Thanks for using Compiler Explorer
Sponsors
Jakt
C++
Ada
Algol68
Analysis
Android Java
Android Kotlin
Assembly
C
C3
Carbon
C with Coccinelle
C++ with Coccinelle
C++ (Circle)
CIRCT
Clean
CMake
CMakeScript
COBOL
C++ for OpenCL
MLIR
Cppx
Cppx-Blue
Cppx-Gold
Cpp2-cppfront
Crystal
C#
CUDA C++
D
Dart
Elixir
Erlang
Fortran
F#
GLSL
Go
Haskell
HLSL
Hook
Hylo
IL
ispc
Java
Julia
Kotlin
LLVM IR
LLVM MIR
Modula-2
Mojo
Nim
Numba
Nix
Objective-C
Objective-C++
OCaml
Odin
OpenCL C
Pascal
Pony
PTX
Python
Racket
Raku
Ruby
Rust
Sail
Snowball
Scala
Slang
Solidity
Spice
SPIR-V
Swift
LLVM TableGen
Toit
Triton
TypeScript Native
V
Vala
Visual Basic
Vyper
WASM
Zig
Javascript
GIMPLE
Ygen
sway
cuda source #1
Output
Compile to binary object
Link to binary
Execute the code
Intel asm syntax
Demangle identifiers
Verbose demangling
Filters
Unused labels
Library functions
Directives
Comments
Horizontal whitespace
Debug intrinsics
Compiler
10.0.0 sm_75 CUDA-10.2
10.0.1 sm_75 CUDA-10.2
11.0.0 sm_75 CUDA-10.2
16.0.0 sm_90 CUDA-11.8
17.0.1(libc++) sm_90 CUDA-12.1
18.1.0(libc++) sm_90 CUDA-12.3.1
19.1.0 sm_90 CUDA-12.5.1
20.1.0 sm_90 CUDA-12.5.1
20.1.0 sm_90 CUDA-12.6.1
20.1.0 sm_90 CUDA-12.6.2
NVCC 10.0.130
NVCC 10.1.105
NVCC 10.1.168
NVCC 10.1.243
NVCC 10.2.89
NVCC 11.0.2
NVCC 11.0.3
NVCC 11.1.0
NVCC 11.1.1
NVCC 11.2.0
NVCC 11.2.1
NVCC 11.2.2
NVCC 11.3.0
NVCC 11.3.1
NVCC 11.4.0
NVCC 11.4.1
NVCC 11.4.2
NVCC 11.4.3
NVCC 11.4.4
NVCC 11.5.0
NVCC 11.5.1
NVCC 11.5.2
NVCC 11.6.0
NVCC 11.6.1
NVCC 11.6.2
NVCC 11.7.0
NVCC 11.7.1
NVCC 11.8.0
NVCC 12.0.0
NVCC 12.0.1
NVCC 12.1.0
NVCC 12.2.1
NVCC 12.3.1
NVCC 12.4.1
NVCC 12.5.1
NVCC 12.6.1
NVCC 12.6.2
NVCC 12.8.1
NVCC 12.9.0
NVCC 12.9.1
NVCC 13.0.0
NVCC 9.1.85
NVCC 9.2.88
NVRTC 11.0.2
NVRTC 11.0.3
NVRTC 11.1.0
NVRTC 11.1.1
NVRTC 11.2.0
NVRTC 11.2.1
NVRTC 11.2.2
NVRTC 11.3.0
NVRTC 11.3.1
NVRTC 11.4.0
NVRTC 11.4.1
NVRTC 11.5.0
NVRTC 11.5.1
NVRTC 11.5.2
NVRTC 11.6.0
NVRTC 11.6.1
NVRTC 11.6.2
NVRTC 11.7.0
NVRTC 11.7.1
NVRTC 11.8.0
NVRTC 12.0.0
NVRTC 12.0.1
NVRTC 12.1.0
NVRTC 12.2.1
NVRTC 12.3.1
NVRTC 12.4.1
NVRTC 12.5.1
NVRTC 12.6.1
NVRTC 12.6.2
NVRTC 12.8.1
NVRTC 12.9.0
NVRTC 12.9.1
NVRTC 13.0.0
clang 7.0.0 sm_70 CUDA-9.1
clang 8.0.0 sm_75 CUDA-10.0
clang 9.0.0 sm_75 CUDA-10.1
clang rocm-4.5.2
clang rocm-5.0.2
clang rocm-5.1.3
clang rocm-5.2.3
clang rocm-5.3.2
clang rocm-5.7.0
clang rocm-6.0.2
clang rocm-6.1.2
clang rocm-6.2.4
clang rocm-6.3.3
clang rocm-6.4.0
clang staging rocm-6.1.2
clang staging rocm-6.2.4
clang staging rocm-6.3.3
clang staging rocm-6.4.0
clang trunk rocm-6.1.2
clang trunk rocm-6.2.4
clang trunk rocm-6.3.3
clang trunk rocm-6.4.0
trunk sm_100a CUDA-12.8.1
Options
Source code
/* * Copyright (c) 2024, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <cuco/static_map.cuh> #include <thrust/device_vector.h> #include <thrust/iterator/transform_iterator.h> #include <thrust/iterator/counting_iterator.h> #include <thrust/tuple.h> #include <cstddef> #include <iostream> using Key = int; using Value = int; struct write_ftor { int tid; cuco::pair<Key, Value>* output; __device__ write_ftor( cuco::pair<Key, Value>* pairs, int i) : tid(i), output(pairs) {} __device__ void operator()(cuco::pair<Key, Value> const& p) const { output[tid].first = p.first; output[tid].second = p.second; printf("i: %d, k: %d v: %d\n",tid, output[tid].first, output[tid].second); } }; template <typename Map, typename KeyIter, typename Pair> __global__ void write(Map map_ref, KeyIter keys_begin, std::size_t num_keys,Pair* pairs ) { auto tid = threadIdx.x + blockIdx.x * blockDim.x; // printf("the map size is %d", map_ref.get_size()); while (tid < num_keys) { map_ref.for_each(*(keys_begin + tid), write_ftor(pairs,tid)); tid += gridDim.x * blockDim.x; } } int main() { Key constexpr empty_key_sentinel = -1; Value constexpr empty_value_sentinel = -1; // Number of key/value pairs to be inserted std::size_t constexpr num_keys = 10; // Compute capacity based on a 50% load factor auto constexpr load_factor = 0.5; std::size_t const capacity = std::ceil(num_keys / load_factor); auto map = cuco::static_map{capacity, cuco::empty_key{empty_key_sentinel}, cuco::empty_value{empty_value_sentinel}, thrust::equal_to<Key>{}, cuco::linear_probing<1, cuco::default_hash_function<Key>>{}}; auto const pairs_begin = thrust::make_transform_iterator( thrust::make_counting_iterator(0), cuda::proclaim_return_type<cuco::pair<Key, Value>>( [] __device__(auto i) { return cuco::pair<Key, Value>(i, i); })); // insert 10 pairs: {0, 0}, {1, 1}, ... map.insert(pairs_begin, pairs_begin + num_keys); // Get a non-owning `for_each` ref auto device_ref = map.ref(cuco::for_each); // copy 10 pairs thrust::device_vector<cuco::pair<Key, Value>> stored_pairs(10); write<<<1, 32>>>(device_ref, thrust::counting_iterator<Key>{0}, num_keys,thrust::raw_pointer_cast(stored_pairs.data())); cudaDeviceSynchronize(); // print in host std::vector<cuco::pair<int, int>> host_pairs(10); for (int i = 0; i < 10; i++) { host_pairs[i] = cuco::pair<int, int>(i, i * 10); // For example, key=i, value=i*10 } thrust::copy(stored_pairs.begin(), stored_pairs.end(), host_pairs.begin()); // Print each pair for (const auto& p : host_pairs) { std::cout << "k: " << p.first << " v: " << p.second << std::endl; } return 0; }
Become a Patron
Sponsor on GitHub
Donate via PayPal
Compiler Explorer Shop
Source on GitHub
Mailing list
Installed libraries
Wiki
Report an issue
How it works
Contact the author
CE on Mastodon
CE on Bluesky
Statistics
Changelog
Version tree