Thanks for using Compiler Explorer
Sponsors
Jakt
C++
Ada
Analysis
Android Java
Android Kotlin
Assembly
C
C3
Carbon
C++ (Circle)
CIRCT
Clean
CMake
CMakeScript
COBOL
C++ for OpenCL
MLIR
Cppx
Cppx-Blue
Cppx-Gold
Cpp2-cppfront
Crystal
C#
CUDA C++
D
Dart
Elixir
Erlang
Fortran
F#
GLSL
Go
Haskell
HLSL
Hook
Hylo
IL
ispc
Java
Julia
Kotlin
LLVM IR
LLVM MIR
Modula-2
Nim
Objective-C
Objective-C++
OCaml
Odin
OpenCL C
Pascal
Pony
Python
Racket
Ruby
Rust
Snowball
Scala
Slang
Solidity
Spice
SPIR-V
Swift
LLVM TableGen
Toit
TypeScript Native
V
Vala
Visual Basic
Vyper
WASM
Zig
Javascript
GIMPLE
Ygen
cuda source #1
Output
Compile to binary object
Link to binary
Execute the code
Intel asm syntax
Demangle identifiers
Verbose demangling
Filters
Unused labels
Library functions
Directives
Comments
Horizontal whitespace
Debug intrinsics
Compiler
10.0.0 sm_75 CUDA-10.2
10.0.1 sm_75 CUDA-10.2
11.0.0 sm_75 CUDA-10.2
16.0.0 sm_90 CUDA-11.8
17.0.1(libc++) sm_90 CUDA-12.1
18.1.0(libc++) sm_90 CUDA-12.3.1
19.1.0 sm_90 CUDA-12.5.1
NVCC 10.0.130
NVCC 10.1.105
NVCC 10.1.168
NVCC 10.1.243
NVCC 10.2.89
NVCC 11.0.2
NVCC 11.0.3
NVCC 11.1.0
NVCC 11.1.1
NVCC 11.2.0
NVCC 11.2.1
NVCC 11.2.2
NVCC 11.3.0
NVCC 11.3.1
NVCC 11.4.0
NVCC 11.4.1
NVCC 11.4.2
NVCC 11.4.3
NVCC 11.4.4
NVCC 11.5.0
NVCC 11.5.1
NVCC 11.5.2
NVCC 11.6.0
NVCC 11.6.1
NVCC 11.6.2
NVCC 11.7.0
NVCC 11.7.1
NVCC 11.8.0
NVCC 12.0.0
NVCC 12.0.1
NVCC 12.1.0
NVCC 12.2.1
NVCC 12.3.1
NVCC 12.4.1
NVCC 12.5.1
NVCC 12.6.1
NVCC 12.6.2
NVCC 9.1.85
NVCC 9.2.88
NVRTC 11.0.2
NVRTC 11.0.3
NVRTC 11.1.0
NVRTC 11.1.1
NVRTC 11.2.0
NVRTC 11.2.1
NVRTC 11.2.2
NVRTC 11.3.0
NVRTC 11.3.1
NVRTC 11.4.0
NVRTC 11.4.1
NVRTC 11.5.0
NVRTC 11.5.1
NVRTC 11.5.2
NVRTC 11.6.0
NVRTC 11.6.1
NVRTC 11.6.2
NVRTC 11.7.0
NVRTC 11.7.1
NVRTC 11.8.0
NVRTC 12.0.0
NVRTC 12.0.1
NVRTC 12.1.0
clang 7.0.0 sm_70 CUDA-9.1
clang 8.0.0 sm_75 CUDA-10.0
clang 9.0.0 sm_75 CUDA-10.1
clang rocm-4.5.2
clang rocm-5.0.2
clang rocm-5.1.3
clang rocm-5.2.3
clang rocm-5.3.2
clang rocm-5.7.0
clang rocm-6.0.2
clang rocm-6.1.2
clang staging rocm-6.1.2
clang trunk rocm-6.1.2
trunk sm_90 CUDA-12.6.1
Options
Source code
#include <cooperative_groups.h> #include <cooperative_groups/reduce.h> #include <assert.h> #include <math.h> #include <ctype.h> #include <float.h> __device__ float& vec_at(float4& vec, int index) { return reinterpret_cast<float*>(&vec)[index]; } __device__ float vec_at(const float4& vec, int index) { return reinterpret_cast<const float*>(&vec)[index]; } struct SoftmaxParams { float Scale; float Offset; }; namespace cg = cooperative_groups; __global__ void unroll_success_funcarg(float* out, const float* inp, int idx, int V, int block_size) { // same but not float4 // one row of inp, i.e. inp[idx, :] of shape (V,) const float* x = inp + idx * V; float thread_maxval = -INFINITY; float thread_sumval = 0.0f; // do the loop in reverse to maximise probability of L2 cache hits // so even small L2s get some hits on the 2nd read of the same thread #pragma unroll 4 for (int i = threadIdx.x; i < (V - block_size); i += block_size) { float v = x[V - block_size - i]; float old_maxval = thread_maxval; thread_maxval = fmaxf(thread_maxval, v); thread_sumval *= expf((old_maxval - thread_maxval)); thread_sumval += expf(v - thread_maxval); } // simplifying test case by removing rest of code and returning early out[idx*V] = thread_maxval + thread_sumval; } __global__ void unroll_bad_blockdim(float* out, const float* inp, int idx, int V) { // same but not float4 // one row of inp, i.e. inp[idx, :] of shape (V,) const float* x = inp + idx * V; float thread_maxval = -INFINITY; float thread_sumval = 0.0f; // do the loop in reverse to maximise probability of L2 cache hits // so even small L2s get some hits on the 2nd read of the same thread #pragma unroll 4 for (int i = threadIdx.x; i < (V - blockDim.x); i += blockDim.x) { float v = x[V - blockDim.x - i]; float old_maxval = thread_maxval; thread_maxval = fmaxf(thread_maxval, v); thread_sumval *= expf((old_maxval - thread_maxval)); thread_sumval += expf(v - thread_maxval); } // simplifying test case by removing rest of code and returning early out[idx*V] = thread_maxval + thread_sumval; }
Become a Patron
Sponsor on GitHub
Donate via PayPal
Source on GitHub
Mailing list
Installed libraries
Wiki
Report an issue
How it works
Contact the author
CE on Mastodon
CE on Bluesky
About the author
Statistics
Changelog
Version tree