Thanks for using Compiler Explorer
Sponsors
Jakt
C++
Ada
Analysis
Android Java
Android Kotlin
Assembly
C
C3
Carbon
C++ (Circle)
CIRCT
Clean
CMake
CMakeScript
COBOL
C++ for OpenCL
MLIR
Cppx
Cppx-Blue
Cppx-Gold
Cpp2-cppfront
Crystal
C#
CUDA C++
D
Dart
Elixir
Erlang
Fortran
F#
GLSL
Go
Haskell
HLSL
Hook
Hylo
IL
ispc
Java
Julia
Kotlin
LLVM IR
LLVM MIR
Modula-2
Nim
Objective-C
Objective-C++
OCaml
OpenCL C
Pascal
Pony
Python
Racket
Ruby
Rust
Snowball
Scala
Solidity
Spice
SPIR-V
Swift
LLVM TableGen
Toit
TypeScript Native
V
Vala
Visual Basic
WASM
Zig
Javascript
GIMPLE
Ygen
c++ source #1
Output
Compile to binary object
Link to binary
Execute the code
Intel asm syntax
Demangle identifiers
Verbose demangling
Filters
Unused labels
Library functions
Directives
Comments
Horizontal whitespace
Debug intrinsics
Compiler
6502-c++ 11.1.0
ARM GCC 10.2.0
ARM GCC 10.3.0
ARM GCC 10.4.0
ARM GCC 10.5.0
ARM GCC 11.1.0
ARM GCC 11.2.0
ARM GCC 11.3.0
ARM GCC 11.4.0
ARM GCC 12.1.0
ARM GCC 12.2.0
ARM GCC 12.3.0
ARM GCC 12.4.0
ARM GCC 13.1.0
ARM GCC 13.2.0
ARM GCC 13.2.0 (unknown-eabi)
ARM GCC 13.3.0
ARM GCC 13.3.0 (unknown-eabi)
ARM GCC 14.1.0
ARM GCC 14.1.0 (unknown-eabi)
ARM GCC 14.2.0
ARM GCC 14.2.0 (unknown-eabi)
ARM GCC 4.5.4
ARM GCC 4.6.4
ARM GCC 5.4
ARM GCC 6.3.0
ARM GCC 6.4.0
ARM GCC 7.3.0
ARM GCC 7.5.0
ARM GCC 8.2.0
ARM GCC 8.5.0
ARM GCC 9.3.0
ARM GCC 9.4.0
ARM GCC 9.5.0
ARM GCC trunk
ARM gcc 10.2.1 (none)
ARM gcc 10.3.1 (2021.07 none)
ARM gcc 10.3.1 (2021.10 none)
ARM gcc 11.2.1 (none)
ARM gcc 5.4.1 (none)
ARM gcc 7.2.1 (none)
ARM gcc 8.2 (WinCE)
ARM gcc 8.3.1 (none)
ARM gcc 9.2.1 (none)
ARM msvc v19.0 (WINE)
ARM msvc v19.10 (WINE)
ARM msvc v19.14 (WINE)
ARM64 Morello gcc 10.1 Alpha 2
ARM64 gcc 10.2
ARM64 gcc 10.3
ARM64 gcc 10.4
ARM64 gcc 10.5.0
ARM64 gcc 11.1
ARM64 gcc 11.2
ARM64 gcc 11.3
ARM64 gcc 11.4.0
ARM64 gcc 12.1
ARM64 gcc 12.2.0
ARM64 gcc 12.3.0
ARM64 gcc 12.4.0
ARM64 gcc 13.1.0
ARM64 gcc 13.2.0
ARM64 gcc 13.3.0
ARM64 gcc 14.1.0
ARM64 gcc 14.2.0
ARM64 gcc 4.9.4
ARM64 gcc 5.4
ARM64 gcc 5.5.0
ARM64 gcc 6.3
ARM64 gcc 6.4
ARM64 gcc 7.3
ARM64 gcc 7.5
ARM64 gcc 8.2
ARM64 gcc 8.5
ARM64 gcc 9.3
ARM64 gcc 9.4
ARM64 gcc 9.5
ARM64 gcc trunk
ARM64 msvc v19.14 (WINE)
AVR gcc 10.3.0
AVR gcc 11.1.0
AVR gcc 12.1.0
AVR gcc 12.2.0
AVR gcc 12.3.0
AVR gcc 12.4.0
AVR gcc 13.1.0
AVR gcc 13.2.0
AVR gcc 13.3.0
AVR gcc 14.1.0
AVR gcc 14.2.0
AVR gcc 4.5.4
AVR gcc 4.6.4
AVR gcc 5.4.0
AVR gcc 9.2.0
AVR gcc 9.3.0
Arduino Mega (1.8.9)
Arduino Uno (1.8.9)
BPF clang (trunk)
BPF clang 13.0.0
BPF clang 14.0.0
BPF clang 15.0.0
BPF clang 16.0.0
BPF clang 17.0.1
BPF clang 18.1.0
BPF clang 19.1.0
BPF gcc 13.1.0
BPF gcc 13.2.0
BPF gcc 13.3.0
BPF gcc trunk
EDG (experimental reflection)
EDG 6.5
EDG 6.5 (GNU mode gcc 13)
EDG 6.6
EDG 6.6 (GNU mode gcc 13)
FRC 2019
FRC 2020
FRC 2023
HPPA gcc 14.2.0
KVX ACB 4.1.0 (GCC 7.5.0)
KVX ACB 4.1.0-cd1 (GCC 7.5.0)
KVX ACB 4.10.0 (GCC 10.3.1)
KVX ACB 4.11.1 (GCC 10.3.1)
KVX ACB 4.12.0 (GCC 11.3.0)
KVX ACB 4.2.0 (GCC 7.5.0)
KVX ACB 4.3.0 (GCC 7.5.0)
KVX ACB 4.4.0 (GCC 7.5.0)
KVX ACB 4.6.0 (GCC 9.4.1)
KVX ACB 4.8.0 (GCC 9.4.1)
KVX ACB 4.9.0 (GCC 9.4.1)
KVX ACB 5.0.0 (GCC 12.2.1)
KVX ACB 5.2.0 (GCC 13.2.1)
LoongArch64 clang (trunk)
LoongArch64 clang 17.0.1
LoongArch64 clang 18.1.0
LoongArch64 clang 19.1.0
M68K gcc 13.1.0
M68K gcc 13.2.0
M68K gcc 13.3.0
M68K gcc 14.1.0
M68K gcc 14.2.0
M68k clang (trunk)
MRISC32 gcc (trunk)
MSP430 gcc 4.5.3
MSP430 gcc 5.3.0
MSP430 gcc 6.2.1
MinGW clang 14.0.3
MinGW clang 14.0.6
MinGW clang 15.0.7
MinGW clang 16.0.0
MinGW clang 16.0.2
MinGW gcc 11.3.0
MinGW gcc 12.1.0
MinGW gcc 12.2.0
MinGW gcc 13.1.0
RISC-V (32-bits) gcc (trunk)
RISC-V (32-bits) gcc 10.2.0
RISC-V (32-bits) gcc 10.3.0
RISC-V (32-bits) gcc 11.2.0
RISC-V (32-bits) gcc 11.3.0
RISC-V (32-bits) gcc 11.4.0
RISC-V (32-bits) gcc 12.1.0
RISC-V (32-bits) gcc 12.2.0
RISC-V (32-bits) gcc 12.3.0
RISC-V (32-bits) gcc 12.4.0
RISC-V (32-bits) gcc 13.1.0
RISC-V (32-bits) gcc 13.2.0
RISC-V (32-bits) gcc 13.3.0
RISC-V (32-bits) gcc 14.1.0
RISC-V (32-bits) gcc 14.2.0
RISC-V (32-bits) gcc 8.2.0
RISC-V (32-bits) gcc 8.5.0
RISC-V (32-bits) gcc 9.4.0
RISC-V (64-bits) gcc (trunk)
RISC-V (64-bits) gcc 10.2.0
RISC-V (64-bits) gcc 10.3.0
RISC-V (64-bits) gcc 11.2.0
RISC-V (64-bits) gcc 11.3.0
RISC-V (64-bits) gcc 11.4.0
RISC-V (64-bits) gcc 12.1.0
RISC-V (64-bits) gcc 12.2.0
RISC-V (64-bits) gcc 12.3.0
RISC-V (64-bits) gcc 12.4.0
RISC-V (64-bits) gcc 13.1.0
RISC-V (64-bits) gcc 13.2.0
RISC-V (64-bits) gcc 13.3.0
RISC-V (64-bits) gcc 14.1.0
RISC-V (64-bits) gcc 14.2.0
RISC-V (64-bits) gcc 8.2.0
RISC-V (64-bits) gcc 8.5.0
RISC-V (64-bits) gcc 9.4.0
RISC-V rv32gc clang (trunk)
RISC-V rv32gc clang 10.0.0
RISC-V rv32gc clang 10.0.1
RISC-V rv32gc clang 11.0.0
RISC-V rv32gc clang 11.0.1
RISC-V rv32gc clang 12.0.0
RISC-V rv32gc clang 12.0.1
RISC-V rv32gc clang 13.0.0
RISC-V rv32gc clang 13.0.1
RISC-V rv32gc clang 14.0.0
RISC-V rv32gc clang 15.0.0
RISC-V rv32gc clang 16.0.0
RISC-V rv32gc clang 17.0.1
RISC-V rv32gc clang 18.1.0
RISC-V rv32gc clang 19.1.0
RISC-V rv32gc clang 9.0.0
RISC-V rv32gc clang 9.0.1
RISC-V rv64gc clang (trunk)
RISC-V rv64gc clang 10.0.0
RISC-V rv64gc clang 10.0.1
RISC-V rv64gc clang 11.0.0
RISC-V rv64gc clang 11.0.1
RISC-V rv64gc clang 12.0.0
RISC-V rv64gc clang 12.0.1
RISC-V rv64gc clang 13.0.0
RISC-V rv64gc clang 13.0.1
RISC-V rv64gc clang 14.0.0
RISC-V rv64gc clang 15.0.0
RISC-V rv64gc clang 16.0.0
RISC-V rv64gc clang 17.0.1
RISC-V rv64gc clang 18.1.0
RISC-V rv64gc clang 19.1.0
RISC-V rv64gc clang 9.0.0
RISC-V rv64gc clang 9.0.1
Raspbian Buster
Raspbian Stretch
SPARC LEON gcc 12.2.0
SPARC LEON gcc 12.3.0
SPARC LEON gcc 12.4.0
SPARC LEON gcc 13.1.0
SPARC LEON gcc 13.2.0
SPARC LEON gcc 13.3.0
SPARC LEON gcc 14.1.0
SPARC LEON gcc 14.2.0
SPARC gcc 12.2.0
SPARC gcc 12.3.0
SPARC gcc 12.4.0
SPARC gcc 13.1.0
SPARC gcc 13.2.0
SPARC gcc 13.3.0
SPARC gcc 14.1.0
SPARC gcc 14.2.0
SPARC64 gcc 12.2.0
SPARC64 gcc 12.3.0
SPARC64 gcc 12.4.0
SPARC64 gcc 13.1.0
SPARC64 gcc 13.2.0
SPARC64 gcc 13.3.0
SPARC64 gcc 14.1.0
SPARC64 gcc 14.2.0
TI C6x gcc 12.2.0
TI C6x gcc 12.3.0
TI C6x gcc 12.4.0
TI C6x gcc 13.1.0
TI C6x gcc 13.2.0
TI C6x gcc 13.3.0
TI C6x gcc 14.1.0
TI C6x gcc 14.2.0
TI CL430 21.6.1
VAX gcc NetBSDELF 10.4.0
VAX gcc NetBSDELF 10.5.0 (Nov 15 03:50:22 2023)
WebAssembly clang (trunk)
Xtensa ESP32 gcc 11.2.0 (2022r1)
Xtensa ESP32 gcc 12.2.0 (20230208)
Xtensa ESP32 gcc 8.2.0 (2019r2)
Xtensa ESP32 gcc 8.2.0 (2020r1)
Xtensa ESP32 gcc 8.2.0 (2020r2)
Xtensa ESP32 gcc 8.4.0 (2020r3)
Xtensa ESP32 gcc 8.4.0 (2021r1)
Xtensa ESP32 gcc 8.4.0 (2021r2)
Xtensa ESP32-S2 gcc 11.2.0 (2022r1)
Xtensa ESP32-S2 gcc 12.2.0 (20230208)
Xtensa ESP32-S2 gcc 8.2.0 (2019r2)
Xtensa ESP32-S2 gcc 8.2.0 (2020r1)
Xtensa ESP32-S2 gcc 8.2.0 (2020r2)
Xtensa ESP32-S2 gcc 8.4.0 (2020r3)
Xtensa ESP32-S2 gcc 8.4.0 (2021r1)
Xtensa ESP32-S2 gcc 8.4.0 (2021r2)
Xtensa ESP32-S3 gcc 11.2.0 (2022r1)
Xtensa ESP32-S3 gcc 12.2.0 (20230208)
Xtensa ESP32-S3 gcc 8.4.0 (2020r3)
Xtensa ESP32-S3 gcc 8.4.0 (2021r1)
Xtensa ESP32-S3 gcc 8.4.0 (2021r2)
arm64 msvc v19.20 VS16.0
arm64 msvc v19.21 VS16.1
arm64 msvc v19.22 VS16.2
arm64 msvc v19.23 VS16.3
arm64 msvc v19.24 VS16.4
arm64 msvc v19.25 VS16.5
arm64 msvc v19.27 VS16.7
arm64 msvc v19.28 VS16.8
arm64 msvc v19.28 VS16.9
arm64 msvc v19.29 VS16.10
arm64 msvc v19.29 VS16.11
arm64 msvc v19.30 VS17.0
arm64 msvc v19.31 VS17.1
arm64 msvc v19.32 VS17.2
arm64 msvc v19.33 VS17.3
arm64 msvc v19.34 VS17.4
arm64 msvc v19.35 VS17.5
arm64 msvc v19.36 VS17.6
arm64 msvc v19.37 VS17.7
arm64 msvc v19.38 VS17.8
arm64 msvc v19.39 VS17.9
arm64 msvc v19.40 VS17.10
arm64 msvc v19.latest
armv7-a clang (trunk)
armv7-a clang 10.0.0
armv7-a clang 10.0.1
armv7-a clang 11.0.0
armv7-a clang 11.0.1
armv7-a clang 12.0.0
armv7-a clang 12.0.1
armv7-a clang 13.0.0
armv7-a clang 13.0.1
armv7-a clang 14.0.0
armv7-a clang 15.0.0
armv7-a clang 16.0.0
armv7-a clang 17.0.1
armv7-a clang 18.1.0
armv7-a clang 19.1.0
armv7-a clang 9.0.0
armv7-a clang 9.0.1
armv8-a clang (all architectural features, trunk)
armv8-a clang (trunk)
armv8-a clang 10.0.0
armv8-a clang 10.0.1
armv8-a clang 11.0.0
armv8-a clang 11.0.1
armv8-a clang 12.0.0
armv8-a clang 13.0.0
armv8-a clang 14.0.0
armv8-a clang 15.0.0
armv8-a clang 16.0.0
armv8-a clang 17.0.1
armv8-a clang 18.1.0
armv8-a clang 19.1.0
armv8-a clang 9.0.0
armv8-a clang 9.0.1
clang-cl 18.1.0
ellcc 0.1.33
ellcc 0.1.34
ellcc 2017-07-16
hexagon-clang 16.0.5
llvm-mos atari2600-3e
llvm-mos atari2600-4k
llvm-mos atari2600-common
llvm-mos atari5200-supercart
llvm-mos atari8-cart-megacart
llvm-mos atari8-cart-std
llvm-mos atari8-cart-xegs
llvm-mos atari8-common
llvm-mos atari8-dos
llvm-mos c128
llvm-mos c64
llvm-mos commodore
llvm-mos cpm65
llvm-mos cx16
llvm-mos dodo
llvm-mos eater
llvm-mos mega65
llvm-mos nes
llvm-mos nes-action53
llvm-mos nes-cnrom
llvm-mos nes-gtrom
llvm-mos nes-mmc1
llvm-mos nes-mmc3
llvm-mos nes-nrom
llvm-mos nes-unrom
llvm-mos nes-unrom-512
llvm-mos osi-c1p
llvm-mos pce
llvm-mos pce-cd
llvm-mos pce-common
llvm-mos pet
llvm-mos rp6502
llvm-mos rpc8e
llvm-mos supervision
llvm-mos vic20
loongarch64 gcc 12.2.0
loongarch64 gcc 12.3.0
loongarch64 gcc 12.4.0
loongarch64 gcc 13.1.0
loongarch64 gcc 13.2.0
loongarch64 gcc 13.3.0
loongarch64 gcc 14.1.0
loongarch64 gcc 14.2.0
mips clang 13.0.0
mips clang 14.0.0
mips clang 15.0.0
mips clang 16.0.0
mips clang 17.0.1
mips clang 18.1.0
mips clang 19.1.0
mips gcc 11.2.0
mips gcc 12.1.0
mips gcc 12.2.0
mips gcc 12.3.0
mips gcc 12.4.0
mips gcc 13.1.0
mips gcc 13.2.0
mips gcc 13.3.0
mips gcc 14.1.0
mips gcc 14.2.0
mips gcc 4.9.4
mips gcc 5.4
mips gcc 5.5.0
mips gcc 9.3.0 (codescape)
mips gcc 9.5.0
mips64 (el) gcc 12.1.0
mips64 (el) gcc 12.2.0
mips64 (el) gcc 12.3.0
mips64 (el) gcc 12.4.0
mips64 (el) gcc 13.1.0
mips64 (el) gcc 13.2.0
mips64 (el) gcc 13.3.0
mips64 (el) gcc 14.1.0
mips64 (el) gcc 14.2.0
mips64 (el) gcc 4.9.4
mips64 (el) gcc 5.4.0
mips64 (el) gcc 5.5.0
mips64 (el) gcc 9.5.0
mips64 clang 13.0.0
mips64 clang 14.0.0
mips64 clang 15.0.0
mips64 clang 16.0.0
mips64 clang 17.0.1
mips64 clang 18.1.0
mips64 clang 19.1.0
mips64 gcc 11.2.0
mips64 gcc 12.1.0
mips64 gcc 12.2.0
mips64 gcc 12.3.0
mips64 gcc 12.4.0
mips64 gcc 13.1.0
mips64 gcc 13.2.0
mips64 gcc 13.3.0
mips64 gcc 14.1.0
mips64 gcc 14.2.0
mips64 gcc 4.9.4
mips64 gcc 5.4.0
mips64 gcc 5.5.0
mips64 gcc 9.5.0
mips64el clang 13.0.0
mips64el clang 14.0.0
mips64el clang 15.0.0
mips64el clang 16.0.0
mips64el clang 17.0.1
mips64el clang 18.1.0
mips64el clang 19.1.0
mipsel clang 13.0.0
mipsel clang 14.0.0
mipsel clang 15.0.0
mipsel clang 16.0.0
mipsel clang 17.0.1
mipsel clang 18.1.0
mipsel clang 19.1.0
mipsel gcc 12.1.0
mipsel gcc 12.2.0
mipsel gcc 12.3.0
mipsel gcc 12.4.0
mipsel gcc 13.1.0
mipsel gcc 13.2.0
mipsel gcc 13.3.0
mipsel gcc 14.1.0
mipsel gcc 14.2.0
mipsel gcc 4.9.4
mipsel gcc 5.4.0
mipsel gcc 5.5.0
mipsel gcc 9.5.0
nanoMIPS gcc 6.3.0 (mtk)
power gcc 11.2.0
power gcc 12.1.0
power gcc 12.2.0
power gcc 12.3.0
power gcc 12.4.0
power gcc 13.1.0
power gcc 13.2.0
power gcc 13.3.0
power gcc 14.1.0
power gcc 14.2.0
power gcc 4.8.5
power64 AT12.0 (gcc8)
power64 AT13.0 (gcc9)
power64 gcc 11.2.0
power64 gcc 12.1.0
power64 gcc 12.2.0
power64 gcc 12.3.0
power64 gcc 12.4.0
power64 gcc 13.1.0
power64 gcc 13.2.0
power64 gcc 13.3.0
power64 gcc 14.1.0
power64 gcc 14.2.0
power64 gcc trunk
power64le AT12.0 (gcc8)
power64le AT13.0 (gcc9)
power64le clang (trunk)
power64le gcc 11.2.0
power64le gcc 12.1.0
power64le gcc 12.2.0
power64le gcc 12.3.0
power64le gcc 12.4.0
power64le gcc 13.1.0
power64le gcc 13.2.0
power64le gcc 13.3.0
power64le gcc 14.1.0
power64le gcc 14.2.0
power64le gcc 6.3.0
power64le gcc trunk
powerpc64 clang (trunk)
s390x gcc 11.2.0
s390x gcc 12.1.0
s390x gcc 12.2.0
s390x gcc 12.3.0
s390x gcc 12.4.0
s390x gcc 13.1.0
s390x gcc 13.2.0
s390x gcc 13.3.0
s390x gcc 14.1.0
s390x gcc 14.2.0
sh gcc 12.2.0
sh gcc 12.3.0
sh gcc 12.4.0
sh gcc 13.1.0
sh gcc 13.2.0
sh gcc 13.3.0
sh gcc 14.1.0
sh gcc 14.2.0
sh gcc 4.9.4
sh gcc 9.5.0
vast (trunk)
x64 msvc v19.0 (WINE)
x64 msvc v19.10 (WINE)
x64 msvc v19.14 (WINE)
x64 msvc v19.20 VS16.0
x64 msvc v19.21 VS16.1
x64 msvc v19.22 VS16.2
x64 msvc v19.23 VS16.3
x64 msvc v19.24 VS16.4
x64 msvc v19.25 VS16.5
x64 msvc v19.27 VS16.7
x64 msvc v19.28 VS16.8
x64 msvc v19.28 VS16.9
x64 msvc v19.29 VS16.10
x64 msvc v19.29 VS16.11
x64 msvc v19.30 VS17.0
x64 msvc v19.31 VS17.1
x64 msvc v19.32 VS17.2
x64 msvc v19.33 VS17.3
x64 msvc v19.34 VS17.4
x64 msvc v19.35 VS17.5
x64 msvc v19.36 VS17.6
x64 msvc v19.37 VS17.7
x64 msvc v19.38 VS17.8
x64 msvc v19.39 VS17.9
x64 msvc v19.40 VS17.10
x64 msvc v19.latest
x86 djgpp 4.9.4
x86 djgpp 5.5.0
x86 djgpp 6.4.0
x86 djgpp 7.2.0
x86 msvc v19.0 (WINE)
x86 msvc v19.10 (WINE)
x86 msvc v19.14 (WINE)
x86 msvc v19.20 VS16.0
x86 msvc v19.21 VS16.1
x86 msvc v19.22 VS16.2
x86 msvc v19.23 VS16.3
x86 msvc v19.24 VS16.4
x86 msvc v19.25 VS16.5
x86 msvc v19.27 VS16.7
x86 msvc v19.28 VS16.8
x86 msvc v19.28 VS16.9
x86 msvc v19.29 VS16.10
x86 msvc v19.29 VS16.11
x86 msvc v19.30 VS17.0
x86 msvc v19.31 VS17.1
x86 msvc v19.32 VS17.2
x86 msvc v19.33 VS17.3
x86 msvc v19.34 VS17.4
x86 msvc v19.35 VS17.5
x86 msvc v19.36 VS17.6
x86 msvc v19.37 VS17.7
x86 msvc v19.38 VS17.8
x86 msvc v19.39 VS17.9
x86 msvc v19.40 VS17.10
x86 msvc v19.latest
x86 nvc++ 22.11
x86 nvc++ 22.7
x86 nvc++ 22.9
x86 nvc++ 23.1
x86 nvc++ 23.11
x86 nvc++ 23.3
x86 nvc++ 23.5
x86 nvc++ 23.7
x86 nvc++ 23.9
x86 nvc++ 24.1
x86 nvc++ 24.3
x86 nvc++ 24.5
x86 nvc++ 24.7
x86 nvc++ 24.9
x86-64 Zapcc 190308
x86-64 clang (EricWF contracts)
x86-64 clang (amd-staging)
x86-64 clang (assertions trunk)
x86-64 clang (clangir)
x86-64 clang (dascandy contracts)
x86-64 clang (experimental -Wlifetime)
x86-64 clang (experimental P1061)
x86-64 clang (experimental P1144)
x86-64 clang (experimental P1221)
x86-64 clang (experimental P2996)
x86-64 clang (experimental P3068)
x86-64 clang (experimental P3309)
x86-64 clang (experimental P3367)
x86-64 clang (experimental P3372)
x86-64 clang (experimental metaprogramming - P2632)
x86-64 clang (old concepts branch)
x86-64 clang (p1974)
x86-64 clang (pattern matching - P2688)
x86-64 clang (reflection)
x86-64 clang (resugar)
x86-64 clang (string interpolation - P3412)
x86-64 clang (thephd.dev)
x86-64 clang (trunk)
x86-64 clang (variadic friends - P2893)
x86-64 clang (widberg)
x86-64 clang 10.0.0
x86-64 clang 10.0.0 (assertions)
x86-64 clang 10.0.1
x86-64 clang 11.0.0
x86-64 clang 11.0.0 (assertions)
x86-64 clang 11.0.1
x86-64 clang 12.0.0
x86-64 clang 12.0.0 (assertions)
x86-64 clang 12.0.1
x86-64 clang 13.0.0
x86-64 clang 13.0.0 (assertions)
x86-64 clang 13.0.1
x86-64 clang 14.0.0
x86-64 clang 14.0.0 (assertions)
x86-64 clang 15.0.0
x86-64 clang 15.0.0 (assertions)
x86-64 clang 16.0.0
x86-64 clang 16.0.0 (assertions)
x86-64 clang 17.0.1
x86-64 clang 17.0.1 (assertions)
x86-64 clang 18.1.0
x86-64 clang 18.1.0 (assertions)
x86-64 clang 19.1.0
x86-64 clang 19.1.0 (assertions)
x86-64 clang 2.6.0 (assertions)
x86-64 clang 2.7.0 (assertions)
x86-64 clang 2.8.0 (assertions)
x86-64 clang 2.9.0 (assertions)
x86-64 clang 3.0.0
x86-64 clang 3.0.0 (assertions)
x86-64 clang 3.1
x86-64 clang 3.1 (assertions)
x86-64 clang 3.2
x86-64 clang 3.2 (assertions)
x86-64 clang 3.3
x86-64 clang 3.3 (assertions)
x86-64 clang 3.4 (assertions)
x86-64 clang 3.4.1
x86-64 clang 3.5
x86-64 clang 3.5 (assertions)
x86-64 clang 3.5.1
x86-64 clang 3.5.2
x86-64 clang 3.6
x86-64 clang 3.6 (assertions)
x86-64 clang 3.7
x86-64 clang 3.7 (assertions)
x86-64 clang 3.7.1
x86-64 clang 3.8
x86-64 clang 3.8 (assertions)
x86-64 clang 3.8.1
x86-64 clang 3.9.0
x86-64 clang 3.9.0 (assertions)
x86-64 clang 3.9.1
x86-64 clang 4.0.0
x86-64 clang 4.0.0 (assertions)
x86-64 clang 4.0.1
x86-64 clang 5.0.0
x86-64 clang 5.0.0 (assertions)
x86-64 clang 5.0.1
x86-64 clang 5.0.2
x86-64 clang 6.0.0
x86-64 clang 6.0.0 (assertions)
x86-64 clang 6.0.1
x86-64 clang 7.0.0
x86-64 clang 7.0.0 (assertions)
x86-64 clang 7.0.1
x86-64 clang 7.1.0
x86-64 clang 8.0.0
x86-64 clang 8.0.0 (assertions)
x86-64 clang 8.0.1
x86-64 clang 9.0.0
x86-64 clang 9.0.0 (assertions)
x86-64 clang 9.0.1
x86-64 clang rocm-4.5.2
x86-64 clang rocm-5.0.2
x86-64 clang rocm-5.1.3
x86-64 clang rocm-5.2.3
x86-64 clang rocm-5.3.3
x86-64 clang rocm-5.7.0
x86-64 clang rocm-6.0.2
x86-64 clang rocm-6.1.2
x86-64 gcc (contract labels)
x86-64 gcc (contracts natural syntax)
x86-64 gcc (contracts)
x86-64 gcc (coroutines)
x86-64 gcc (modules)
x86-64 gcc (trunk)
x86-64 gcc 10.1
x86-64 gcc 10.2
x86-64 gcc 10.3
x86-64 gcc 10.4
x86-64 gcc 10.5
x86-64 gcc 11.1
x86-64 gcc 11.2
x86-64 gcc 11.3
x86-64 gcc 11.4
x86-64 gcc 12.1
x86-64 gcc 12.2
x86-64 gcc 12.3
x86-64 gcc 12.4
x86-64 gcc 13.1
x86-64 gcc 13.2
x86-64 gcc 13.3
x86-64 gcc 14.1
x86-64 gcc 14.2
x86-64 gcc 3.4.6
x86-64 gcc 4.0.4
x86-64 gcc 4.1.2
x86-64 gcc 4.4.7
x86-64 gcc 4.5.3
x86-64 gcc 4.6.4
x86-64 gcc 4.7.1
x86-64 gcc 4.7.2
x86-64 gcc 4.7.3
x86-64 gcc 4.7.4
x86-64 gcc 4.8.1
x86-64 gcc 4.8.2
x86-64 gcc 4.8.3
x86-64 gcc 4.8.4
x86-64 gcc 4.8.5
x86-64 gcc 4.9.0
x86-64 gcc 4.9.1
x86-64 gcc 4.9.2
x86-64 gcc 4.9.3
x86-64 gcc 4.9.4
x86-64 gcc 5.1
x86-64 gcc 5.2
x86-64 gcc 5.3
x86-64 gcc 5.4
x86-64 gcc 5.5
x86-64 gcc 6.1
x86-64 gcc 6.2
x86-64 gcc 6.3
x86-64 gcc 6.4
x86-64 gcc 6.5
x86-64 gcc 7.1
x86-64 gcc 7.2
x86-64 gcc 7.3
x86-64 gcc 7.4
x86-64 gcc 7.5
x86-64 gcc 8.1
x86-64 gcc 8.2
x86-64 gcc 8.3
x86-64 gcc 8.4
x86-64 gcc 8.5
x86-64 gcc 9.1
x86-64 gcc 9.2
x86-64 gcc 9.3
x86-64 gcc 9.4
x86-64 gcc 9.5
x86-64 icc 13.0.1
x86-64 icc 16.0.3
x86-64 icc 17.0.0
x86-64 icc 18.0.0
x86-64 icc 19.0.0
x86-64 icc 19.0.1
x86-64 icc 2021.1.2
x86-64 icc 2021.10.0
x86-64 icc 2021.2.0
x86-64 icc 2021.3.0
x86-64 icc 2021.4.0
x86-64 icc 2021.5.0
x86-64 icc 2021.6.0
x86-64 icc 2021.7.0
x86-64 icc 2021.7.1
x86-64 icc 2021.8.0
x86-64 icc 2021.9.0
x86-64 icx 2021.1.2
x86-64 icx 2021.2.0
x86-64 icx 2021.3.0
x86-64 icx 2021.4.0
x86-64 icx 2022.0.0
x86-64 icx 2022.1.0
x86-64 icx 2022.2.0
x86-64 icx 2022.2.1
x86-64 icx 2023.0.0
x86-64 icx 2023.1.0
x86-64 icx 2023.2.1
x86-64 icx 2024.0.0
x86-64 icx 2024.1.0
x86-64 icx 2024.2.0
x86-64 icx 2025.0.0
x86-64 icx 2025.0.0
zig c++ 0.10.0
zig c++ 0.11.0
zig c++ 0.12.0
zig c++ 0.12.1
zig c++ 0.13.0
zig c++ 0.6.0
zig c++ 0.7.0
zig c++ 0.7.1
zig c++ 0.8.0
zig c++ 0.9.0
zig c++ trunk
Options
Source code
#include <algorithm> #include <array> #include <bit> #include <cstdint> #include <format> #include <iostream> #include <map> #include <optional> #include <span> #include <string> #include <vector> // This code works on little-endian and big-endian platforms only. static_assert(std::endian::native == std::endian::little || std::endian::native == std::endian::big); // Symbolic register names. enum { zero, ra, sp, gp, tp, t0, t1, t2, s0, s1, a0, a1, a2, a3, a4, a5, a6, a7, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11, t3, t4, t5, t6 }; // Opcodes. enum class Opcode : uint32_t { Illegal = 0, // System instructions. Ecall, Ebreak, // Register-register instructions. Add, Sub, Sll, Slt, Sltu, Xor, Srl, Sra, Or, And, // Immediate shift instructions. Slli, Srli, Srai, // Branch instructions. Beq, Bne, Blt, Bge, Bltu, Bgeu, // Register-immediate instructions. Addi, Slti, Sltiu, Xori, Ori, Andi, // Load instructions. Lb, Lbu, Lh, Lhu, Lw, // Store instructions. Sb, Sh, Sw, // Memory ordering instructions. Fence, // Subroutine call instructions. Jalr, Jal, // Miscellaneous instructions. Lui, Auipc, // Owl-2820 only instructions. J, Call, Ret, Li, Mv, }; using Memory = std::span<std::byte>; namespace decode { uint32_t r0(const uint32_t ins) { return (ins >> 7) & 0x1f; } uint32_t r1(const uint32_t ins) { return (ins >> 12) & 0x1f; } uint32_t r2(const uint32_t ins) { return (ins >> 17) & 0x1f; } uint32_t shift(const uint32_t ins) { return (ins >> 17) & 0x1f; } uint32_t imm12(const uint32_t ins) { return static_cast<uint32_t>(static_cast<int32_t>(ins & 0xfff00000) >> 20); } uint32_t offs12(const uint32_t ins) { return static_cast<uint32_t>(static_cast<int32_t>(ins & 0xfff00000) >> 19); } uint32_t offs20(const uint32_t ins) { return static_cast<uint32_t>(static_cast<int32_t>(ins & 0xfffff000) >> 11); } uint32_t uimm20(const uint32_t ins) { return ins & 0xfffff000; } } // namespace decode uint16_t AsLE(uint16_t halfWord) { if constexpr (std::endian::native == std::endian::little) { // Nothing to do. We're on a little-endian platform, and Owl-2820 is little-endian. return halfWord; } if constexpr (std::endian::native == std::endian::big) { // We're on a big-endian platform so reverse the byte order as Owl-2820 is little-endian. // The code may look like it takes lots of instructions, but MSVC, gcc,and clang are clever // enough to figure out what is going on and will generate the equivalent of `bswap` (x86) // or `rev` (ARM). // // std::rotr(halfWord & 00ff, 8) // 1234 & 00ff == 0034 // 0034 rotr 8 == 3400 // // std::rotl(halfWord, 8) & 00ff // 1234 rotl 8 == 3412 // 3412 & 00ff == 0012 // // 3400 | 0012 == 3412 // return std::rotr(halfWord & 0x00ffu, 8) | (std::rotl(halfWord, 8) & 0x00ffu); } } uint32_t AsLE(uint32_t word) { if constexpr (std::endian::native == std::endian::little) { // Nothing to do. We're on a little-endian platform, and Owl-2820 is little-endian. return word; } if constexpr (std::endian::native == std::endian::big) { // We're on a big-endian platform so reverse the byte order as Owl-2820 is little-endian. // The code may look like it takes lots of instructions, but MSVC, gcc,and clang are clever // enough to figure out what is going on and will generate the equivalent of `bswap` (x86) // or `rev` (ARM). // // std::rotr(word & 00ff00ff, 8) // 12345678 & 00ff00ff == 00340078 // 00340078 rotr 8 == 78004500 // // std::rotl(word, 8) & 00ff00ff // 12345678 rotl 8 == 34567812 // 34567812 & 00ff00ff == 00560012 // // 78004500 | 00560012 == 78563412 // return std::rotr(word & 0x00ff00ff, 8) | (std::rotl(word, 8) & 0x00ff00ff); } } std::byte Read8(const Memory memory, uint32_t addr) { return memory[addr]; } std::uint16_t Read16(const Memory memory, uint32_t addr) { // Owl-2820 is permissive about unaligned memory accesses. This may not be the case for // the host platform, so we do the equivalent of a memcpy from the VM's memory before // trying to interpret the value. Most compilers will detect what we're doing and // optimize it away. uint16_t v; std::ranges::copy_n(memory.data() + addr, sizeof(v), reinterpret_cast<std::byte*>(&v)); // Owl-2820 is little-endian, so swap the byte order if necessary. return AsLE(v); } uint32_t Read32(const Memory memory, uint32_t addr) { // Owl-2820 is permissive about unaligned memory accesses. This may not be the case for // the host platform, so we do the equivalent of a memcpy from the VM's memory before // trying to interpret the value. Most compilers will detect what we're doing and // optimize it away. uint32_t v; std::ranges::copy_n(memory.data() + addr, sizeof(uint32_t), reinterpret_cast<std::byte*>(&v)); // Owl-2820 is little-endian, so swap the byte order if necessary. return AsLE(v); } void Write8(Memory memory, uint32_t addr, std::byte byte) { memory[addr] = byte; } void Write16(Memory memory, uint32_t addr, uint16_t halfWord) { // Owl-2820 is little-endian, so swap the byte order if necessary. const uint16_t v = AsLE(halfWord); // Owl-2820 is permissive about unaligned memory accesses. This may not be the case for // the host platform, so we do the equivalent of a memcpy when writing the value to the // VM's memory. Most compilers will detect what we're doing and optimize it away. std::ranges::copy_n(reinterpret_cast<const std::byte*>(&v), sizeof(v), memory.data() + addr); } void Write32(Memory memory, uint32_t addr, uint32_t word) { // Owl-2820 is little-endian, so swap the byte order if necessary. const uint32_t v = AsLE(word); // Owl-2820 is permissive about unaligned memory accesses. This may not be the case for // the host platform, so we do the equivalent of a memcpy when writing the value to the // VM's memory. Most compilers will detect what we're doing and optimize it away. std::ranges::copy_n(reinterpret_cast<const std::byte*>(&v), sizeof(uint32_t), memory.data() + addr); } enum Syscall { Exit, PrintFib }; void Run(std::span<uint32_t> image) { using namespace decode; // Get a read-only, word addressable view of the image for fetching instructions. const auto code = image; // Get a byte-addressable view of the image for memory accesses. auto memory = std::as_writable_bytes(image); // Set pc and nextPc to their initial values. uint32_t pc = 0; // The program counter. uint32_t nextPc = 0; // The address of the next instruction. // Set all the integer registers to zero. uint32_t x[32] = {}; // The integer registers. // Set the stack pointer to the end of memory. x[sp] = uint32_t(memory.size()); constexpr uint32_t wordSize = sizeof(uint32_t); bool done = false; while (!done) { // Fetch a 32-bit word from the address pointed to by the program counter. pc = nextPc; nextPc += wordSize; const uint32_t ins = AsLE(code[pc / wordSize]); // Decode the word to extract the opcode. const Opcode opcode = Opcode(ins & 0x7f); // Dispatch it and execute it. switch (opcode) { // System instructions. case Opcode::Ecall: { const auto syscall = Syscall(x[a7]); switch (syscall) { case Syscall::Exit: std::cout << std::format("Exiting with status {}\n", x[a0]); done = true; break; case Syscall::PrintFib: std::cout << std::format("fib({}) = {}\n", x[a0], x[a1]); break; } break; } case Opcode::Ebreak: { // TODO: How do we resume from this? done = true; break; } // Register-register instructions. case Opcode::Add: { // r0 <- r1 + r2 x[r0(ins)] = x[r1(ins)] + x[r2(ins)]; x[0] = 0; // Ensure x0 is always zero. break; } case Opcode::Sub: { // r0 <- r1 - r2 x[r0(ins)] = x[r1(ins)] - x[r2(ins)]; x[0] = 0; // Ensure x0 is always zero. break; } case Opcode::Sll: { // r0 <- r1 << (r2 % 32) x[r0(ins)] = x[r1(ins)] << (x[r2(ins)] % 32); x[0] = 0; // Ensure x0 is always zero. break; } case Opcode::Slt: { // r0 <- (r1 < r2) ? 1 : 0 (signed integer comparison) const int32_t sr1 = static_cast<int32_t>(x[r1(ins)]); const int32_t sr2 = static_cast<int32_t>(x[r2(ins)]); x[r0(ins)] = sr1 < sr2 ? 1 : 0; x[0] = 0; // Ensure x0 is always zero. break; } case Opcode::Sltu: { // r0 <- (r1 < r2) ? 1 : 0 (unsigned integer comparison) x[r0(ins)] = x[r1(ins)] < x[r2(ins)] ? 1 : 0; x[0] = 0; // Ensure x0 is always zero. break; } case Opcode::Xor: { // r0 <- r1 ^ r2 x[r0(ins)] = x[r1(ins)] ^ x[r2(ins)]; x[0] = 0; // Ensure x0 is always zero. break; } case Opcode::Srl: { // r0 <- r1 >> (r2 % 32) (shift right logical) x[r0(ins)] = x[r1(ins)] >> (x[r2(ins)] % 32); x[0] = 0; // Ensure x0 is always zero. break; } case Opcode::Sra: { // r0 <- r1 >> (r2 % 32) (shift right arithmetic) const int32_t sr1 = static_cast<int32_t>(x[r1(ins)]); const int32_t shift = static_cast<int32_t>(x[r2(ins)]) % 32; x[r0(ins)] = static_cast<uint32_t>(sr1 >> shift); x[0] = 0; // Ensure x0 is always zero. break; } case Opcode::Or: { // r0 <- r1 | r2 x[r0(ins)] = x[r1(ins)] | x[r2(ins)]; x[0] = 0; // Ensure x0 is always zero. break; } case Opcode::And: { // r0 <- r1 & r2 x[r0(ins)] = x[r1(ins)] & x[r2(ins)]; x[0] = 0; // Ensure x0 is always zero. break; } // Immediate shift instructions. case Opcode::Slli: { // r0 <- r1 << shift x[r0(ins)] = x[r1(ins)] << shift(ins); x[0] = 0; // Ensure x0 is always zero. break; } case Opcode::Srli: { // r0 <- r1 >> shift (shift right logical) const int32_t sr1 = static_cast<int32_t>(x[r1(ins)]); const int32_t numBits = shift(ins); x[r0(ins)] = static_cast<uint32_t>(sr1 >> numBits); x[0] = 0; // Ensure x0 is always zero. break; } case Opcode::Srai: { // r0 <- r1 >> shift (shift right logical) x[r0(ins)] = x[r1(ins)] >> shift(ins); x[0] = 0; // Ensure x0 is always zero. break; } // Branch instructions. case Opcode::Beq: { // pc <- pc + ((r0 == r1) ? offs12 : 4) if (x[r0(ins)] == x[r1(ins)]) { nextPc = pc + offs12(ins); // Take the branch. } break; } case Opcode::Bne: { // pc <- pc + ((r0 != r1) ? offs12 : 4) if (x[r0(ins)] != x[r1(ins)]) { nextPc = pc + offs12(ins); // Take the branch. } break; } case Opcode::Blt: { // pc <- pc + ((r0 < r1) ? offs12 : 4) (signed integer comparison) int32_t sr0 = static_cast<int32_t>(x[r0(ins)]); int32_t sr1 = static_cast<int32_t>(x[r1(ins)]); if (sr0 < sr1) { nextPc = pc + offs12(ins); // Take the branch. } break; } case Opcode::Bge: { // pc <- pc + ((r0 >= r1) ? offs12 : 4) (signed integer comparison) int32_t sr0 = static_cast<int32_t>(x[r0(ins)]); int32_t sr1 = static_cast<int32_t>(x[r1(ins)]); if (sr0 >= sr1) { nextPc = pc + offs12(ins); // Take the branch. } break; } case Opcode::Bltu: { // pc <- pc + ((r0 < r1) ? offs12 : 4) (unsigned integer comparison) if (x[r0(ins)] < x[r1(ins)]) { nextPc = pc + offs12(ins); // Take the branch. } break; } case Opcode::Bgeu: { // pc <- pc + ((r0 >= r1) ? offs12 : 4) (unsigned integer comparison) if (x[r0(ins)] >= x[r1(ins)]) { nextPc = pc + offs12(ins); // Take the branch. } break; } // Register-immediate instructions. case Opcode::Addi: { // r0 <- r1 + imm12 x[r0(ins)] = x[r1(ins)] + imm12(ins); x[0] = 0; // Ensure x0 is always zero. break; } case Opcode::Slti: { // r0 <- (r1 < imm12) ? 1 : 0 (signed integer comparison) const int32_t sr1 = static_cast<int32_t>(x[r1(ins)]); const int32_t simm12 = static_cast<int32_t>(x[imm12(ins)]); x[r0(ins)] = sr1 < simm12 ? 1 : 0; x[0] = 0; // Ensure x0 is always zero. break; } case Opcode::Sltiu: { // r0 <- (r1 < imm12) ? 1 : 0 (unsigned integer comparison) x[r0(ins)] = x[r1(ins)] < imm12(ins) ? 1 : 0; x[0] = 0; // Ensure x0 is always zero. break; } case Opcode::Xori: { // r0 <- r1 ^ imm12 x[r0(ins)] = x[r1(ins)] ^ imm12(ins); x[0] = 0; // Ensure x0 is always zero. break; } case Opcode::Ori: { // r0 <- r1 | imm12 x[r0(ins)] = x[r1(ins)] | imm12(ins); x[0] = 0; // Ensure x0 is always zero. break; } case Opcode::Andi: { // r0 <- r1 & imm12 x[r0(ins)] = x[r1(ins)] & imm12(ins); x[0] = 0; // Ensure x0 is always zero. break; } // Load instructions. case Opcode::Lb: { // r0 <- sext(memory8(r1 + imm12)) const uint32_t addr = x[r1(ins)] + imm12(ins); const int32_t signExtendedByte = static_cast<int8_t>(Read8(memory, addr)); x[r0(ins)] = signExtendedByte; x[0] = 0; // Ensure x0 is always zero. break; } case Opcode::Lbu: { // r0 <- zext(memory(r1 + imm12)) const uint32_t addr = x[r1(ins)] + imm12(ins); const uint32_t zeroExtendedByte = static_cast<uint8_t>(Read8(memory, addr)); x[r0(ins)] = zeroExtendedByte; x[0] = 0; // Ensure x0 is always zero. break; } case Opcode::Lh: { // r0 <- sext(memory16(r1 + imm12)) const uint32_t addr = x[r1(ins)] + imm12(ins); const int32_t signExtendedHalfWord = static_cast<int16_t>(Read16(memory, addr)); x[r0(ins)] = signExtendedHalfWord; x[0] = 0; // Ensure x0 is always zero. break; } case Opcode::Lhu: { // r0 <- zext(memory16(r1 + imm12)) const uint32_t addr = x[r1(ins)] + imm12(ins); const uint32_t zeroExtendedHalfWord = static_cast<uint16_t>(Read16(memory, addr)); x[r0(ins)] = zeroExtendedHalfWord; x[0] = 0; // Ensure x0 is always zero. break; } case Opcode::Lw: { // r0 <- memory32(r1 + imm12) const uint32_t addr = x[r1(ins)] + imm12(ins); x[r0(ins)] = Read32(memory, addr); x[0] = 0; // Ensure x0 is always zero. break; } // Store instructions. case Opcode::Sb: { // memory8(r1 + imm12) <- r0[7:0] const uint32_t addr = x[r1(ins)] + imm12(ins); const std::byte byte = static_cast<std::byte>(x[r0(ins)]); Write8(memory, addr, byte); break; } case Opcode::Sh: { // memory16(r1 + imm12) <- r0[15:0] const uint32_t addr = x[r1(ins)] + imm12(ins); const uint16_t halfWord = static_cast<uint16_t>(x[r0(ins)]); Write16(memory, addr, halfWord); break; } case Opcode::Sw: { // memory32(r1 + imm12) <- r0 const uint32_t addr = x[r1(ins)] + imm12(ins); const uint32_t word = x[r0(ins)]; Write32(memory, addr, word); break; } // Memory ordering instructions. case Opcode::Fence: { // Nop. break; } // Subroutine call instructions. case Opcode::Jalr: { // r0 <- pc + 4, pc <- r1 + offs12 const int32_t r1Before = x[r1(ins)]; // r0 and r1 may be the same register. x[r0(ins)] = nextPc; nextPc = r1Before + offs12(ins); x[0] = 0; // Ensure x0 is always zero. break; } case Opcode::Jal: { // r0 <- pc + 4, pc <- pc + offs20 x[r0(ins)] = nextPc; nextPc = pc + offs20(ins); x[0] = 0; // Ensure x0 is always zero. break; } // Miscellaneous instructions. case Opcode::Lui: { // r0 <- uimm20 & 0xfffff000 x[r0(ins)] = uimm20(ins); x[0] = 0; // Ensure x0 is always zero. break; } case Opcode::Auipc: { // r0 <- pc + (uimm20 & 0xfffff000) x[r0(ins)] = pc + uimm20(ins); x[0] = 0; // Ensure x0 is always zero. break; } // Owl-2820 only instructions. case Opcode::J: { // pc <- pc + offs20 nextPc = pc + offs20(ins); // Branch. break; } case Opcode::Call: { // ra <- pc + 4, pc <- pc + offs20 x[ra] = nextPc; // Save the return address in ra. nextPc = pc + offs20(ins); // Make the call. break; } case Opcode::Ret: { // pc <- ra nextPc = x[ra]; // Return to ra. break; } case Opcode::Li: { // r0 <- imm12 x[r0(ins)] = imm12(ins); x[0] = 0; // Ensure x0 is always zero. break; } case Opcode::Mv: { // r0 <- r1 x[r0(ins)] = x[r1(ins)]; x[0] = 0; // Ensure x0 is always zero. break; } // Stop the loop if we hit an illegal instruction. default: // If we don't recognise the opcode then by default we have an illegal instruction. done = true; } } } namespace encode { uint32_t opc(Opcode opcode) { return uint32_t(opcode); } uint32_t r0(uint32_t r) { return (r & 0x1f) << 7; } uint32_t r1(uint32_t r) { return (r & 0x1f) << 12; } uint32_t r2(uint32_t r) { return (r & 0x1f) << 17; } uint32_t shift(uint32_t uimm5) { return (uimm5 & 0x1f) << 17; } uint32_t imm12(int32_t imm12) { return static_cast<uint32_t>(imm12 << 20); } uint32_t offs12(int32_t offs12) { // Assumes that offs12 is pre-multiplied to a byte offset. return static_cast<uint32_t>(offs12 << 19) & 0xfff00000; } uint32_t offs20(int32_t offs20) { // Assumes that offs20 is pre-multiplied to a byte offset. return static_cast<uint32_t>(offs20 << 11) & 0xfffff000; } uint32_t uimm20(uint32_t uimm20) { return (uimm20 << 12) & 0xfffff000; } } // namespace encode class Label { public: using Id = size_t; explicit Label(Id id) : id_{id} { } Id GetId() const { return id_; } private: Id id_; }; class Assembler { static constexpr uint32_t badAddress = static_cast<uint32_t>(-1); enum class FixupType { offs12, offs20, hi20, lo12 }; struct Fixup { uint32_t target; // The address that contains the data to be fixed up. FixupType type; // The type of the data that needs to be fixed up. }; std::vector<uint32_t> code_; uint32_t current_{}; std::vector<uint32_t> labels_; std::multimap<Label::Id, Fixup> fixups_; uint32_t Current() const { return current_; } std::optional<uint32_t> AddressOf(Label label) { if (auto result = labels_[label.GetId()]; result != badAddress) { return result; } return {}; } template<FixupType type> void ResolveFixup(uint32_t addr, int32_t offset) { auto existing = code_[addr / 4]; if constexpr (type == FixupType::offs12) { existing = (existing & 0x000fffff) | encode::offs12(offset); } else if constexpr (type == FixupType::offs20) { existing = (existing & 0x00000fff) | encode::offs20(offset); } else if constexpr (type == FixupType::hi20) { // Assumes that the offset is pre-encoded as a uimm20. existing = (existing & 0x00000fff) | offset; } else if constexpr (type == FixupType::lo12) { existing = (existing & 0x000fffff) | encode::imm12(offset); } code_[addr / 4] = existing; } template<FixupType type> void AddFixup(Label label) { fixups_.emplace(label.GetId(), Fixup{.target = Current(), .type = type}); } public: void BindLabel(Label label) { const auto id = label.GetId(); const auto address = Current(); labels_[id] = address; // Find all the fixups for this label id. if (const auto fixupsForId = fixups_.equal_range(id); fixupsForId.first != fixups_.end()) { // Resolve the fixups. for (auto [_, fixup] : std::ranges::subrange(fixupsForId.first, fixupsForId.second)) { if (fixup.type == FixupType::offs12) { const auto offset = address - fixup.target; ResolveFixup<FixupType::offs12>(fixup.target, offset); } else if (fixup.type == FixupType::offs20) { const auto offset = address - fixup.target; ResolveFixup<FixupType::offs20>(fixup.target, offset); } else if (fixup.type == FixupType::hi20) { const auto upper20 = (address & 0xfffff000); ResolveFixup<FixupType::hi20>(fixup.target, upper20); } else if (fixup.type == FixupType::lo12) { const auto lower12 = (address & 0x00000fff); ResolveFixup<FixupType::lo12>(fixup.target, lower12); } } // We don't need these fixups any more. fixups_.erase(id); } } Label MakeLabel() { auto labelId = labels_.size(); labels_.push_back(badAddress); return Label(labelId); } const std::vector<uint32_t>& Code() const { if (fixups_.empty()) { return code_; } throw std::runtime_error("There are unbound labels."); } void Emit(uint32_t u) { code_.push_back(AsLE(u)); current_ += 4; // 4 bytes per instruction. } // System instructions. void Ecall() { Emit(encode::opc(Opcode::Ecall)); } void Ebreak() { Emit(encode::opc(Opcode::Ebreak)); } // Register-register instructions. void Add(uint32_t r0, uint32_t r1, uint32_t r2) { // add r0, r1, r2 Emit(encode::opc(Opcode::Add) | encode::r0(r0) | encode::r1(r1) | encode::r2(r2)); } void Sub(uint32_t r0, uint32_t r1, uint32_t r2) { // sub r0, r1, r2 Emit(encode::opc(Opcode::Sub) | encode::r0(r0) | encode::r1(r1) | encode::r2(r2)); } void Sll(uint32_t r0, uint32_t r1, uint32_t r2) { // sll r0, r1, r2 Emit(encode::opc(Opcode::Sll) | encode::r0(r0) | encode::r1(r1) | encode::r2(r2)); } void Slt(uint32_t r0, uint32_t r1, uint32_t r2) { // slt r0, r1, r2 Emit(encode::opc(Opcode::Slt) | encode::r0(r0) | encode::r1(r1) | encode::r2(r2)); } void Sltu(uint32_t r0, uint32_t r1, uint32_t r2) { // sltu r0, r1, r2 Emit(encode::opc(Opcode::Sltu) | encode::r0(r0) | encode::r1(r1) | encode::r2(r2)); } void Xor(uint32_t r0, uint32_t r1, uint32_t r2) { // xor r0, r1, r2 Emit(encode::opc(Opcode::Xor) | encode::r0(r0) | encode::r1(r1) | encode::r2(r2)); } void Srl(uint32_t r0, uint32_t r1, uint32_t r2) { // srl r0, r1, r2 Emit(encode::opc(Opcode::Srl) | encode::r0(r0) | encode::r1(r1) | encode::r2(r2)); } void Sra(uint32_t r0, uint32_t r1, uint32_t r2) { // sra r0, r1, r2 Emit(encode::opc(Opcode::Sra) | encode::r0(r0) | encode::r1(r1) | encode::r2(r2)); } void Or(uint32_t r0, uint32_t r1, uint32_t r2) { // or r0, r1, r2 Emit(encode::opc(Opcode::Or) | encode::r0(r0) | encode::r1(r1) | encode::r2(r2)); } void And(uint32_t r0, uint32_t r1, uint32_t r2) { // and r0, r1, r2 Emit(encode::opc(Opcode::And) | encode::r0(r0) | encode::r1(r1) | encode::r2(r2)); } // Immediate shift instructions. void Slli(uint32_t r0, uint32_t r1, uint32_t shift) { // slli r0, r1, shift Emit(encode::opc(Opcode::Slli) | encode::r0(r0) | encode::r1(r1) | encode::shift(shift)); } void Srli(uint32_t r0, uint32_t r1, uint32_t shift) { // srli r0, r1, shift Emit(encode::opc(Opcode::Srli) | encode::r0(r0) | encode::r1(r1) | encode::shift(shift)); } void Srai(uint32_t r0, uint32_t r1, uint32_t shift) { // srai r0, r1, shift Emit(encode::opc(Opcode::Srai) | encode::r0(r0) | encode::r1(r1) | encode::shift(shift)); } // Branch instructions. template<Opcode opcode> void Branch(uint32_t r0, uint32_t r1, int32_t offs12) { Emit(encode::opc(opcode) | encode::r0(r0) | encode::r1(r1) | encode::offs12(offs12)); } template<Opcode opcode> void Branch(uint32_t r0, uint32_t r1, Label label) { if (const auto addr = AddressOf(label); addr.has_value()) { Branch<opcode>(r0, r1, *addr - Current()); } else { AddFixup<FixupType::offs12>(label); Branch<opcode>(r0, r1, 0); } } void Beq(uint32_t r0, uint32_t r1, int32_t offs12) { Branch<Opcode::Beq>(r0, r1, offs12); } void Beq(uint32_t r0, uint32_t r1, Label label) { Branch<Opcode::Beq>(r0, r1, label); } void Bne(uint32_t r0, uint32_t r1, int32_t offs12) { Branch<Opcode::Bne>(r0, r1, offs12); } void Bne(uint32_t r0, uint32_t r1, Label label) { Branch<Opcode::Bne>(r0, r1, label); } void Blt(uint32_t r0, uint32_t r1, int32_t offs12) { Branch<Opcode::Blt>(r0, r1, offs12); } void Blt(uint32_t r0, uint32_t r1, Label label) { Branch<Opcode::Blt>(r0, r1, label); } void Bge(uint32_t r0, uint32_t r1, int32_t offs12) { Branch<Opcode::Bge>(r0, r1, offs12); } void Bge(uint32_t r0, uint32_t r1, Label label) { Branch<Opcode::Bge>(r0, r1, label); } void Bltu(uint32_t r0, uint32_t r1, int32_t offs12) { Branch<Opcode::Bltu>(r0, r1, offs12); } void Bltu(uint32_t r0, uint32_t r1, Label label) { Branch<Opcode::Bltu>(r0, r1, label); } void Bgeu(uint32_t r0, uint32_t r1, int32_t offs12) { Branch<Opcode::Bgeu>(r0, r1, offs12); } void Bgeu(uint32_t r0, uint32_t r1, Label label) { Branch<Opcode::Bgeu>(r0, r1, label); } // Register-immediate instructions. void Addi(uint32_t r0, uint32_t r1, int32_t imm12) { // addi r0, r1, imm12 Emit(encode::opc(Opcode::Addi) | encode::r0(r0) | encode::r1(r1) | encode::imm12(imm12)); } void Slti(uint32_t r0, uint32_t r1, int32_t imm12) { // slti r0, r1, imm12 Emit(encode::opc(Opcode::Slti) | encode::r0(r0) | encode::r1(r1) | encode::imm12(imm12)); } void Sltiu(uint32_t r0, uint32_t r1, int32_t imm12) { // sltiu r0, r1, imm12 Emit(encode::opc(Opcode::Sltiu) | encode::r0(r0) | encode::r1(r1) | encode::imm12(imm12)); } void Xori(uint32_t r0, uint32_t r1, int32_t imm12) { // xori r0, r1, imm12 Emit(encode::opc(Opcode::Xori) | encode::r0(r0) | encode::r1(r1) | encode::imm12(imm12)); } void Ori(uint32_t r0, uint32_t r1, int32_t imm12) { // ori r0, r1, imm12 Emit(encode::opc(Opcode::Ori) | encode::r0(r0) | encode::r1(r1) | encode::imm12(imm12)); } void Andi(uint32_t r0, uint32_t r1, int32_t imm12) { // andi r0, r1, imm12 Emit(encode::opc(Opcode::Andi) | encode::r0(r0) | encode::r1(r1) | encode::imm12(imm12)); } // Load instructions. void Lb(uint32_t r0, int32_t imm12, uint32_t r1) { // lb r0, imm12(r1) Emit(encode::opc(Opcode::Lb) | encode::r0(r0) | encode::imm12(imm12) | encode::r1(r1)); } void Lbu(uint32_t r0, int32_t imm12, uint32_t r1) { // lbu r0, imm12(r1) Emit(encode::opc(Opcode::Lbu) | encode::r0(r0) | encode::imm12(imm12) | encode::r1(r1)); } void Lh(uint32_t r0, int32_t imm12, uint32_t r1) { // lh r0, imm12(r1) Emit(encode::opc(Opcode::Lh) | encode::r0(r0) | encode::imm12(imm12) | encode::r1(r1)); } void Lhu(uint32_t r0, int32_t imm12, uint32_t r1) { // lhu r0, imm12(r1) Emit(encode::opc(Opcode::Lhu) | encode::r0(r0) | encode::imm12(imm12) | encode::r1(r1)); } void Lw(uint32_t r0, int32_t imm12, uint32_t r1) { // lw r0, imm12(r1) Emit(encode::opc(Opcode::Lw) | encode::r0(r0) | encode::imm12(imm12) | encode::r1(r1)); } // Store instructions. void Sb(uint32_t r0, int32_t imm12, uint32_t r1) { // sb r0, imm12(r1) Emit(encode::opc(Opcode::Sb) | encode::r0(r0) | encode::imm12(imm12) | encode::r1(r1)); } void Sh(uint32_t r0, int32_t imm12, uint32_t r1) { // sh r0, imm12(r1) Emit(encode::opc(Opcode::Sh) | encode::r0(r0) | encode::imm12(imm12) | encode::r1(r1)); } void Sw(uint32_t r0, int32_t imm12, uint32_t r1) { // sw r0, imm12(r1) Emit(encode::opc(Opcode::Sw) | encode::r0(r0) | encode::imm12(imm12) | encode::r1(r1)); } // Memory ordering instructions. void Fence() { // fence Emit(encode::opc(Opcode::Fence)); } // Subroutine call instructions. void Jalr(uint32_t r0, int32_t offs12, uint32_t r1) { // jalr r0, offs12(r1) Emit(encode::opc(Opcode::Jalr) | encode::offs12(offs12) | encode::r1(r1) | encode::r0(r0)); } void Jal(uint32_t r0, int32_t offs20) { // jal r0, offs20 Emit(encode::opc(Opcode::Jal) | encode::offs20(offs20) | encode::r0(r0)); } // Miscellaneous instructions. void Lui(uint32_t r0, uint32_t uimm20) { // lui r0, uimm20 Emit(encode::opc(Opcode::Lui) | encode::r0(r0) | encode::uimm20(uimm20)); } void Auipc(uint32_t r0, uint32_t uimm20) { // auipc r0, uimm20 Emit(encode::opc(Opcode::Auipc) | encode::r0(r0) | encode::uimm20(uimm20)); } // Owl-2820 only instructions. template<Opcode opcode> void Jump(int32_t offs20) { Emit(encode::opc(opcode) | encode::offs20(offs20)); } template<Opcode opcode> void Jump(Label label) { if (const auto addr = AddressOf(label); addr.has_value()) { Jump<opcode>(*addr - Current()); } else { AddFixup<FixupType::offs20>(label); Jump<opcode>(0); } } void J(int32_t offs20) { // j offs20 Jump<Opcode::J>(offs20); } void J(Label label) { // j label Jump<Opcode::J>(label); } void Call(int32_t offs20) { // call offs20 Jump<Opcode::Call>(offs20); } void Call(Label label) { // call label Jump<Opcode::Call>(label); } void Ret() { // ret Emit(encode::opc(Opcode::Ret)); } void Li(uint32_t r0, int32_t imm12) { // li r0, imm12 Emit(encode::opc(Opcode::Li) | encode::r0(r0) | encode::imm12(imm12)); } void Mv(uint32_t r0, uint32_t r1) { // mv r0, r1 Emit(encode::opc(Opcode::Mv) | encode::r0(r0) | encode::r1(r1)); } // Directives. uint32_t Hi(Label label) { // %hi(label) if (const auto addr = AddressOf(label); addr.has_value()) { // Assumes that we're only doing this for Lui which expects to shift the uimm20 that we // give to it. return *addr >> 12; } else { AddFixup<FixupType::hi20>(label); return 0; } } uint32_t Lo(Label label) { // %lo(label) if (const auto addr = AddressOf(label); addr.has_value()) { // Assumes that we're only doing this for instructions that combine with Lui when // loading an absolute address. return *addr & 0xfff; } else { AddFixup<FixupType::lo12>(label); return 0; } } void Word(uint32_t word) { // .word(uimm32) Emit(word); } }; std::vector<uint32_t> Assemble() { Assembler a; // clang-format off // start: Label main = a.MakeLabel(); a.Call(main); // Invoke the `Exit` syscall. There's no coming back from this. a.Li(a7, Syscall::Exit); // li a7, 0 a.Ecall(); // ecall // main: a.BindLabel(main); a.Addi(sp, sp, -32); // addi sp, sp, -32 ; reserve space on the stack // save registers s0 - s3 and the return address register ra onto the stack a.Sw(s0, 24, sp); // sw s0, 24(sp) a.Sw(s1, 20, sp); // sw s1, 20(sp) a.Sw(s2, 16, sp); // sw s2, 16(sp) a.Sw(s3, 12, sp); // sw s3, 12(sp) a.Sw(ra, 28, sp); // sw ra, 28(sp) // ; s1 = the address of the start of the lookup table Label lut = a.MakeLabel(); a.Lui(s1, a.Hi(lut)); // lui s1, %hi(lut) a.Addi(s1, s1, a.Lo(lut)); // addi s1, s1, %lo(lut) a.Li(s0, 0); // li s0, 0 ; i = 0 a.Li(s2, 48); // li s2, 48 ; s2 = 48 // print_loop: Label print_loop = a.MakeLabel(); a.BindLabel(print_loop); a.Lw(a1, 0, s1); // lw a1, 0(s1) ; arg1 = *s1 a.Mv(a0, s0); // mv a0, s0 ; arg0 = i a.Addi(s0, s0, 1); // addi s0, s0, 1 ; i++ Label print_fib = a.MakeLabel(); a.Call(print_fib); // call print_fib a.Addi(s1, s1, 4); // addi s1, s1, 4 ; bump s1 to the next address in the lookup table a.Bltu(s0, s2, print_loop); // bltu s0, s2, print_loop ; if i < 48 go to print_loop // restore the return address register ra and registers s0 - s3 from the stack a.Lw(ra, 28, sp); // lw ra, 28(sp) a.Lw(s0, 24, sp); // lw s0, 24(sp) a.Lw(s1, 20, sp); // lw s1, 20(sp) a.Lw(s2, 16, sp); // lw s2, 16(sp) a.Lw(s3, 12, sp); // lw s3, 12(sp) a.Li(a0, 0); // li a0, 0 ; set the return value to zero a.Addi(sp, sp, 32); // addi sp, sp, 32 ; free the reserved space back to the stack a.Ret(); // ret ; return from main // print_fib: a.BindLabel(print_fib); // Invoke the `PrintFib` syscall. a.Li(a7, Syscall::PrintFib);// li a7, 1 a.Ecall(); // ecall a.Ret(); // ret ; return from print_fib // lut: a.BindLabel(lut); a.Word(0); a.Word(1); a.Word(1); a.Word(2); a.Word(3); a.Word(5); a.Word(8); a.Word(13); a.Word(21); a.Word(34); a.Word(55); a.Word(89); a.Word(144); a.Word(233); a.Word(377); a.Word(610); a.Word(987); a.Word(1597); a.Word(2584); a.Word(4181); a.Word(6765); a.Word(10946); a.Word(17711); a.Word(28657); a.Word(46368); a.Word(75025); a.Word(121393); a.Word(196418); a.Word(317811); a.Word(514229); a.Word(832040); a.Word(1346269); a.Word(2178309); a.Word(3524578); a.Word(5702887); a.Word(9227465); a.Word(14930352); a.Word(24157817); a.Word(39088169); a.Word(63245986); a.Word(102334155); a.Word(165580141); a.Word(267914296); a.Word(433494437); a.Word(701408733); a.Word(1134903170); a.Word(1836311903); a.Word(2971215073); // clang-format on return a.Code(); } int main() { try { // Create a 4K memory image. constexpr size_t memorySize = 4096; std::vector<uint32_t> image(memorySize / sizeof(uint32_t)); // Assemble our program and copy it to the start of the memory image. auto code = Assemble(); std::ranges::copy(code, image.begin()); Run(image); } catch (const std::exception& e) { std::cerr << e.what() << '\n'; } }
Become a Patron
Sponsor on GitHub
Donate via PayPal
Source on GitHub
Mailing list
Installed libraries
Wiki
Report an issue
How it works
Contact the author
CE on Mastodon
About the author
Statistics
Changelog
Version tree