Thanks for using Compiler Explorer
Sponsors
Jakt
C++
Ada
Analysis
Android Java
Android Kotlin
Assembly
C
C3
Carbon
C++ (Circle)
CIRCT
Clean
CMake
CMakeScript
COBOL
C++ for OpenCL
MLIR
Cppx
Cppx-Blue
Cppx-Gold
Cpp2-cppfront
Crystal
C#
CUDA C++
D
Dart
Elixir
Erlang
Fortran
F#
GLSL
Go
Haskell
HLSL
Hook
Hylo
IL
ispc
Java
Julia
Kotlin
LLVM IR
LLVM MIR
Modula-2
Nim
Objective-C
Objective-C++
OCaml
OpenCL C
Pascal
Pony
Python
Racket
Ruby
Rust
Snowball
Scala
Solidity
Spice
SPIR-V
Swift
LLVM TableGen
Toit
TypeScript Native
V
Vala
Visual Basic
WASM
Zig
Javascript
GIMPLE
Ygen
c++ source #1
Output
Compile to binary object
Link to binary
Execute the code
Intel asm syntax
Demangle identifiers
Verbose demangling
Filters
Unused labels
Library functions
Directives
Comments
Horizontal whitespace
Debug intrinsics
Compiler
6502-c++ 11.1.0
ARM GCC 10.2.0
ARM GCC 10.3.0
ARM GCC 10.4.0
ARM GCC 10.5.0
ARM GCC 11.1.0
ARM GCC 11.2.0
ARM GCC 11.3.0
ARM GCC 11.4.0
ARM GCC 12.1.0
ARM GCC 12.2.0
ARM GCC 12.3.0
ARM GCC 12.4.0
ARM GCC 13.1.0
ARM GCC 13.2.0
ARM GCC 13.2.0 (unknown-eabi)
ARM GCC 13.3.0
ARM GCC 13.3.0 (unknown-eabi)
ARM GCC 14.1.0
ARM GCC 14.1.0 (unknown-eabi)
ARM GCC 14.2.0
ARM GCC 14.2.0 (unknown-eabi)
ARM GCC 4.5.4
ARM GCC 4.6.4
ARM GCC 5.4
ARM GCC 6.3.0
ARM GCC 6.4.0
ARM GCC 7.3.0
ARM GCC 7.5.0
ARM GCC 8.2.0
ARM GCC 8.5.0
ARM GCC 9.3.0
ARM GCC 9.4.0
ARM GCC 9.5.0
ARM GCC trunk
ARM gcc 10.2.1 (none)
ARM gcc 10.3.1 (2021.07 none)
ARM gcc 10.3.1 (2021.10 none)
ARM gcc 11.2.1 (none)
ARM gcc 5.4.1 (none)
ARM gcc 7.2.1 (none)
ARM gcc 8.2 (WinCE)
ARM gcc 8.3.1 (none)
ARM gcc 9.2.1 (none)
ARM msvc v19.0 (WINE)
ARM msvc v19.10 (WINE)
ARM msvc v19.14 (WINE)
ARM64 Morello gcc 10.1 Alpha 2
ARM64 gcc 10.2
ARM64 gcc 10.3
ARM64 gcc 10.4
ARM64 gcc 10.5.0
ARM64 gcc 11.1
ARM64 gcc 11.2
ARM64 gcc 11.3
ARM64 gcc 11.4.0
ARM64 gcc 12.1
ARM64 gcc 12.2.0
ARM64 gcc 12.3.0
ARM64 gcc 12.4.0
ARM64 gcc 13.1.0
ARM64 gcc 13.2.0
ARM64 gcc 13.3.0
ARM64 gcc 14.1.0
ARM64 gcc 14.2.0
ARM64 gcc 4.9.4
ARM64 gcc 5.4
ARM64 gcc 5.5.0
ARM64 gcc 6.3
ARM64 gcc 6.4
ARM64 gcc 7.3
ARM64 gcc 7.5
ARM64 gcc 8.2
ARM64 gcc 8.5
ARM64 gcc 9.3
ARM64 gcc 9.4
ARM64 gcc 9.5
ARM64 gcc trunk
ARM64 msvc v19.14 (WINE)
AVR gcc 10.3.0
AVR gcc 11.1.0
AVR gcc 12.1.0
AVR gcc 12.2.0
AVR gcc 12.3.0
AVR gcc 12.4.0
AVR gcc 13.1.0
AVR gcc 13.2.0
AVR gcc 13.3.0
AVR gcc 14.1.0
AVR gcc 14.2.0
AVR gcc 4.5.4
AVR gcc 4.6.4
AVR gcc 5.4.0
AVR gcc 9.2.0
AVR gcc 9.3.0
Arduino Mega (1.8.9)
Arduino Uno (1.8.9)
BPF clang (trunk)
BPF clang 13.0.0
BPF clang 14.0.0
BPF clang 15.0.0
BPF clang 16.0.0
BPF clang 17.0.1
BPF clang 18.1.0
BPF clang 19.1.0
BPF gcc 13.1.0
BPF gcc 13.2.0
BPF gcc 13.3.0
BPF gcc trunk
EDG (experimental reflection)
EDG 6.5
EDG 6.5 (GNU mode gcc 13)
EDG 6.6
EDG 6.6 (GNU mode gcc 13)
FRC 2019
FRC 2020
FRC 2023
HPPA gcc 14.2.0
KVX ACB 4.1.0 (GCC 7.5.0)
KVX ACB 4.1.0-cd1 (GCC 7.5.0)
KVX ACB 4.10.0 (GCC 10.3.1)
KVX ACB 4.11.1 (GCC 10.3.1)
KVX ACB 4.12.0 (GCC 11.3.0)
KVX ACB 4.2.0 (GCC 7.5.0)
KVX ACB 4.3.0 (GCC 7.5.0)
KVX ACB 4.4.0 (GCC 7.5.0)
KVX ACB 4.6.0 (GCC 9.4.1)
KVX ACB 4.8.0 (GCC 9.4.1)
KVX ACB 4.9.0 (GCC 9.4.1)
KVX ACB 5.0.0 (GCC 12.2.1)
KVX ACB 5.2.0 (GCC 13.2.1)
LoongArch64 clang (trunk)
LoongArch64 clang 17.0.1
LoongArch64 clang 18.1.0
LoongArch64 clang 19.1.0
M68K gcc 13.1.0
M68K gcc 13.2.0
M68K gcc 13.3.0
M68K gcc 14.1.0
M68K gcc 14.2.0
M68k clang (trunk)
MRISC32 gcc (trunk)
MSP430 gcc 4.5.3
MSP430 gcc 5.3.0
MSP430 gcc 6.2.1
MinGW clang 14.0.3
MinGW clang 14.0.6
MinGW clang 15.0.7
MinGW clang 16.0.0
MinGW clang 16.0.2
MinGW gcc 11.3.0
MinGW gcc 12.1.0
MinGW gcc 12.2.0
MinGW gcc 13.1.0
RISC-V (32-bits) gcc (trunk)
RISC-V (32-bits) gcc 10.2.0
RISC-V (32-bits) gcc 10.3.0
RISC-V (32-bits) gcc 11.2.0
RISC-V (32-bits) gcc 11.3.0
RISC-V (32-bits) gcc 11.4.0
RISC-V (32-bits) gcc 12.1.0
RISC-V (32-bits) gcc 12.2.0
RISC-V (32-bits) gcc 12.3.0
RISC-V (32-bits) gcc 12.4.0
RISC-V (32-bits) gcc 13.1.0
RISC-V (32-bits) gcc 13.2.0
RISC-V (32-bits) gcc 13.3.0
RISC-V (32-bits) gcc 14.1.0
RISC-V (32-bits) gcc 14.2.0
RISC-V (32-bits) gcc 8.2.0
RISC-V (32-bits) gcc 8.5.0
RISC-V (32-bits) gcc 9.4.0
RISC-V (64-bits) gcc (trunk)
RISC-V (64-bits) gcc 10.2.0
RISC-V (64-bits) gcc 10.3.0
RISC-V (64-bits) gcc 11.2.0
RISC-V (64-bits) gcc 11.3.0
RISC-V (64-bits) gcc 11.4.0
RISC-V (64-bits) gcc 12.1.0
RISC-V (64-bits) gcc 12.2.0
RISC-V (64-bits) gcc 12.3.0
RISC-V (64-bits) gcc 12.4.0
RISC-V (64-bits) gcc 13.1.0
RISC-V (64-bits) gcc 13.2.0
RISC-V (64-bits) gcc 13.3.0
RISC-V (64-bits) gcc 14.1.0
RISC-V (64-bits) gcc 14.2.0
RISC-V (64-bits) gcc 8.2.0
RISC-V (64-bits) gcc 8.5.0
RISC-V (64-bits) gcc 9.4.0
RISC-V rv32gc clang (trunk)
RISC-V rv32gc clang 10.0.0
RISC-V rv32gc clang 10.0.1
RISC-V rv32gc clang 11.0.0
RISC-V rv32gc clang 11.0.1
RISC-V rv32gc clang 12.0.0
RISC-V rv32gc clang 12.0.1
RISC-V rv32gc clang 13.0.0
RISC-V rv32gc clang 13.0.1
RISC-V rv32gc clang 14.0.0
RISC-V rv32gc clang 15.0.0
RISC-V rv32gc clang 16.0.0
RISC-V rv32gc clang 17.0.1
RISC-V rv32gc clang 18.1.0
RISC-V rv32gc clang 19.1.0
RISC-V rv32gc clang 9.0.0
RISC-V rv32gc clang 9.0.1
RISC-V rv64gc clang (trunk)
RISC-V rv64gc clang 10.0.0
RISC-V rv64gc clang 10.0.1
RISC-V rv64gc clang 11.0.0
RISC-V rv64gc clang 11.0.1
RISC-V rv64gc clang 12.0.0
RISC-V rv64gc clang 12.0.1
RISC-V rv64gc clang 13.0.0
RISC-V rv64gc clang 13.0.1
RISC-V rv64gc clang 14.0.0
RISC-V rv64gc clang 15.0.0
RISC-V rv64gc clang 16.0.0
RISC-V rv64gc clang 17.0.1
RISC-V rv64gc clang 18.1.0
RISC-V rv64gc clang 19.1.0
RISC-V rv64gc clang 9.0.0
RISC-V rv64gc clang 9.0.1
Raspbian Buster
Raspbian Stretch
SPARC LEON gcc 12.2.0
SPARC LEON gcc 12.3.0
SPARC LEON gcc 12.4.0
SPARC LEON gcc 13.1.0
SPARC LEON gcc 13.2.0
SPARC LEON gcc 13.3.0
SPARC LEON gcc 14.1.0
SPARC LEON gcc 14.2.0
SPARC gcc 12.2.0
SPARC gcc 12.3.0
SPARC gcc 12.4.0
SPARC gcc 13.1.0
SPARC gcc 13.2.0
SPARC gcc 13.3.0
SPARC gcc 14.1.0
SPARC gcc 14.2.0
SPARC64 gcc 12.2.0
SPARC64 gcc 12.3.0
SPARC64 gcc 12.4.0
SPARC64 gcc 13.1.0
SPARC64 gcc 13.2.0
SPARC64 gcc 13.3.0
SPARC64 gcc 14.1.0
SPARC64 gcc 14.2.0
TI C6x gcc 12.2.0
TI C6x gcc 12.3.0
TI C6x gcc 12.4.0
TI C6x gcc 13.1.0
TI C6x gcc 13.2.0
TI C6x gcc 13.3.0
TI C6x gcc 14.1.0
TI C6x gcc 14.2.0
TI CL430 21.6.1
VAX gcc NetBSDELF 10.4.0
VAX gcc NetBSDELF 10.5.0 (Nov 15 03:50:22 2023)
WebAssembly clang (trunk)
Xtensa ESP32 gcc 11.2.0 (2022r1)
Xtensa ESP32 gcc 12.2.0 (20230208)
Xtensa ESP32 gcc 8.2.0 (2019r2)
Xtensa ESP32 gcc 8.2.0 (2020r1)
Xtensa ESP32 gcc 8.2.0 (2020r2)
Xtensa ESP32 gcc 8.4.0 (2020r3)
Xtensa ESP32 gcc 8.4.0 (2021r1)
Xtensa ESP32 gcc 8.4.0 (2021r2)
Xtensa ESP32-S2 gcc 11.2.0 (2022r1)
Xtensa ESP32-S2 gcc 12.2.0 (20230208)
Xtensa ESP32-S2 gcc 8.2.0 (2019r2)
Xtensa ESP32-S2 gcc 8.2.0 (2020r1)
Xtensa ESP32-S2 gcc 8.2.0 (2020r2)
Xtensa ESP32-S2 gcc 8.4.0 (2020r3)
Xtensa ESP32-S2 gcc 8.4.0 (2021r1)
Xtensa ESP32-S2 gcc 8.4.0 (2021r2)
Xtensa ESP32-S3 gcc 11.2.0 (2022r1)
Xtensa ESP32-S3 gcc 12.2.0 (20230208)
Xtensa ESP32-S3 gcc 8.4.0 (2020r3)
Xtensa ESP32-S3 gcc 8.4.0 (2021r1)
Xtensa ESP32-S3 gcc 8.4.0 (2021r2)
arm64 msvc v19.20 VS16.0
arm64 msvc v19.21 VS16.1
arm64 msvc v19.22 VS16.2
arm64 msvc v19.23 VS16.3
arm64 msvc v19.24 VS16.4
arm64 msvc v19.25 VS16.5
arm64 msvc v19.27 VS16.7
arm64 msvc v19.28 VS16.8
arm64 msvc v19.28 VS16.9
arm64 msvc v19.29 VS16.10
arm64 msvc v19.29 VS16.11
arm64 msvc v19.30 VS17.0
arm64 msvc v19.31 VS17.1
arm64 msvc v19.32 VS17.2
arm64 msvc v19.33 VS17.3
arm64 msvc v19.34 VS17.4
arm64 msvc v19.35 VS17.5
arm64 msvc v19.36 VS17.6
arm64 msvc v19.37 VS17.7
arm64 msvc v19.38 VS17.8
arm64 msvc v19.39 VS17.9
arm64 msvc v19.40 VS17.10
arm64 msvc v19.latest
armv7-a clang (trunk)
armv7-a clang 10.0.0
armv7-a clang 10.0.1
armv7-a clang 11.0.0
armv7-a clang 11.0.1
armv7-a clang 12.0.0
armv7-a clang 12.0.1
armv7-a clang 13.0.0
armv7-a clang 13.0.1
armv7-a clang 14.0.0
armv7-a clang 15.0.0
armv7-a clang 16.0.0
armv7-a clang 17.0.1
armv7-a clang 18.1.0
armv7-a clang 19.1.0
armv7-a clang 9.0.0
armv7-a clang 9.0.1
armv8-a clang (all architectural features, trunk)
armv8-a clang (trunk)
armv8-a clang 10.0.0
armv8-a clang 10.0.1
armv8-a clang 11.0.0
armv8-a clang 11.0.1
armv8-a clang 12.0.0
armv8-a clang 13.0.0
armv8-a clang 14.0.0
armv8-a clang 15.0.0
armv8-a clang 16.0.0
armv8-a clang 17.0.1
armv8-a clang 18.1.0
armv8-a clang 19.1.0
armv8-a clang 9.0.0
armv8-a clang 9.0.1
clang-cl 18.1.0
ellcc 0.1.33
ellcc 0.1.34
ellcc 2017-07-16
hexagon-clang 16.0.5
llvm-mos atari2600-3e
llvm-mos atari2600-4k
llvm-mos atari2600-common
llvm-mos atari5200-supercart
llvm-mos atari8-cart-megacart
llvm-mos atari8-cart-std
llvm-mos atari8-cart-xegs
llvm-mos atari8-common
llvm-mos atari8-dos
llvm-mos c128
llvm-mos c64
llvm-mos commodore
llvm-mos cpm65
llvm-mos cx16
llvm-mos dodo
llvm-mos eater
llvm-mos mega65
llvm-mos nes
llvm-mos nes-action53
llvm-mos nes-cnrom
llvm-mos nes-gtrom
llvm-mos nes-mmc1
llvm-mos nes-mmc3
llvm-mos nes-nrom
llvm-mos nes-unrom
llvm-mos nes-unrom-512
llvm-mos osi-c1p
llvm-mos pce
llvm-mos pce-cd
llvm-mos pce-common
llvm-mos pet
llvm-mos rp6502
llvm-mos rpc8e
llvm-mos supervision
llvm-mos vic20
loongarch64 gcc 12.2.0
loongarch64 gcc 12.3.0
loongarch64 gcc 12.4.0
loongarch64 gcc 13.1.0
loongarch64 gcc 13.2.0
loongarch64 gcc 13.3.0
loongarch64 gcc 14.1.0
loongarch64 gcc 14.2.0
mips clang 13.0.0
mips clang 14.0.0
mips clang 15.0.0
mips clang 16.0.0
mips clang 17.0.1
mips clang 18.1.0
mips clang 19.1.0
mips gcc 11.2.0
mips gcc 12.1.0
mips gcc 12.2.0
mips gcc 12.3.0
mips gcc 12.4.0
mips gcc 13.1.0
mips gcc 13.2.0
mips gcc 13.3.0
mips gcc 14.1.0
mips gcc 14.2.0
mips gcc 4.9.4
mips gcc 5.4
mips gcc 5.5.0
mips gcc 9.3.0 (codescape)
mips gcc 9.5.0
mips64 (el) gcc 12.1.0
mips64 (el) gcc 12.2.0
mips64 (el) gcc 12.3.0
mips64 (el) gcc 12.4.0
mips64 (el) gcc 13.1.0
mips64 (el) gcc 13.2.0
mips64 (el) gcc 13.3.0
mips64 (el) gcc 14.1.0
mips64 (el) gcc 14.2.0
mips64 (el) gcc 4.9.4
mips64 (el) gcc 5.4.0
mips64 (el) gcc 5.5.0
mips64 (el) gcc 9.5.0
mips64 clang 13.0.0
mips64 clang 14.0.0
mips64 clang 15.0.0
mips64 clang 16.0.0
mips64 clang 17.0.1
mips64 clang 18.1.0
mips64 clang 19.1.0
mips64 gcc 11.2.0
mips64 gcc 12.1.0
mips64 gcc 12.2.0
mips64 gcc 12.3.0
mips64 gcc 12.4.0
mips64 gcc 13.1.0
mips64 gcc 13.2.0
mips64 gcc 13.3.0
mips64 gcc 14.1.0
mips64 gcc 14.2.0
mips64 gcc 4.9.4
mips64 gcc 5.4.0
mips64 gcc 5.5.0
mips64 gcc 9.5.0
mips64el clang 13.0.0
mips64el clang 14.0.0
mips64el clang 15.0.0
mips64el clang 16.0.0
mips64el clang 17.0.1
mips64el clang 18.1.0
mips64el clang 19.1.0
mipsel clang 13.0.0
mipsel clang 14.0.0
mipsel clang 15.0.0
mipsel clang 16.0.0
mipsel clang 17.0.1
mipsel clang 18.1.0
mipsel clang 19.1.0
mipsel gcc 12.1.0
mipsel gcc 12.2.0
mipsel gcc 12.3.0
mipsel gcc 12.4.0
mipsel gcc 13.1.0
mipsel gcc 13.2.0
mipsel gcc 13.3.0
mipsel gcc 14.1.0
mipsel gcc 14.2.0
mipsel gcc 4.9.4
mipsel gcc 5.4.0
mipsel gcc 5.5.0
mipsel gcc 9.5.0
nanoMIPS gcc 6.3.0 (mtk)
power gcc 11.2.0
power gcc 12.1.0
power gcc 12.2.0
power gcc 12.3.0
power gcc 12.4.0
power gcc 13.1.0
power gcc 13.2.0
power gcc 13.3.0
power gcc 14.1.0
power gcc 14.2.0
power gcc 4.8.5
power64 AT12.0 (gcc8)
power64 AT13.0 (gcc9)
power64 gcc 11.2.0
power64 gcc 12.1.0
power64 gcc 12.2.0
power64 gcc 12.3.0
power64 gcc 12.4.0
power64 gcc 13.1.0
power64 gcc 13.2.0
power64 gcc 13.3.0
power64 gcc 14.1.0
power64 gcc 14.2.0
power64 gcc trunk
power64le AT12.0 (gcc8)
power64le AT13.0 (gcc9)
power64le clang (trunk)
power64le gcc 11.2.0
power64le gcc 12.1.0
power64le gcc 12.2.0
power64le gcc 12.3.0
power64le gcc 12.4.0
power64le gcc 13.1.0
power64le gcc 13.2.0
power64le gcc 13.3.0
power64le gcc 14.1.0
power64le gcc 14.2.0
power64le gcc 6.3.0
power64le gcc trunk
powerpc64 clang (trunk)
s390x gcc 11.2.0
s390x gcc 12.1.0
s390x gcc 12.2.0
s390x gcc 12.3.0
s390x gcc 12.4.0
s390x gcc 13.1.0
s390x gcc 13.2.0
s390x gcc 13.3.0
s390x gcc 14.1.0
s390x gcc 14.2.0
sh gcc 12.2.0
sh gcc 12.3.0
sh gcc 12.4.0
sh gcc 13.1.0
sh gcc 13.2.0
sh gcc 13.3.0
sh gcc 14.1.0
sh gcc 14.2.0
sh gcc 4.9.4
sh gcc 9.5.0
vast (trunk)
x64 msvc v19.0 (WINE)
x64 msvc v19.10 (WINE)
x64 msvc v19.14 (WINE)
x64 msvc v19.20 VS16.0
x64 msvc v19.21 VS16.1
x64 msvc v19.22 VS16.2
x64 msvc v19.23 VS16.3
x64 msvc v19.24 VS16.4
x64 msvc v19.25 VS16.5
x64 msvc v19.27 VS16.7
x64 msvc v19.28 VS16.8
x64 msvc v19.28 VS16.9
x64 msvc v19.29 VS16.10
x64 msvc v19.29 VS16.11
x64 msvc v19.30 VS17.0
x64 msvc v19.31 VS17.1
x64 msvc v19.32 VS17.2
x64 msvc v19.33 VS17.3
x64 msvc v19.34 VS17.4
x64 msvc v19.35 VS17.5
x64 msvc v19.36 VS17.6
x64 msvc v19.37 VS17.7
x64 msvc v19.38 VS17.8
x64 msvc v19.39 VS17.9
x64 msvc v19.40 VS17.10
x64 msvc v19.latest
x86 djgpp 4.9.4
x86 djgpp 5.5.0
x86 djgpp 6.4.0
x86 djgpp 7.2.0
x86 msvc v19.0 (WINE)
x86 msvc v19.10 (WINE)
x86 msvc v19.14 (WINE)
x86 msvc v19.20 VS16.0
x86 msvc v19.21 VS16.1
x86 msvc v19.22 VS16.2
x86 msvc v19.23 VS16.3
x86 msvc v19.24 VS16.4
x86 msvc v19.25 VS16.5
x86 msvc v19.27 VS16.7
x86 msvc v19.28 VS16.8
x86 msvc v19.28 VS16.9
x86 msvc v19.29 VS16.10
x86 msvc v19.29 VS16.11
x86 msvc v19.30 VS17.0
x86 msvc v19.31 VS17.1
x86 msvc v19.32 VS17.2
x86 msvc v19.33 VS17.3
x86 msvc v19.34 VS17.4
x86 msvc v19.35 VS17.5
x86 msvc v19.36 VS17.6
x86 msvc v19.37 VS17.7
x86 msvc v19.38 VS17.8
x86 msvc v19.39 VS17.9
x86 msvc v19.40 VS17.10
x86 msvc v19.latest
x86 nvc++ 22.11
x86 nvc++ 22.7
x86 nvc++ 22.9
x86 nvc++ 23.1
x86 nvc++ 23.11
x86 nvc++ 23.3
x86 nvc++ 23.5
x86 nvc++ 23.7
x86 nvc++ 23.9
x86 nvc++ 24.1
x86 nvc++ 24.3
x86 nvc++ 24.5
x86 nvc++ 24.7
x86 nvc++ 24.9
x86-64 Zapcc 190308
x86-64 clang (EricWF contracts)
x86-64 clang (amd-staging)
x86-64 clang (assertions trunk)
x86-64 clang (clangir)
x86-64 clang (dascandy contracts)
x86-64 clang (experimental -Wlifetime)
x86-64 clang (experimental P1061)
x86-64 clang (experimental P1144)
x86-64 clang (experimental P1221)
x86-64 clang (experimental P2996)
x86-64 clang (experimental P3068)
x86-64 clang (experimental P3309)
x86-64 clang (experimental P3367)
x86-64 clang (experimental P3372)
x86-64 clang (experimental metaprogramming - P2632)
x86-64 clang (old concepts branch)
x86-64 clang (p1974)
x86-64 clang (pattern matching - P2688)
x86-64 clang (reflection)
x86-64 clang (resugar)
x86-64 clang (string interpolation - P3412)
x86-64 clang (thephd.dev)
x86-64 clang (trunk)
x86-64 clang (variadic friends - P2893)
x86-64 clang (widberg)
x86-64 clang 10.0.0
x86-64 clang 10.0.0 (assertions)
x86-64 clang 10.0.1
x86-64 clang 11.0.0
x86-64 clang 11.0.0 (assertions)
x86-64 clang 11.0.1
x86-64 clang 12.0.0
x86-64 clang 12.0.0 (assertions)
x86-64 clang 12.0.1
x86-64 clang 13.0.0
x86-64 clang 13.0.0 (assertions)
x86-64 clang 13.0.1
x86-64 clang 14.0.0
x86-64 clang 14.0.0 (assertions)
x86-64 clang 15.0.0
x86-64 clang 15.0.0 (assertions)
x86-64 clang 16.0.0
x86-64 clang 16.0.0 (assertions)
x86-64 clang 17.0.1
x86-64 clang 17.0.1 (assertions)
x86-64 clang 18.1.0
x86-64 clang 18.1.0 (assertions)
x86-64 clang 19.1.0
x86-64 clang 19.1.0 (assertions)
x86-64 clang 2.6.0 (assertions)
x86-64 clang 2.7.0 (assertions)
x86-64 clang 2.8.0 (assertions)
x86-64 clang 2.9.0 (assertions)
x86-64 clang 3.0.0
x86-64 clang 3.0.0 (assertions)
x86-64 clang 3.1
x86-64 clang 3.1 (assertions)
x86-64 clang 3.2
x86-64 clang 3.2 (assertions)
x86-64 clang 3.3
x86-64 clang 3.3 (assertions)
x86-64 clang 3.4 (assertions)
x86-64 clang 3.4.1
x86-64 clang 3.5
x86-64 clang 3.5 (assertions)
x86-64 clang 3.5.1
x86-64 clang 3.5.2
x86-64 clang 3.6
x86-64 clang 3.6 (assertions)
x86-64 clang 3.7
x86-64 clang 3.7 (assertions)
x86-64 clang 3.7.1
x86-64 clang 3.8
x86-64 clang 3.8 (assertions)
x86-64 clang 3.8.1
x86-64 clang 3.9.0
x86-64 clang 3.9.0 (assertions)
x86-64 clang 3.9.1
x86-64 clang 4.0.0
x86-64 clang 4.0.0 (assertions)
x86-64 clang 4.0.1
x86-64 clang 5.0.0
x86-64 clang 5.0.0 (assertions)
x86-64 clang 5.0.1
x86-64 clang 5.0.2
x86-64 clang 6.0.0
x86-64 clang 6.0.0 (assertions)
x86-64 clang 6.0.1
x86-64 clang 7.0.0
x86-64 clang 7.0.0 (assertions)
x86-64 clang 7.0.1
x86-64 clang 7.1.0
x86-64 clang 8.0.0
x86-64 clang 8.0.0 (assertions)
x86-64 clang 8.0.1
x86-64 clang 9.0.0
x86-64 clang 9.0.0 (assertions)
x86-64 clang 9.0.1
x86-64 clang rocm-4.5.2
x86-64 clang rocm-5.0.2
x86-64 clang rocm-5.1.3
x86-64 clang rocm-5.2.3
x86-64 clang rocm-5.3.3
x86-64 clang rocm-5.7.0
x86-64 clang rocm-6.0.2
x86-64 clang rocm-6.1.2
x86-64 gcc (contract labels)
x86-64 gcc (contracts natural syntax)
x86-64 gcc (contracts)
x86-64 gcc (coroutines)
x86-64 gcc (modules)
x86-64 gcc (trunk)
x86-64 gcc 10.1
x86-64 gcc 10.2
x86-64 gcc 10.3
x86-64 gcc 10.4
x86-64 gcc 10.5
x86-64 gcc 11.1
x86-64 gcc 11.2
x86-64 gcc 11.3
x86-64 gcc 11.4
x86-64 gcc 12.1
x86-64 gcc 12.2
x86-64 gcc 12.3
x86-64 gcc 12.4
x86-64 gcc 13.1
x86-64 gcc 13.2
x86-64 gcc 13.3
x86-64 gcc 14.1
x86-64 gcc 14.2
x86-64 gcc 3.4.6
x86-64 gcc 4.0.4
x86-64 gcc 4.1.2
x86-64 gcc 4.4.7
x86-64 gcc 4.5.3
x86-64 gcc 4.6.4
x86-64 gcc 4.7.1
x86-64 gcc 4.7.2
x86-64 gcc 4.7.3
x86-64 gcc 4.7.4
x86-64 gcc 4.8.1
x86-64 gcc 4.8.2
x86-64 gcc 4.8.3
x86-64 gcc 4.8.4
x86-64 gcc 4.8.5
x86-64 gcc 4.9.0
x86-64 gcc 4.9.1
x86-64 gcc 4.9.2
x86-64 gcc 4.9.3
x86-64 gcc 4.9.4
x86-64 gcc 5.1
x86-64 gcc 5.2
x86-64 gcc 5.3
x86-64 gcc 5.4
x86-64 gcc 5.5
x86-64 gcc 6.1
x86-64 gcc 6.2
x86-64 gcc 6.3
x86-64 gcc 6.4
x86-64 gcc 6.5
x86-64 gcc 7.1
x86-64 gcc 7.2
x86-64 gcc 7.3
x86-64 gcc 7.4
x86-64 gcc 7.5
x86-64 gcc 8.1
x86-64 gcc 8.2
x86-64 gcc 8.3
x86-64 gcc 8.4
x86-64 gcc 8.5
x86-64 gcc 9.1
x86-64 gcc 9.2
x86-64 gcc 9.3
x86-64 gcc 9.4
x86-64 gcc 9.5
x86-64 icc 13.0.1
x86-64 icc 16.0.3
x86-64 icc 17.0.0
x86-64 icc 18.0.0
x86-64 icc 19.0.0
x86-64 icc 19.0.1
x86-64 icc 2021.1.2
x86-64 icc 2021.10.0
x86-64 icc 2021.2.0
x86-64 icc 2021.3.0
x86-64 icc 2021.4.0
x86-64 icc 2021.5.0
x86-64 icc 2021.6.0
x86-64 icc 2021.7.0
x86-64 icc 2021.7.1
x86-64 icc 2021.8.0
x86-64 icc 2021.9.0
x86-64 icx 2021.1.2
x86-64 icx 2021.2.0
x86-64 icx 2021.3.0
x86-64 icx 2021.4.0
x86-64 icx 2022.0.0
x86-64 icx 2022.1.0
x86-64 icx 2022.2.0
x86-64 icx 2022.2.1
x86-64 icx 2023.0.0
x86-64 icx 2023.1.0
x86-64 icx 2023.2.1
x86-64 icx 2024.0.0
x86-64 icx 2024.1.0
x86-64 icx 2024.2.0
x86-64 icx 2025.0.0
x86-64 icx 2025.0.0
zig c++ 0.10.0
zig c++ 0.11.0
zig c++ 0.12.0
zig c++ 0.12.1
zig c++ 0.13.0
zig c++ 0.6.0
zig c++ 0.7.0
zig c++ 0.7.1
zig c++ 0.8.0
zig c++ 0.9.0
zig c++ trunk
Options
Source code
///////////////////////////////////////////////////////////////////////// // This is a minimal example that shows the 4 main building-blocks needed to // write concurrent/async coroutine code. // // 1. A coroutine type that lets users write their coroutine logic // and call and co_await other coroutines that they write. // This allows composition of async coroutine code. // // This example defines a basic `task<T>` type that fulfills this purpose. // // 2. A mechanism for launching concurrent async operations and later // waiting for launched concurrent work to complete. // // To be able to have multiple coroutines executing independently we need // some way to introduce concurrency. And to ensure that we are able to // safely compose concurrent operations and shut down cleanly, we need // some way to be able to wait for concurrent operations to complete so // that we can. e.g. ensure that the completion of those concurrent operations // "happens before" the destruction of resources used by those concurrent // operations. // // This example defines a simple `async_scope` facility that lets you // spawn multiple coroutines that can run independently, keeping an atomic // reference count of the number of unfinished tasks that have been launched. // It also gives a way to asynchronously wait until all tasks have completed. // // 3. A mechanism for blocking a thread until some async operation completes. // // The main() function is a synchronous function and so if we launch some // async code we need some way to be able to block until that code completes // so that we don't return from main() until all concurrent work has been // joined. // // This example defines a sync_wait() function that takes an awaitable which // it co_awaits and then blocks the current thread until the co_await expression // completes, returning the result of the co_await expression. // // 4. A mechanism for multiplexing multiple coroutines onto a set of worker threads. // // One of the main reasons for writing asynchronous code is to allow a thread // to do something else while waiting for some operation to complete. This // requires some way to schedule/multiplex multiple coroutines onto a smaller // number of threads, typically using a queue and having an event-loop run by // each thread that allows it to do some work until that work suspends and then // pick up the next item in the queue and execute that in the meantime to keep // the thread busy. // // This example provides a basic `manual_event_loop` implementation that allows // a coroutine to `co_await loop.schedule()` to suspend and enqueue itself to // the loop's queue, whereby a thread that is calling `loop.run()` will eventually // pick up that item and resume it. // // In practice, such multiplexers often also support other kinds of scheduling // such as 'schedule when an I/O operation completes' or 'schedule when a time // elapses'. // // These 4 components are essential to being able to write asynchronous coroutine code. // // Different coroutine library implementations may structure these facilities in // different ways, sometimes combining these items into one abstraction. e.g. sometimes // a multiplexer implementation might combine items 2, 3 and 4 by providing a mechanism // to launch a coroutine on that multiplexer and also wait for all launched work on // that multiplexer. // // This example choses to separate them so that you can understand each component // separately - each of the classes are relatively short (roughly 100 lines) so // should hopefully be relatively easy to study. // // However, keeping them separate also generally gives better flexibility with // how to compose them into an application. e.g. see how we can reuse async_scope // in the nested_scopes() example below. // // This example also defines a number of helper concepts/traits needed by some of // the implementations: // - `awaitable` concept // - `awaiter` concept // - `await_result_t<T>` type-trait // - `awaiter_type_t<T>` type-trait // - `get_awaiter(x) -> awaiter` helper function // And some other helpers: // - `lazy_task` - useful for improving coroutine allocation-elision // - `scope_guard` // // // Please feel free to use this code however you like - it is primarily intended // for learning coroutine mechanisms rather than necessarily as production-quality // code. However, attribution is appreciated if you do use it somewhere. // // By Lewis Baker <lewissbaker@gmail.com> ///////////////////////////////////////////////////////////////////////// #include <atomic> #include <cassert> #include <concepts> #include <condition_variable> #include <coroutine> #include <cstdio> #include <exception> #include <mutex> #include <optional> #include <semaphore> #include <stop_token> #include <thread> #include <utility> #include <variant> /////////////////////////////////////////////////// // general helpers #define FORCE_INLINE __attribute__((always_inline)) template<typename T> concept decay_copyable = std::constructible_from<std::decay_t<T>, T>; template<typename F> struct scope_guard { F func; bool cancelled{false}; template<typename F2> requires std::constructible_from<F, F2> explicit scope_guard(F2&& f) noexcept(std::is_nothrow_constructible_v<F, F2>) : func(static_cast<F2>(f)) {} scope_guard(scope_guard&& g) noexcept requires std::is_nothrow_move_constructible_v<F> : func(std::move(g.func)) , cancelled(std::exchange(g.cancelled, true)) {} ~scope_guard() { call_now(); } void cancel() noexcept { cancelled = true; } void call_now() noexcept { if (!cancelled) { cancelled = true; func(); } } }; template<typename F> scope_guard(F) -> scope_guard<F>; /////////////////////////////////////////////////// // coroutine helpers // Concept that checks if a type is a valid "awaiter" type. // i.e. has the await_ready/await_suspend/await_resume methods. // // Note that we can't check whether await_suspend() is valid here because // we don't know what type of coroutine_handle<> to test it with. // So we just check for await_ready/await_resume and assume if it has both // of those then it will also have the await_suspend() method. template<typename T> concept awaiter = requires(T& x) { (x.await_ready() ? (void)0 : (void)0); x.await_resume(); }; template<typename T> concept _member_co_await = requires(T&& x) { { static_cast<T&&>(x).operator co_await() } -> awaiter; }; template<typename T> concept _free_co_await = requires (T&& x) { { operator co_await(static_cast<T&&>(x)) } -> awaiter; }; template<typename T> concept awaitable = _member_co_await<T> || _free_co_await<T> || awaiter<T>; // get_awaiter(x) -> awaiter // // Helper function that tries to mimic what the compiler does in `co_await` // expressions to obtain the awaiter for a given awaitable argument. // // It's not a perfect match, however, as we can't exactly match the overload // resolution which combines both free-function overloads and member-function overloads // of `operator co_await()` into a single overload-set. // // The `get_awaiter()` function will be an ambiguous call if a type has both // a free-function `operator co_await()` and a member-function `operator co_await()` // even if the compiler's overload resolution would not consider this to be // ambiguous. template<typename T> requires _member_co_await<T> decltype(auto) get_awaiter(T&& x) noexcept(noexcept(static_cast<T&&>(x).operator co_await())) { return static_cast<T&&>(x).operator co_await(); } template<typename T> requires _free_co_await<T> decltype(auto) get_awaiter(T&& x) noexcept(operator co_await(static_cast<T&&>(x))) { return operator co_await(static_cast<T&&>(x)); } template<typename T> requires awaiter<T> && (!_free_co_await<T> && !_member_co_await<T>) T&& get_awaiter(T&& x) noexcept { return static_cast<T&&>(x); } template<typename T> requires awaitable<T> using awaiter_type_t = decltype(get_awaiter(std::declval<T>())); template<typename T> requires awaitable<T> using await_result_t = decltype(std::declval<awaiter_type_t<T>&>().await_resume()); /////////////////////////////////////////////////// // task<T> - basic async task type template<typename T> struct task; template<typename T> struct task_promise { task<T> get_return_object() noexcept; std::suspend_always initial_suspend() noexcept { return {}; } struct final_awaiter { bool await_ready() noexcept { return false; } std::coroutine_handle<> await_suspend(std::coroutine_handle<task_promise> h) noexcept { return h.promise().continuation; } [[noreturn]] void await_resume() noexcept { std::terminate(); } }; final_awaiter final_suspend() noexcept { return {}; } template<typename U> requires std::convertible_to<U, T> void return_value(U&& value) noexcept(std::is_nothrow_constructible_v<T, U>) { result.template emplace<1>(std::forward<U>(value)); } void unhandled_exception() noexcept { result.template emplace<2>(std::current_exception()); } std::coroutine_handle<> continuation; std::variant<std::monostate, T, std::exception_ptr> result; }; template<> struct task_promise<void> { task<void> get_return_object() noexcept; std::suspend_always initial_suspend() noexcept { return {}; } struct final_awaiter { bool await_ready() noexcept { return false; } std::coroutine_handle<> await_suspend(std::coroutine_handle<task_promise> h) noexcept { return h.promise().continuation; } [[noreturn]] void await_resume() noexcept { std::terminate(); } }; final_awaiter final_suspend() noexcept { return {}; } void return_void() noexcept { result.emplace<1>(); } void unhandled_exception() noexcept { result.emplace<2>(std::current_exception()); } struct empty {}; std::coroutine_handle<> continuation; std::variant<std::monostate, empty, std::exception_ptr> result; }; template<typename T> struct [[nodiscard]] task { private: using handle_t = std::coroutine_handle<task_promise<T>>; handle_t coro; struct awaiter { handle_t coro; bool await_ready() noexcept { return false; } handle_t await_suspend(std::coroutine_handle<> h) noexcept { coro.promise().continuation = h; return coro; } T await_resume() { if (coro.promise().result.index() == 2) { std::rethrow_exception(std::get<2>(std::move(coro.promise().result))); } assert(coro.promise().result.index() == 1); if constexpr (!std::is_void_v<T>) { return std::get<1>(std::move(coro.promise().result)); } } }; friend class task_promise<T>; explicit task(handle_t h) noexcept : coro(h) {} public: using promise_type = task_promise<T>; task(task&& other) noexcept : coro(std::exchange(other.coro, {})) {} ~task() { if (coro) coro.destroy(); } awaiter operator co_await() && { return awaiter{coro}; } }; template<typename T> task<T> task_promise<T>::get_return_object() noexcept { return task<T>{std::coroutine_handle<task_promise<T>>::from_promise(*this)}; } task<void> task_promise<void>::get_return_object() noexcept { return task<void>{std::coroutine_handle<task_promise<void>>::from_promise(*this)}; } //////////////////////////////////////// // async_scope // // Used to launch new tasks and then later wait until all tasks have completed. struct async_scope { private: struct detached_task { struct promise_type { async_scope& scope; promise_type(async_scope& scope, auto&) noexcept : scope(scope) {} detached_task get_return_object() noexcept { return {}; } std::suspend_never initial_suspend() noexcept { scope.add_ref(); return {}; } struct final_awaiter { bool await_ready() noexcept { return false; } void await_suspend(std::coroutine_handle<promise_type> h) noexcept { async_scope& s = h.promise().scope; h.destroy(); s.notify_task_finished(); } void await_resume() noexcept {} }; final_awaiter final_suspend() noexcept { return {}; } void return_void() noexcept {} [[noreturn]] void unhandled_exception() noexcept { std::terminate(); } }; }; template<typename A> detached_task spawn_detached_impl(A a) { co_await std::forward<A>(a); } void add_ref() noexcept { ref_count.fetch_add(ref_increment, std::memory_order_relaxed); } void notify_task_finished() noexcept { std::size_t oldValue = ref_count.load(std::memory_order_acquire); assert(oldValue >= ref_increment); if (oldValue > (joiner_flag + ref_increment)) { oldValue = ref_count.fetch_sub(ref_increment, std::memory_order_acq_rel); } if (oldValue == (joiner_flag + ref_increment)) { // last ref and there is a joining coroutine -> resume the coroutien joiner.resume(); } } struct join_awaiter { async_scope& scope; bool await_ready() { return scope.ref_count.load(std::memory_order_acquire) == 0; } bool await_suspend(std::coroutine_handle<> h) noexcept { scope.joiner = h; std::size_t oldValue = scope.ref_count.fetch_add(joiner_flag, std::memory_order_acq_rel); return (oldValue != 0); } void await_resume() noexcept {} }; static constexpr std::size_t joiner_flag = 1; static constexpr std::size_t ref_increment = 2; std::atomic<std::size_t> ref_count{0}; std::coroutine_handle<> joiner; public: template<typename A> requires decay_copyable<A> && awaitable<std::decay_t<A>> void spawn_detached(A&& a) { spawn_detached_impl(std::forward<A>(a)); } [[nodiscard]] join_awaiter join_async() noexcept { return join_awaiter{*this}; } }; //////////////////////////////////////////////////////////////// // sync_wait() template<typename Task> await_result_t<Task> sync_wait(Task&& t) { struct _void {}; using return_type = await_result_t<Task>; using storage_type = std::add_pointer_t<std::conditional_t< std::is_void_v<return_type>, _void, return_type>>; using result_type = std::variant<std::monostate, storage_type, std::exception_ptr>; struct _sync_task { struct promise_type { std::binary_semaphore sem{0}; result_type result; _sync_task get_return_object() noexcept { return _sync_task{std::coroutine_handle<promise_type>::from_promise(*this)}; } struct final_awaiter { bool await_ready() noexcept { return false; } void await_suspend(std::coroutine_handle<promise_type> h) noexcept { // Now that coroutine has suspended we can signal the semaphore, // unblocking the waiting thread. The other thread will then // destroy this coroutine (which is safe because it is suspended). h.promise().sem.release(); } void await_resume() noexcept {} }; std::suspend_always initial_suspend() noexcept { return {}; } final_awaiter final_suspend() noexcept { return {}; } using non_void_return_type = std::conditional_t<std::is_void_v<return_type>, _void, return_type>; final_awaiter yield_value(non_void_return_type&& x) requires (!std::is_void_v<return_type>) { // Note that we just store the address here and then suspend // and unblock the waiting thread which then copies/moves the // result from this address directly to the return-value of // sync_wait(). This avoids having to make an extra intermediate // copy of the result value. result.template emplace<1>(std::addressof(x)); return {}; } void return_void() noexcept { result.template emplace<1>(); } void unhandled_exception() noexcept { result.template emplace<2>(std::current_exception()); } }; using handle_t = std::coroutine_handle<promise_type>; handle_t coro; explicit _sync_task(handle_t h) noexcept : coro(h) {} _sync_task(_sync_task&& o) noexcept : coro(std::exchange(o.coro, {})) {} ~_sync_task() { if (coro) coro.destroy(); } // The force-inline here is required to get the _sync_task coroutine elided. // Otherwise the compiler doesn't know that this function hasn't modified 'coro' // member variable and so can't deduce that it's always destroyed before sync_wait() // returns. FORCE_INLINE return_type run() { coro.resume(); coro.promise().sem.acquire(); auto& result = coro.promise().result; if (result.index() == 2) { std::rethrow_exception(std::get<2>(std::move(result))); } assert(result.index() == 1); if constexpr (!std::is_void_v<return_type>) { return static_cast<return_type&&>(*std::get<1>(result)); } } }; return [&]() -> _sync_task { if constexpr (std::is_void_v<return_type>) { co_await static_cast<Task&&>(t); } else { // use co_yield instead of co_return so we suspend while the // potentially temporary result of co_await is still alive. co_yield co_await static_cast<Task&&>(t); } }().run(); } ///////////////////////////////////////////////// // manual_event_loop // // A simple scheduler context with an intrusive list. // // Uses mutex/condition_variable for synchronisation and supports // multiple work threads running tasks. struct manual_event_loop { private: struct queue_item { queue_item* next; std::coroutine_handle<> coro; }; std::mutex mut; std::condition_variable cv; queue_item* head{nullptr}; queue_item* tail{nullptr}; void enqueue(queue_item* item) noexcept { std::lock_guard lock{mut}; item->next = nullptr; if (head == nullptr) { head = item; } else { tail->next = item; } tail = item; cv.notify_one(); } queue_item* pop_item() noexcept { queue_item* front = head; if (head != nullptr) { head = front->next; if (head == nullptr) { tail = nullptr; } } return front; } struct schedule_awaitable { manual_event_loop* loop; queue_item item; explicit schedule_awaitable(manual_event_loop& loop) noexcept : loop(&loop) {} bool await_ready() noexcept { return false; } void await_suspend(std::coroutine_handle<> coro) noexcept { item.coro = coro; loop->enqueue(&item); } void await_resume() noexcept {} }; public: schedule_awaitable schedule() noexcept { return schedule_awaitable{*this}; } void run(std::stop_token st) noexcept { std::stop_callback cb{st, [&]() noexcept { std::lock_guard lock{mut}; cv.notify_all(); }}; std::unique_lock lock{mut}; while (true) { cv.wait(lock, [&]() noexcept { return head != nullptr || st.stop_requested(); }); if (st.stop_requested()) { return; } queue_item* item = pop_item(); lock.unlock(); item->coro.resume(); lock.lock(); } } }; //////////////////////////////////////////////// // Helper for improving allocation elision for composed operations. // // Instead of doing something like: // // task<T> h(int arg); // scope.spawn_detached(h(42)); // // which will generally separately allocate the h() coroutine as well // as the internal detached_task coroutine, if we write: // // scope.spawn_detached(lazy_task{[] { return h(42); }}); // // then this defers calling the `h()` coroutine function to the evaluation // of `operator co_await()` in the `detached_task` coroutine, which then // permits the compiler to elide the allocation of `h()` coroutine and // combine its storage into the `detached_task` coroutine state, meaning // that we now have one allocation per spawned task instead of two. template<typename F> struct lazy_task { F func; using task_t = std::invoke_result_t<F&>; using awaiter_t = awaiter_type_t<task_t>; struct awaiter { task_t task; awaiter_t inner; explicit awaiter(F& func) noexcept(std::is_nothrow_invocable_v<F&> && noexcept(get_awaiter(static_cast<task_t&&>(task)))) : task(func()) , inner(get_awaiter(static_cast<task_t&&>(task))) {} decltype(auto) await_ready() noexcept(noexcept(inner.await_ready())) { return inner.await_ready(); } decltype(auto) await_suspend(auto h) noexcept(noexcept(inner.await_suspend(h))) { return inner.await_suspend(h); } decltype(auto) await_resume() noexcept(noexcept(inner.await_resume())) { return inner.await_resume(); } }; awaiter operator co_await() noexcept(std::is_nothrow_constructible_v<awaiter, F&>) { return awaiter{func}; } }; template<typename F> lazy_task(F) -> lazy_task<F>; ///////////////////////////////////////////////// // Example code #include <unistd.h> static task<int> f(int i) { using namespace std::chrono_literals; std::this_thread::sleep_for(1ms); co_return i; } static task<int> g(int i, manual_event_loop& loop) { co_await loop.schedule(); int x = co_await f(i); co_return x + 1; } static task<void> h(int i, manual_event_loop& loop) { int x = co_await g(i, loop); auto ts = std::chrono::steady_clock::now().time_since_epoch().count(); std::printf("[%u] %i -> %i (on %i)\n", (unsigned int)ts, i, x, (int)::gettid()); } static task<void> nested_scopes(int x, manual_event_loop& loop) { co_await loop.schedule(); async_scope scope; try { for (int i = 0; i < 10; ++i) { scope.spawn_detached(h(i, loop)); } } catch (...) { std::printf("failure!\n"); } co_await scope.join_async(); std::printf("nested %i done\n", x); std::fflush(stdout); } int main() { manual_event_loop loop; std::jthread thd{[&](std::stop_token st) { loop.run(st); }}; std::jthread thd2{[&](std::stop_token st) { loop.run(st); }}; std::printf("starting example\n"); { async_scope scope; scope_guard join_on_exit{[&] { sync_wait(scope.join_async()); }}; for (int i = 0; i < 10; ++i) { // Use lazy_task here so that h() coroutine allocation is elided // and incorporated into spawn_detached() allocation. scope.spawn_detached(lazy_task{[i, &loop] { return h(i, loop); }}); } } std::printf("starting nested_scopes example\n"); { async_scope scope; scope_guard join_on_exit{[&] { sync_wait(scope.join_async()); }}; for (int i = 0; i < 10; ++i) { scope.spawn_detached(lazy_task{[i, &loop] { return nested_scopes(i, loop); }}); } } return 0; }
Become a Patron
Sponsor on GitHub
Donate via PayPal
Source on GitHub
Mailing list
Installed libraries
Wiki
Report an issue
How it works
Contact the author
CE on Mastodon
About the author
Statistics
Changelog
Version tree