & chars_format::scientific) && (p != pend) && (('e' == *p) || ('E' == *p))) { const char * location_of_e = p; ++p; bool neg_exp = false; if ((p != pend) && ('-' == *p)) { neg_exp = true; ++p; } else if ((p != pend) && ('+' == *p)) { // '+' on exponent is allowed by C++17 20.19.3.(7.1) ++p; } if ((p == pend) || !is_integer(*p)) { if(!(fmt & chars_format::fixed)) { // We are in error. return answer; } // Otherwise, we will be ignoring the 'e'. p = location_of_e; } else { while ((p != pend) && is_integer(*p)) { uint8_t digit = uint8_t(*p - '0'); if (exp_number < 0x10000000) { exp_number = 10 * exp_number + digit; } ++p; } if(neg_exp) { exp_number = - exp_number; } exponent += exp_number; } } else { // If it scientific and not fixed, we have to bail out. if((fmt & chars_format::scientific) && !(fmt & chars_format::fixed)) { return answer; } } answer.lastmatch = p; answer.valid = true; // If we frequently had to deal with long strings of digits, // we could extend our code by using a 128-bit integer instead // of a 64-bit integer. However, this is uncommon. // // We can deal with up to 19 digits. if (digit_count > 19) { // this is uncommon // It is possible that the integer had an overflow. // We have to handle the case where we have 0.0000somenumber. // We need to be mindful of the case where we only have zeroes... // E.g., 0.000000000...000. const char *start = start_digits; while ((start != pend) && (*start == '0' || *start == decimal_point)) { if(*start == '0') { digit_count --; } start++; } if (digit_count > 19) { answer.too_many_digits = true; // Let us start again, this time, avoiding overflows. // We don't need to check if is_integer, since we use the // pre-tokenized spans from above. i = 0; p = answer.integer.ptr; const char* int_end = p + answer.integer.len(); const uint64_t minimal_nineteen_digit_integer{1000000000000000000}; while((i < minimal_nineteen_digit_integer) && (p != int_end)) { i = i * 10 + uint64_t(*p - '0'); ++p; } if (i >= minimal_nineteen_digit_integer) { // We have a big integers exponent = end_of_integer_part - p + exp_number; } else { // We have a value with a fractional component. p = answer.fraction.ptr; const char* frac_end = p + answer.fraction.len(); while((i < minimal_nineteen_digit_integer) && (p != frac_end)) { i = i * 10 + uint64_t(*p - '0'); ++p; } exponent = answer.fraction.ptr - p + exp_number; } // We have now corrected both exponent and i, to a truncated value } } answer.exponent = exponent; answer.mantissa = i; return answer; } } // namespace fast_float #endif #ifndef FASTFLOAT_DIGIT_COMPARISON_H #define FASTFLOAT_DIGIT_COMPARISON_H #include <algorithm> #include <cstdint> #include <cstring> #include <iterator> namespace fast_float { // 1e0 to 1e19 constexpr static uint64_t powers_of_ten_uint64[] = { 1UL, 10UL, 100UL, 1000UL, 10000UL, 100000UL, 1000000UL, 10000000UL, 100000000UL, 1000000000UL, 10000000000UL, 100000000000UL, 1000000000000UL, 10000000000000UL, 100000000000000UL, 1000000000000000UL, 10000000000000000UL, 100000000000000000UL, 1000000000000000000UL, 10000000000000000000UL}; // calculate the exponent, in scientific notation, of the number. // this algorithm is not even close to optimized, but it has no practical // effect on performance: in order to have a faster algorithm, we'd need // to slow down performance for faster algorithms, and this is still fast. fastfloat_really_inline FASTFLOAT_CONSTEXPR14 int32_t scientific_exponent(parsed_number_string& num) noexcept { uint64_t mantissa = num.mantissa; int32_t exponent = int32_t(num.exponent); while (mantissa >= 10000) { mantissa /= 10000; exponent += 4; } while (mantissa >= 100) { mantissa /= 100; exponent += 2; } while (mantissa >= 10) { mantissa /= 10; exponent += 1; } return exponent; } // this converts a native floating-point number to an extended-precision float. template <typename T> fastfloat_really_inline adjusted_mantissa to_extended(T value) noexcept { using equiv_uint = typename binary_format<T>::equiv_uint; constexpr equiv_uint exponent_mask = binary_format<T>::exponent_mask(); constexpr equiv_uint mantissa_mask = binary_format<T>::mantissa_mask(); constexpr equiv_uint hidden_bit_mask = binary_format<T>::hidden_bit_mask(); adjusted_mantissa am; int32_t bias = binary_format<T>::mantissa_explicit_bits() - binary_format<T>::minimum_exponent(); equiv_uint bits; ::memcpy(&bits, &value, sizeof(T)); if ((bits & exponent_mask) == 0) { // denormal am.power2 = 1 - bias; am.mantissa = bits & mantissa_mask; } else { // normal am.power2 = int32_t((bits & exponent_mask) >> binary_format<T>::mantissa_explicit_bits()); am.power2 -= bias; am.mantissa = (bits & mantissa_mask) | hidden_bit_mask; } return am; } // get the extended precision value of the halfway point between b and b+u. // we are given a native float that represents b, so we need to adjust it // halfway between b and b+u. template <typename T> fastfloat_really_inline adjusted_mantissa to_extended_halfway(T value) noexcept { adjusted_mantissa am = to_extended(value); am.mantissa <<= 1; am.mantissa += 1; am.power2 -= 1; return am; } // round an extended-precision float to the nearest machine float. template <typename T, typename callback> fastfloat_really_inline FASTFLOAT_CONSTEXPR14 void round(adjusted_mantissa& am, callback cb) noexcept { int32_t mantissa_shift = 64 - binary_format<T>::mantissa_explicit_bits() - 1; if (-am.power2 >= mantissa_shift) { // have a denormal float int32_t shift = -am.power2 + 1; cb(am, std::min<int32_t>(shift, 64)); // check for round-up: if rounding-nearest carried us to the hidden bit. am.power2 = (am.mantissa < (uint64_t(1) << binary_format<T>::mantissa_explicit_bits())) ? 0 : 1; return; } // have a normal float, use the default shift. cb(am, mantissa_shift); // check for carry if (am.mantissa >= (uint64_t(2) << binary_format<T>::mantissa_explicit_bits())) { am.mantissa = (uint64_t(1) << binary_format<T>::mantissa_explicit_bits()); am.power2++; } // check for infinite: we could have carried to an infinite power am.mantissa &= ~(uint64_t(1) << binary_format<T>::mantissa_explicit_bits()); if (am.power2 >= binary_format<T>::infinite_power()) { am.power2 = binary_format<T>::infinite_power(); am.mantissa = 0; } } template <typename callback> fastfloat_really_inline FASTFLOAT_CONSTEXPR14 void round_nearest_tie_even(adjusted_mantissa& am, int32_t shift, callback cb) noexcept { const uint64_t mask = (shift == 64) ? UINT64_MAX : (uint64_t(1) << shift) - 1; const uint64_t halfway = (shift == 0) ? 0 : uint64_t(1) << (shift - 1); uint64_t truncated_bits = am.mantissa & mask; bool is_above = truncated_bits > halfway; bool is_halfway = truncated_bits == halfway; // shift digits into position if (shift == 64) { am.mantissa = 0; } else { am.mantissa >>= shift; } am.power2 += shift; bool is_odd = (am.mantissa & 1) == 1; am.mantissa += uint64_t(cb(is_odd, is_halfway, is_above)); } fastfloat_really_inline FASTFLOAT_CONSTEXPR14 void round_down(adjusted_mantissa& am, int32_t shift) noexcept { if (shift == 64) { am.mantissa = 0; } else { am.mantissa >>= shift; } am.power2 += shift; } fastfloat_really_inline void skip_zeros(const char*& first, const char* last) noexcept { uint64_t val; while (std::distance(first, last) >= 8) { ::memcpy(&val, first, sizeof(uint64_t)); if (val != 0x3030303030303030) { break; } first += 8; } while (first != last) { if (*first != '0') { break; } first++; } } // determine if any non-zero digits were truncated. // all characters must be valid digits. fastfloat_really_inline bool is_truncated(const char* first, const char* last) noexcept { // do 8-bit optimizations, can just compare to 8 literal 0s. uint64_t val; while (std::distance(first, last) >= 8) { ::memcpy(&val, first, sizeof(uint64_t)); if (val != 0x3030303030303030) { return true; } first += 8; } while (first != last) { if (*first != '0') { return true; } first++; } return false; } fastfloat_really_inline bool is_truncated(byte_span s) noexcept { return is_truncated(s.ptr, s.ptr + s.len()); } fastfloat_really_inline void parse_eight_digits(const char*& p, limb& value, size_t& counter, size_t& count) noexcept { value = value * 100000000 + parse_eight_digits_unrolled(p); p += 8; counter += 8; count += 8; } fastfloat_really_inline FASTFLOAT_CONSTEXPR14 void parse_one_digit(const char*& p, limb& value, size_t& counter, size_t& count) noexcept { value = value * 10 + limb(*p - '0'); p++; counter++; count++; } fastfloat_really_inline void add_native(bigint& big, limb power, limb value) noexcept { big.mul(power); big.add(value); } fastfloat_really_inline void round_up_bigint(bigint& big, size_t& count) noexcept { // need to round-up the digits, but need to avoid rounding // ....9999 to ...10000, which could cause a false halfway point. add_native(big, 10, 1); count++; } // parse the significant digits into a big integer inline void parse_mantissa(bigint& result, parsed_number_string& num, size_t max_digits, size_t& digits) noexcept { // try to minimize the number of big integer and scalar multiplication. // therefore, try to parse 8 digits at a time, and multiply by the largest // scalar value (9 or 19 digits) for each step. size_t counter = 0; digits = 0; limb value = 0; #ifdef FASTFLOAT_64BIT_LIMB size_t step = 19; #else size_t step = 9; #endif // process all integer digits. const char* p = num.integer.ptr; const char* pend = p + num.integer.len(); skip_zeros(p, pend); // process all digits, in increments of step per loop while (p != pend) { while ((std::distance(p, pend) >= 8) && (step - counter >= 8) && (max_digits - digits >= 8)) { parse_eight_digits(p, value, counter, digits); } while (counter < step && p != pend && digits < max_digits) { parse_one_digit(p, value, counter, digits); } if (digits == max_digits) { // add the temporary value, then check if we've truncated any digits add_native(result, limb(powers_of_ten_uint64[counter]), value); bool truncated = is_truncated(p, pend); if (num.fraction.ptr != nullptr) { truncated |= is_truncated(num.fraction); } if (truncated) { round_up_bigint(result, digits); } return; } else { add_native(result, limb(powers_of_ten_uint64[counter]), value); counter = 0; value = 0; } } // add our fraction digits, if they're available. if (num.fraction.ptr != nullptr) { p = num.fraction.ptr; pend = p + num.fraction.len(); if (digits == 0) { skip_zeros(p, pend); } // process all digits, in increments of step per loop while (p != pend) { while ((std::distance(p, pend) >= 8) && (step - counter >= 8) && (max_digits - digits >= 8)) { parse_eight_digits(p, value, counter, digits); } while (counter < step && p != pend && digits < max_digits) { parse_one_digit(p, value, counter, digits); } if (digits == max_digits) { // add the temporary value, then check if we've truncated any digits add_native(result, limb(powers_of_ten_uint64[counter]), value); bool truncated = is_truncated(p, pend); if (truncated) { round_up_bigint(result, digits); } return; } else { add_native(result, limb(powers_of_ten_uint64[counter]), value); counter = 0; value = 0; } } } if (counter != 0) { add_native(result, limb(powers_of_ten_uint64[counter]), value); } } template <typename T> inline adjusted_mantissa positive_digit_comp(bigint& bigmant, int32_t exponent) noexcept { FASTFLOAT_ASSERT(bigmant.pow10(uint32_t(exponent))); adjusted_mantissa answer; bool truncated; answer.mantissa = bigmant.hi64(truncated); int bias = binary_format<T>::mantissa_explicit_bits() - binary_format<T>::minimum_exponent(); answer.power2 = bigmant.bit_length() - 64 + bias; round<T>(answer, [truncated](adjusted_mantissa& a, int32_t shift) { round_nearest_tie_even(a, shift, [truncated](bool is_odd, bool is_halfway, bool is_above) -> bool { return is_above || (is_halfway && truncated) || (is_odd && is_halfway); }); }); return answer; } // the scaling here is quite simple: we have, for the real digits `m * 10^e`, // and for the theoretical digits `n * 2^f`. Since `e` is always negative, // to scale them identically, we do `n * 2^f * 5^-f`, so we now have `m * 2^e`. // we then need to scale by `2^(f- e)`, and then the two significant digits // are of the same magnitude. template <typename T> inline adjusted_mantissa negative_digit_comp(bigint& bigmant, adjusted_mantissa am, int32_t exponent) noexcept { bigint& real_digits = bigmant; int32_t real_exp = exponent; // get the value of `b`, rounded down, and get a bigint representation of b+h adjusted_mantissa am_b = am; // gcc7 buf: use a lambda to remove the noexcept qualifier bug with -Wnoexcept-type. round<T>(am_b, [](adjusted_mantissa&a, int32_t shift) { round_down(a, shift); }); T b; to_float(false, am_b, b); adjusted_mantissa theor = to_extended_halfway(b); bigint theor_digits(theor.mantissa); int32_t theor_exp = theor.power2; // scale real digits and theor digits to be same power. int32_t pow2_exp = theor_exp - real_exp; uint32_t pow5_exp = uint32_t(-real_exp); if (pow5_exp != 0) { FASTFLOAT_ASSERT(theor_digits.pow5(pow5_exp)); } if (pow2_exp > 0) { FASTFLOAT_ASSERT(theor_digits.pow2(uint32_t(pow2_exp))); } else if (pow2_exp < 0) { FASTFLOAT_ASSERT(real_digits.pow2(uint32_t(-pow2_exp))); } // compare digits, and use it to director rounding int ord = real_digits.compare(theor_digits); adjusted_mantissa answer = am; round<T>(answer, [ord](adjusted_mantissa& a, int32_t shift) { round_nearest_tie_even(a, shift, [ord](bool is_odd, bool _, bool __) -> bool { (void)_; // not needed, since we've done our comparison (void)__; // not needed, since we've done our comparison if (ord > 0) { return true; } else if (ord < 0) { return false; } else { return is_odd; } }); }); return answer; } // parse the significant digits as a big integer to unambiguously round the // the significant digits. here, we are trying to determine how to round // an extended float representation close to `b+h`, halfway between `b` // (the float rounded-down) and `b+u`, the next positive float. this // algorithm is always correct, and uses one of two approaches. when // the exponent is positive relative to the significant digits (such as // 1234), we create a big-integer representation, get the high 64-bits, // determine if any lower bits are truncated, and use that to direct // rounding. in case of a negative exponent relative to the significant // digits (such as 1.2345), we create a theoretical representation of // `b` as a big-integer type, scaled to the same binary exponent as // the actual digits. we then compare the big integer representations // of both, and use that to direct rounding. template <typename T> inline adjusted_mantissa digit_comp(parsed_number_string& num, adjusted_mantissa am) noexcept { // remove the invalid exponent bias am.power2 -= invalid_am_bias; int32_t sci_exp = scientific_exponent(num); size_t max_digits = binary_format<T>::max_digits(); size_t digits = 0; bigint bigmant; parse_mantissa(bigmant, num, max_digits, digits); // can't underflow, since digits is at most max_digits. int32_t exponent = sci_exp + 1 - int32_t(digits); if (exponent >= 0) { return positive_digit_comp<T>(bigmant, exponent); } else { return negative_digit_comp<T>(bigmant, am, exponent); } } } // namespace fast_float #endif #ifndef FASTFLOAT_PARSE_NUMBER_H #define FASTFLOAT_PARSE_NUMBER_H #include <cmath> #include <cstring> #include <limits> #include <system_error> namespace fast_float { namespace detail { /** * Special case +inf, -inf, nan, infinity, -infinity. * The case comparisons could be made much faster given that we know that the * strings a null-free and fixed. **/ template <typename T> from_chars_result parse_infnan(const char *first, const char *last, T &value) noexcept { from_chars_result answer; answer.ptr = first; answer.ec = std::errc(); // be optimistic bool minusSign = false; if (*first == '-') { // assume first < last, so dereference without checks; C++17 20.19.3.(7.1) explicitly forbids '+' here minusSign = true; ++first; } if (last - first >= 3) { if (fastfloat_strncasecmp(first, "nan", 3)) { answer.ptr = (first += 3); value = minusSign ? -std::numeric_limits<T>::quiet_NaN() : std::numeric_limits<T>::quiet_NaN(); // Check for possible nan(n-char-seq-opt), C++17 20.19.3.7, C11 7.20.1.3.3. At least MSVC produces nan(ind) and nan(snan). if(first != last && *first == '(') { for(const char* ptr = first + 1; ptr != last; ++ptr) { if (*ptr == ')') { answer.ptr = ptr + 1; // valid nan(n-char-seq-opt) break; } else if(!(('a' <= *ptr && *ptr <= 'z') || ('A' <= *ptr && *ptr <= 'Z') || ('0' <= *ptr && *ptr <= '9') || *ptr == '_')) break; // forbidden char, not nan(n-char-seq-opt) } } return answer; } if (fastfloat_strncasecmp(first, "inf", 3)) { if ((last - first >= 8) && fastfloat_strncasecmp(first + 3, "inity", 5)) { answer.ptr = first + 8; } else { answer.ptr = first + 3; } value = minusSign ? -std::numeric_limits<T>::infinity() : std::numeric_limits<T>::infinity(); return answer; } } answer.ec = std::errc::invalid_argument; return answer; } /** * Returns true if the floating-pointing rounding mode is to 'nearest'. * It is the default on most system. This function is meant to be inexpensive. * Credit : @mwalcott3 */ fastfloat_really_inline bool rounds_to_nearest() noexcept { // https://lemire.me/blog/2020/06/26/gcc-not-nearest/ #if (FLT_EVAL_METHOD != 1) && (FLT_EVAL_METHOD != 0) return false; #endif // See // A fast function to check your floating-point rounding mode // https://lemire.me/blog/2022/11/16/a-fast-function-to-check-your-floating-point-rounding-mode/ // // This function is meant to be equivalent to : // prior: #include <cfenv> // return fegetround() == FE_TONEAREST; // However, it is expected to be much faster than the fegetround() // function call. // // The volatile keywoard prevents the compiler from computing the function // at compile-time. // There might be other ways to prevent compile-time optimizations (e.g., asm). // The value does not need to be std::numeric_limits<float>::min(), any small // value so that 1 + x should round to 1 would do (after accounting for excess // precision, as in 387 instructions). static volatile float fmin = std::numeric_limits<float>::min(); float fmini = fmin; // we copy it so that it gets loaded at most once. // // Explanation: // Only when fegetround() == FE_TONEAREST do we have that // fmin + 1.0f == 1.0f - fmin. // // FE_UPWARD: // fmin + 1.0f > 1 // 1.0f - fmin == 1 // // FE_DOWNWARD or FE_TOWARDZERO: // fmin + 1.0f == 1 // 1.0f - fmin < 1 // // Note: This may fail to be accurate if fast-math has been // enabled, as rounding conventions may not apply. #if FASTFLOAT_VISUAL_STUDIO # pragma warning(push) // todo: is there a VS warning? // see https://stackoverflow.com/questions/46079446/is-there-a-warning-for-floating-point-equality-checking-in-visual-studio-2013 #elif defined(__clang__) # pragma clang diagnostic push # pragma clang diagnostic ignored "-Wfloat-equal" #elif defined(__GNUC__) # pragma GCC diagnostic push # pragma GCC diagnostic ignored "-Wfloat-equal" #endif return (fmini + 1.0f == 1.0f - fmini); #if FASTFLOAT_VISUAL_STUDIO # pragma warning(pop) #elif defined(__clang__) # pragma clang diagnostic pop #elif defined(__GNUC__) # pragma GCC diagnostic pop #endif } } // namespace detail template<typename T> from_chars_result from_chars(const char *first, const char *last, T &value, chars_format fmt /*= chars_format::general*/) noexcept { return from_chars_advanced(first, last, value, parse_options{fmt}); } template<typename T> from_chars_result from_chars_advanced(const char *first, const char *last, T &value, parse_options options) noexcept { static_assert (std::is_same<T, double>::value || std::is_same<T, float>::value, "only float and double are supported"); from_chars_result answer; #if FASTFLOAT_SKIP_WHITE_SPACE // disabled by default while ((first != last) && fast_float::is_space(uint8_t(*first))) { first++; } #endif if (first == last) { answer.ec = std::errc::invalid_argument; answer.ptr = first; return answer; } parsed_number_string pns = parse_number_string(first, last, options); if (!pns.valid) { return detail::parse_infnan(first, last, value); } answer.ec = std::errc(); // be optimistic answer.ptr = pns.lastmatch; // The implementation of the Clinger's fast path is convoluted because // we want round-to-nearest in all cases, irrespective of the rounding mode // selected on the thread. // We proceed optimistically, assuming that detail::rounds_to_nearest() returns // true. if (binary_format<T>::min_exponent_fast_path() <= pns.exponent && pns.exponent <= binary_format<T>::max_exponent_fast_path() && !pns.too_many_digits) { // Unfortunately, the conventional Clinger's fast path is only possible // when the system rounds to the nearest float. // // We expect the next branch to almost always be selected. // We could check it first (before the previous branch), but // there might be performance advantages at having the check // be last. if(detail::rounds_to_nearest()) { // We have that fegetround() == FE_TONEAREST. // Next is Clinger's fast path. if (pns.mantissa <=binary_format<T>::max_mantissa_fast_path()) { value = T(pns.mantissa); if (pns.exponent < 0) { value = value / binary_format<T>::exact_power_of_ten(-pns.exponent); } else { value = value * binary_format<T>::exact_power_of_ten(pns.exponent); } if (pns.negative) { value = -value; } return answer; } } else { // We do not have that fegetround() == FE_TONEAREST. // Next is a modified Clinger's fast path, inspired by Jakub JelĂnek's proposal if (pns.exponent >= 0 && pns.mantissa <=binary_format<T>::max_mantissa_fast_path(pns.exponent)) { #if defined(__clang__) // Clang may map 0 to -0.0 when fegetround() == FE_DOWNWARD if(pns.mantissa == 0) { value = 0; return answer; } #endif value = T(pns.mantissa) * binary_format<T>::exact_power_of_ten(pns.exponent); if (pns.negative) { value = -value; } return answer; } } } adjusted_mantissa am = compute_float<binary_format<T>>(pns.exponent, pns.mantissa); if(pns.too_many_digits && am.power2 >= 0) { if(am != compute_float<binary_format<T>>(pns.exponent, pns.mantissa + 1)) { am = compute_error<binary_format<T>>(pns.exponent, pns.mantissa); } } // If we called compute_float<binary_format<T>>(pns.exponent, pns.mantissa) and we have an invalid power (am.power2 < 0), // then we need to go the long way around again. This is very uncommon. if(am.power2 < 0) { am = digit_comp<T>(pns, am); } to_float(pns.negative, am, value); return answer; } } // namespace fast_float #endif namespace fast_float { template from_chars_result from_chars<double>(const char*, const char*, double&, chars_format); }
Become a Patron
Sponsor on GitHub
Donate via PayPal
Source on GitHub
Mailing list
Installed libraries
Wiki
Report an issue
How it works
Contact the author
CE on Mastodon
About the author
Statistics
Changelog
Version tree